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ABSTRACT
Sparse linear algebra operators are memory bound due to low
compute to memory access ratio and irregular data access patterns.
The exceptional bandwidth improvement provided by the emerging
high-bandwidth memory (HBM) technologies, coupled with the
ability of FPGAs to customize the memory hierarchy and compute
engines, brings the potential to significantly boost the performance
of sparse linear algebra operators.

In this paper we identify four challenges when developing high-
performance sparse linear algebra accelerators on HBM-equipped
FPGAs — low HBM bandwidth utilization with conventional sparse
storage, limited on-chip memory capacity being the bottleneck
when scaling to multiple HBM channels, low compute occupancy
due to bank conflicts and inter-iteration carried dependencies, and
timing closure on multi-die heterogeneous fabrics. We conduct an
in-depth case study on sparse matrix-vector multiplication (SpMV)
to explore techniques that tackle the four challenges. These tech-
niques include (1) a customized sparse matrix format tailored for
HBMs, (2) a scalable on-chip buffer design that combines replication
and banking, (3) best practices of using HLS to implement hard-
ware modules that dynamically resolve bank conflicts and carried
dependencies for achieving high compute occupancy, and (4) a split-
kernel design methodology for frequency optimization. Using the
techniques, we demonstrate HiSparse, a high-performance SpMV
accelerator on a multi-die HBM-equipped FPGA device. We eval-
uated HiSparse on a variety of matrix datasets. The results show
that HiSparse achieves a high frequency and delivers promising
speedup with increased bandwidth efficiency when compared to
prior arts on CPUs, GPUs, and FPGAs. HiSparse is available at
https://github.com/cornell-zhang/HiSparse.

CCS CONCEPTS
• Hardware → Hardware accelerators; • Computer systems
organization→ Data flow architectures.
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1 INTRODUCTION
Sparse linear algebra operators, such as sparse matrix-vector multi-
plication (SpMV), sparse matrix-sparse vector multiplication (SpM-
SpV), and sparse matrix-matrix multiplication (SpMM), are key com-
putational primitives used in a broad range of applications, such
as linear system solvers [1], graph processing [2], and inference of
compressed neural networks [3]. FPGAs are an appealing platform
for accelerating these sparse linear algebra operators. Compared to
CPUs and GPUs, FPGAs can better exploit the fine-grained paral-
lelism in these operators by customizing the memory hierarchy and
compute engines [4]. In addition, FPGAs typically consume less
power than CPUs and GPUs. There have been continuous efforts
on building FPGA-targeted sparse linear algebra accelerators [5–8],
most of which are designed for DDR memory systems.

The emerging high-bandwidth memory (HBM) has the potential
to significantly boost the performance of sparse workloads, which
are memory bound due to low compute to memory access ratio and
irregular data access patterns. HBM devices deliver a much higher
bandwidth than DDR memories by providing multiple memory
channels that can service memory requests concurrently. HBMs
have been adopted into modern FPGAs, such as Intel Stratix 10 MX
and Xilinx Alveo U280.

In this paper, we perform a case study on SpMV to explore tech-
niques for building highly efficient sparse linear algebra accelerators
on HBM-equipped FPGAs. We identify four major challenges to ef-
fective SpMV acceleration on FPGAs with HBM support, including
(1) low HBM bandwidth utilization with conventional sparse stor-
age, (2) limited on-chip memory capacity being the bottleneck when
scaling to multiple HBM channels, (3) low compute occupancy due
to bank conflicts and inter-iteration carried dependencies, and (4)
timing closure on multi-die heterogeneous fabrics.

To address these challenges, we propose and develop HiSparse,
a high-performance SpMV accelerator on multi-die HBM-equipped
FPGAs. To fully utilize the available bandwidth of HBM for loading
in the sparse matrix, HiSparse stores the sparse matrix in a cus-
tomized format that allows vectorized, streaming accesses to each
HBM channel and concurrent accesses to multiple HBM channels.
To maximize the data reuse in accesses of the input vector, HiS-
parse introduces a scalable on-chip buffer design that combines
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vector replication and banking to feed a large number of parallel
processing engines (PEs). Furthermore, to support arbitrarily large
matrices (within the capacity of HBM), we partition the matrices
along both rows and columns according to the size of the on-chip
buffers. One synchronization per partition is required since the
buffers need to be cleared when switching partitions.

We implement HiSparse using high-level synthesis (HLS). While
recent years have seen a rapidly increasing adoption of HLS for
accelerator development, a majority of existing HLS designs target
dense computations, such as dense matrix multiplication [9–11],
image/video processing [12–14], and convolutional neural networks
[15–17]. Developing high-performance sparse accelerators using
HLS is more challenging because the irregular compute pattern of
sparse workloads causes bank conflicts and carried dependencies.
We manage to develop a pipelined, non-blocking arbiter and a
pipelined PE with load-store forwarding to resolve bank conflicts
and carried dependencies, respectively, usingHLS through iteration-
level modeling and a proper coding style.

We tackle the challenge of timing closure on multi-die HBM-
equipped FPGAs by adopting a split-kernel design methodology.
More concretely, we split the hardware modules of HiSparse (e.g.,
data loaders, PEs) into multiple groups, implement each group as
one OpenCL kernel, and use pipelined interfaces for inter-kernel
communication. We further apply two optimizations: (1) Confining
each kernel to a specific die during floorplanning to eliminate die
boundary crossings caused by centralized combinational control
signals; (2) Adding registers and relay units between the HBM
and data loaders that are placed at a die far from the HBM. The
split-kernel design achieves a higher frequency than a monolithic
counterpart — 237 MHz vs. 117 MHz. The main drawback of the
split-kernel design is the increased programming effort.

We implement HiSparse on a Xilinx Alveo U280 FPGA platform,
using 18 HBM channels delivering 258 GB/s bandwidth in total.
Evaluation results on a variety of matrix datasets show that com-
pared to MKL running on a 32-core Xeon CPU, HiSparse achieves
4.1× higher throughput and 4.6× higher bandwidth efficiency; com-
pared to cuSPARSE running on a GTX 1080 Ti GPU, HiSparse
achieves comparable throughput and 1.9× higher bandwidth effi-
ciency. HiSparse is 37× and 3.7× more energy-efficient than MKL
and cuSPARSE, respectively. We further compare HiSparse to Vitis
Sparse Library (VSL), which is the only existing SpMV accelerator
on HBM-equipped FPGAs to our knowledge. The current SpMV im-
plementation in VSL cannot handle large matrices and is 30% slower
than HiSparse on small matrices. We give a detailed comparison
against VSL in the evaluation and related work sections.

The main contributions of this paper are as follows:
• We identify the opportunities of using HBM-equipped FPGAs
for accelerating sparse linear algebra and discuss the challenges
in four aspects — HBM bandwidth utilization, on-chip memory
utilization, compute occupancy, and timing closure.

• We propose HiSparse, a high-performance SpMV accelerator
on HBM-equipped FPGAs. Using HiSparse as a case study, we
present techniques to tackle the aforementioned four challenges.
We study HiSparse under both fixed-point and floating-point

data types. Evaluation results show that HiSparse delivers promis-
ing speedup with increased bandwidth efficiency when com-
pared to prior arts on CPUs, GPUs, and FPGAs.

• We illustrate best practices of using HLS to implement hardware
modules that dynamically resolve bank conflicts and carried
dependencies for achieving high compute occupancy. We also
discuss potential enhancements in HLS tools to better support
developing high-performance sparse accelerators. HiSparse is
available at https://github.com/cornell-zhang/HiSparse.
The rest of this paper is organized as follows. Section 2 reviews

the background on SpMV and modern multi-die HBM-equipped
FPGAs and discusses the major challenges to effective SpMV ac-
celeration on FPGAs with HBM support. Section 3 presents the
sparse matrix format and accelerator architecture co-design of HiS-
parse. Section 4 describes frequency optimizations. Section 5 studies
HiSparse under floating-point datatype. We evaluate HiSparse in
Section 6 and discuss how to extend HiSparse to support sparse
linear algebra operators beyond SpMV in Section 7. We talk about
related work in Section 8 and summarize in Section 9.
2 BACKGROUND AND MOTIVATION
2.1 Sparse Matrix-Vector Multiplication (SpMV)
Representative applications of SpMV include graph analytics, such
as PageRank [18], as well as inference of compressed neural net-
works, such as Transformers [19]. PageRank can be computed by
iteratively applying SpMV, where the sparse matrix is the adjacency
matrix of the graph and the dense vector is the ranks of the vertices.
One layer of a compressed Transformer can be computed as an
SpMV, where the sparse matrix is the compressed weight and the
dense vector is the embedding. In PageRank, the sparse matrices are
usually large (with millions of rows and columns) and highly sparse
with a typical density below 0.1%. In contrast, the sparse matrices
of compressed Transformers are smaller (with thousands of rows
and columns) and less sparse with a typical density of 10-40%.

In this work, we focus on SpMV mainly for three reasons: (1)
There are two major data access patterns in SpMV — streaming
accesses of the sparse matrix exhibiting no data reuse and random
accesses of the dense vector exhibiting data reuse. Both data access
patterns are typical in sparse linear algebra, and each poses a unique
challenge to the accelerator design. The first pattern demands a high
off-chipmemory bandwidth, while the second demands efficient use
of on-chip buffers; (2) SpMV, similar to other sparse linear algebra
operators, has irregular compute patterns, which pose challenges
to achieving high occupancy of the parallel processing engines
(PEs) in an accelerator; (3) In addition, it is possible to extend an
SpMV accelerator to handle other sparse linear algebra operators.
For example, we can compute SpMM as a batch of SpMV; we can
support SpMSpV by considering the sparsity of the vector.
2.2 Multi-Die HBM-Equipped FPGAs
HBM[20] is a new memory technology that offers high bandwidth
by vertically stacking multiple memory dies. Logically, an HBM
device provides multiple memory channels that can be accessed
concurrently. HBMs have been adopted into modern FPGAs such as
Intel Stratix 10 MX and Xilinx Alveo U280. To fully utilize the high
bandwidth of HBM devices, the hardware must perform parallel,
vectorized, and streaming accesses at a high clock frequency.

https://github.com/cornell-zhang/HiSparse
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Figure 1: Comparison between Xilinx Alveo U250 and U280.

Modern FPGAs integrate multiple chip dies in a single package to
increase the available on-chip resources [21], allowing for building
large designs. However, the interconnections across dies have to
travel through the silicon interposer and incur non-trivial delays.
Moreover, when an HBM device is integrated into a multi-die FPGA,
not all dies have direct connections to the HBM interface. Figure 1
shows the heterogeneous architecture of U280 where all the HBM
channels connect to a single die, compared with the homogeneous
architecture of U250 where four DDR channels each connects to
one die. On U280, a hardware module’s access to HBM would incur
a long cross-die delay when the module is placed on a die far from
the HBM interface, raising challenges to timing closure.

2.3 Challenges to SpMV Acceleration
There are several major challenges to unleashing the full potential
of HBM-equipped FPGAs for accelerating SpMV:
• It is difficult to make full use of HBM bandwidth with the com-
pressed sparse row (CSR) sparse matrix format. CSR stores all
non-zeros and the corresponding column indices row-by-row
in contiguous memory locations. It uses a separate row pointer
array to denote the start location of each row. The row pointer
array in CSR prevents fully streaming accesses to the non-zeroes
— the accelerator has to first access the row pointer array before
reading the non-zeros. Also, the continuous storage of non-zeros
prevents cross-row vectorized accesses.

• The limited on-chip memory capacity becomes a bottleneck
when the accelerator uses a large number of PEs to saturate the
HBM bandwidth. Since every PE requires random accesses to
the dense vector, simply allocating a vector buffer for every PE
without resource sharing will run out of the on-chip memories.

• The irregularity in the compute pattern of SpMV causes bank
conflicts and carried data dependencies, leading to low compute
occupancy. Both bank conflicts and carried dependencies pose
challenges to contemporary HLS compilers, which typically use
static scheduling to generate a conservative pipeline with low
throughput.

• The last challenge is to tackle the heterogeneous architecture of
HBM-equipped FPGAs to achieve a high frequency, as described
in Section 2.2.

3 HISPARSE DESIGN
In this section, we first present the customized sparse matrix format
that is suitable for saturating the bandwidth of HBM (Sec 3.1) and
give an overview of the accelerator architecture (Sec 3.2). We then

describe the shared vector buffer with shuffle unit (Sec 3.3) and the
PE with load-store forwarding (Sec 3.4).

3.1 Sparse Matrix Format
We customize the sparsematrix format to support vectorized, stream-
ing accesses to each HBM channel and concurrent accesses to mul-
tiple channels. We construct a matrix in our format through parti-
tioning, streamizing, and packing. Figure 2 illustrates our format
on an example 24 × 24 matrix with a configuration of two HBM
channels and pack size 2.

Partitioning is required to handle large matrices that exceed the
buffer size. Since we buffer both the vector and the output, we need
to partition the matrix along both the rows and columns. Figure 2a
illustrates the partitioning scheme — assume both the vector buffer
size and the output buffer size are 12, then we partition the 24 ×
24 matrix into 4 (i.e., 2 × 2) partitions. We double buffer the vector
buffer to hide the cost of vector loading when switching partitions.

The next step is streamizing, which cyclically assigns rows to
PEs and concatenates the rows that are assigned to one PE into
one stream. We insert a next-row marker at the end of a row to
avoid indirect addressing as in CSR, thus enabling fully streaming
accesses. For example, in Figure 2b, the next-row marker of value
+2 in stream 0 indicates the end of row 0 and the start of row 8;
row 4 is empty, hence skipped. Since partitioning may generate
many empty rows on highly sparse matrices, skipping empty rows
is crucial for compact storage.

The final step is packing the streams of elements into streams of
packets. Assume one element requires a 32-bit value and a 32-bit
column index, and one HBM channel delivers 128 bits per access,
then we pack two (i.e., 128 / (32 + 32)) elements into one packet. We
store one stream of packets in one HBM channel, which is accessed
by a cluster of two PEs, each processing one stream of elements.

3.2 Accelerator Architecture Overview
HiSparse makes efficient use of limited on-chip memory to exploit
data reuse by sharing the vector and achieves high compute oc-
cupancy with hardware modules that dynamically resolve bank
conflicts and carried data dependencies.

Figure 3 depicts the design of the SpMV accelerator. It is a
dataflow architecture consisting of multiple clusters, a vector loader,
and a result draining unit. Each cluster connects to one HBM chan-
nel. The vector loader reads in the dense vector from the off-chip
memory and feeds each cluster a replica of the vector, which will
be shared inside that cluster. The draining unit concatenates the
outputs from the clusters to generate the final output and writes it
back to the off-chip memory.

A cluster consists of a matrix loader, a set of vector buffer access
units (VAUs), two shuffle units, an unpack unit, a pack unit, and
a collection of processing engines (PEs). The matrix loader reads
in a stream of packets, unpacks it into streams of elements, and
decodes the next-row markers to restore the row indices. Each VAU
handles requests to one vector buffer bank. It also manages double
buffer control of the bank. The shuffle units route the requests/re-
sponses to/from the VAUs, with a non-blocking resolution of bank
conflicts. Each PE multiplies the incoming non-zero value from the
matrix with the corresponding vector value, and accumulates the
product to the output buffer location indicated by the row index.
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Our parallelization scheme ensures that no bank conflicts would
occur on the output buffer. Since we pack the inputs to better utilize
the memory bandwidth, we need an unpack unit to unwrap the
incoming packets into individual elements and feed them into the
VAUs. We also have a pack unit to collect outputs from the PEs,
pack them, and stream the packets into the draining unit.

There are four types of payloads in the accelerator: (1) a value
packet with a packet index, used for the inter-cluster packed vector
payloads; (2) the matrix non-zero value with the corresponding
row index and column index, used between the matrix loader and
the VAUs; (3) the matrix non-zero value with the corresponding
row index and vector value, used between the VAUs and PEs; (4)
value-index pairs, used for both the input dense vector to VAUs
and the result dense vector from PEs.

In payload types (1) and (4), the index information for a dense
vector is redundant and can be safely removed. Nevertheless, we
decide to keep the index information so that the architecture can
be easily extended to support other sparse linear algebra operators
that deal with a sparse vector, such as SpMSpV.

3.3 Shared Vector Buffer with Shuffle Unit
Logically, each PE requires random accesses to the same input dense
vector. Replicating the input vector for every PE is not scalable to
multiple HBM channels when using a large number of PEs. To tackle
this problem, we share the dense vector buffer across all PEs within
one cluster and bank the shared buffer to increase throughput. The
input vector across different clusters remains replicated.

1 /* N is the number of input lanes */

2 while (!exit) {

3 #pragma HLS pipeline // II will be N

4 for (int i = 0; i < N; i++) {

5 #pragma HLS unroll

6 payload[i] = in_lane[i].read ();

7 out_lane[payload[i]. target ].write(payload[i]);

8 }

9 }

Figure 4: Shuffle unit with implicit control logic.

The key hardware module that manages banking is the shuffle
unit, which is challenging to implement using HLS. Figure 4 shows
a sub-optimal coding style in which the control logic is implicit. In
this case, HLS tools using static scheduling cannot generate proper
arbitration logic since the compile-time analysis assumes the worst-
case traffic pattern. Hence the resulting HLS schedule is to process
input lanes sequentially, with an initiation interval (II) of 𝑁 .

In HiSparse, we explicitly implement a pipelined arbiter and re-
sending logic that dynamically resolves bank conflicts by reordering
the payloads in an input lane. More concretely, We implement the
re-sending logic in HLS by iteration-level modeling, which refers
to defining which operations the datapath should perform at a
given iteration; if the datapath requires information from previous
iterations, special data structures are implemented to store and
forward the information.

Figure 5 shows the architectural diagram and the HLS code
of the shuffle unit. The crossbar at lines 31–35 provides all-to-all
connectivity from the input lanes to the output lanes. The arbiter
instantiated at line 29 detects conflicts on the output lanes and



controls the crossbar and the re-sending logic. For input payloads
with the same target output lane, the arbiter only grants access
to one payload in a round-robin manner. The arbiter defers the
denied payloads by re-sending them in a non-blocking manner to
the arbiter input as listed in lines 20–26.

Figure 6 shows a pipeline diagram of our solution when the
number of input lanes is 2 and the pipeline depth of the arbiter is 4.
The datapath will require the arbitration results from 4 iterations
away in the past to determine whether a read should be performed
on the input, and it also needs the correct payloads to be re-sent into
the arbiter. We make use of the pipeline registers inside the arbiter
to store the on-the-fly payloads, and use the dependence pragmas
at lines 15-18 in Figure 5b to direct the HLS tool to implement the
feedback paths. The feedback distance is determined by the pipeline
depth of the arbiter, which indicates that a combinational arbiter
will require no feedback and simplifies the design. However, such
an arbiter will cause timing problems. We verified that an 8-input
combinational arbiter will limit the frequency under 100 MHz.

Reordering payloads raises challenges for synchronization. We
need to finish reading every input lane and wait until all the on-the-
fly payloads in the arbiter are processed. The total number of extra
waiting cycles equals the number of input lanes times the depth of
the arbiter pipeline, which is 8 in the example.

3.4 Pipelined PE with Load-Store Forwarding
In SpMV, accumulation on the output incurs read-after-write (RAW)
dependencies. With a large output buffer, both read and write take
multiple cycles, resulting in more RAW dependencies.

A straightforward approach is to store the results of accumula-
tion in registers, and only performs read and write when the PE
switches rows (i.e., writes the result of the current row from the reg-
ister to the output buffer and reads the initial value of the next row
from the output buffer to the register). Figure 8a shows a pipeline
diagram of this approach. The downside is an extra iteration on
every row switching and the associated pipeline bubbles. Moreover,
reordering of payloads due to re-sending can cause additional row
switches. This row switching overhead limits the throughput when
processing extremely sparse matrices such as the adjacency matrix
of graphs.

To fully pipeline the PE (i.e., achieve II = 1), we implement a
load-store forwarding mechanism that dynamically resolves RAW
dependencies, following the iteration-level modeling approachmen-
tioned in Section 3.3. Figure 7 shows the PE architecture and cor-
responding HLS code. The PE derives the local bank address of
the input payload by the get_addr unit and does multiplication
and buffer read at the same time. Lines 10–21 implement the de-
pendence resolution logic, which overwrites the buffer readout
with the forwarded value if a RAW dependency is detected. In lines
22–33, the PE performs addition, writes the buffer, and updates
the in-flight write queue (IFWQ), which is a shift register used for
load-store forwarding. The IFWQ stores the address and value of
writes initiated in the past iterations, with a valid bit to discriminate
the nonexistent writes in the first few iterations. The depth of the
IFWQ is equal to the sum of the read latency and the write latency
of the output buffer. Figure 8b shows an example pipeline diagram
with a depth-5 IFWQ, assuming the read latency is 3 and the write

Pipelined 
Arbiter... ...

Input Lanes
Output Lanes

granted

arbiter_out

arbiter_in

(a) Architecture.

1 /* N is the number of input lanes

2 M is the number of output lanes

3 ARB_DEPTH it the depth of the arbiter pipeline */

4 // whether an input payload is granted access

5 bool granted[N];

6 // internal signals for arbiter input & output

7 payload_t arbiter_in[N], arbiter_out[N];

8 // sel: selection signal of the crossbar ,

9 // generated by the arbiter according to

10 // the target field of input payloads

11 unsigned sel[M];

12
13 while (!exit) {

14 #pragma HLS pipeline

15 #pragma HLS dependence variable = granted \

16 inter RAW true distance = ARB_DEPTH

17 #pragma HLS dependence variable = payload_out \

18 inter RAW true distance = ARB_DEPTH

19 // read inputs or take re-send

20 for (int i = 0; i < N; i++) {

21 #pragma HLS unroll

22 if (granted[i])

23 arbiter_in[i] = in_lane[i].read ();

24 else

25 arbiter_in[i] = arbiter_out[i];

26 }

27 // pipelined arbiter , depth = ARB_DEPTH

28 // arbiter_out is the copy of arbiter_in

29 arbiter(arbiter_in , sel , granted , arbiter_out );

30 // crossbar

31 for (int i = 0; i < M; i++) {

32 #pragma HLS unroll

33 if (granted[sel[i]])

34 out_lane[i].write(arbiter_out[sel[i]]);

35 }

36 }

(b) HLS code.
Figure 5: Shuffle unit with explicit control logic.

8 extra iterations to 
empty the arbiter

Operation                               Cycle 0 1 2 3 4 5 6 7 ... 11

 Input Lane 0: target = 2 Arbiter (granted)

 Input Lane 1: target = 2 Arbiter (denied)

 Input Lane 0: target = 1 Arbiter (granted)

 Input Lane 1: target = 3 Arbiter (granted)

 Input Lane 0: sync token / / / /

 Input Lane 1: sync token / / / /

 Input Lane 0: resend, target = 2 Arbiter (granted)

 Input Lane 1: no read / / / /

Loop exit

Figure 6: Pipeline diagram of the shuffle unit with a
pipelined arbiter — The red arrow indicates re-sending of the
denied payload.
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1 while (!exit) {

2 #pragma HLS pipeline

3 #pragma HLS dependence variable=out_buffer inter RAW false

4 // fetch input and get bank address

5 pld = in.read ();

6 addr = get_addr(pld.row_idx );

7 // multiplication and read

8 update = pld.mat_value * pld.vec_value;

9 mem_value = out_buffer[addr];

10 // dependence resolution logic

11 fwd_value = 0;

12 has_RAW = false;

13 for (int i = 0; i < IFWQ_DEPTH; i++) {

14 #pragma HLS unroll

15 if (addr == IFWQ[i].addr && IFWQ[i].valid) {

16 has_RAW = true;

17 fwd_value = IFWQ[i].data;

18 break;

19 }

20 }

21 base = has_RAW ? fwd_value : mem_value;

22 // addition and write

23 new_value = base + update;

24 out_buffer[addr] = new_value;

25 // update IFWQ

26 // IFWQ [0] stores the latest in-flight write

27 for (i = IFWQ_DEPTH - 1; i > 0; i--) {

28 #pragma HLS unroll

29 IFWQ[i] = IFWQ[i - 1];

30 }

31 IFWQ [0]. addr = addr;

32 IFWQ [0]. data = new_value;

33 IFWQ [0]. valid = true;

34 }

(b) HLS code.

Figure 7: PE with load-store forwarding.
latency is 2. Load-store forwarding fully pipelines the PE regardless
of the order of the input payloads.

Using the IFWQ to resolve RAW dependencies only works when
the addition stage is single-cycle, which is true for integer and
fixed-point data types. For floating-point design, the addition can
take multiple cycles and break the IFWQ-based data forwarding.
We explore alternative methods to tackle this problem in Section 5.

4 TIMING CLOSURE ON MULTI-DIE FPGAS
In this section, we present our split-kernel design methodology
to address the challenge to timing closure when implementing
HiSparse on a multi-die FPGA.

One straightforward implementation of the SpMV accelerator
is writing a nested for-loop in one OpenCL kernel to iterate all

Operation                 Cycle 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

 Input a, addr = 0 MUL ADD

 Input c, addr = 1 RD & WR

 Input c, addr = 1 MUL ADD

 Input d, addr = 1 MUL ADD

 Deferred Input b, addr = 0 RD & WR

 Deferred Input b, addr = 0 MUL ADD

Bubbles

Bubbles

Bubbles

Bubbles

(a) Using registers.

Operation                             Cycle 0 1 2 3 4 5 6 7 8 9

 Input a, addr = 0 RD & MUL ADD WR

 Input c, addr = 1 RD & MUL ADD WR

 Input d, addr = 1 RD & MUL ADD WR

 Deferred Input b, addr = 0 RD & MUL ADD WR

IFWQ Entries 0 1 2 3 4

Cycle 0, 1, 2

Cycle 3 a
Cycle 4 c a
Cycle 5 d c a

(b) Using load-store forwarding — Red arrows indicate the RAW depen-
dencies. Blue arrows indicate the data forwarding to resolve dependencies.

Figure 8: Pipeline diagrams of resolving RAWdependencies.
matrix partitions, leading to a monolithic SpMV accelerator. Since
the monolithic SpMV does not consider the physical layout of the
device, it is difficult to find an optimal place-and-route solution.
If no manual floorplanning is applied, the placement tool will try
to squeeze all logic onto the same chip die to minimize the die
boundary crossings. Such a highly condensed placement will in-
crease the routing congestion level and degrade the timing of the
design. Applying manual floorplanning to the monolithic SpMV to
optimize the place-and-route results cannot solve the timing issue
either. Figure 9a illustrates an example sub-optimal floorplanning
solution. The HLS-generated signals, both for data accesses and
control, contain combinational logic which cannot be pipelined to
accommodate the die-boundary-crossing timing penalty. In short,
the device limitation and HLS shortcomings result in poor timing
closure of the monolithic SpMV.

We take the split-kernel approach to address this problem. Split-
kernelmeans explicitly splitting the accelerator intomultiple OpenCL
kernels to minimize die-boundary crossings and pipelining neces-
sary inter-die connections. We confine the logic to be placed on
the same chip die into one kernel, and we connect different kernels
with a protocol that can be pipelined to accommodate the latency of
die-boundary-crossing. The kernel-level communication protocol
we use is the AXI standard [22] as it is widely supported by FPGA
design tools. Figure 9b shows the floorplanning of the split-kernel
SpMV accelerator. The vector loader and result drain are also indi-
vidual kernels placed close to the HBM interface. The split-kernel
approach also well fits the heterogeneous architecture of the FPGA
platform. We insert additional registers and relay units to paths
that cross die boundaries to pipeline the remote connection. For
high-fan-out and high-fan-in logic like the vector duplication and
result concatenation, we implement them as multi-level structures
to improve timing.

With the same number of clusters and the same buffer size, the
split-kernel SpMV achieves 237 MHz, greatly outperforming the
monolithic SpMV with 117 MHz.

5 FLOATING-POINT IMPLEMENTATION
Using fixed-point data types on FPGAs offers efficient hardware
with accurate enough computation for a rich set of applications
such as machine learning inference on compressed models [19],
graph traversal algorithms like single-source shortest path (SSSP)
[23], and graph analysis algorithms like PageRank [24]. However,
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Figure 9: Floorplanning of HiSparse.

there are cases where the large dynamic range of floating-point
data type is preferred such as scientific computing. Therefore, we
also study floating-point SpMV to evaluate the hardware cost.

On FPGA platformswith hardware floating-point units (e.g., Intel
Stratix 10 NX and Agilex F-Series), the floating-point addition only
takes a single cycle. Hence it will require minimal modifications
to the PE pipeline of HiSparse to support floating-point SpMV.
However, on FPGAs that use soft floating-point IPs, implementing
single-cycle floating-point adders would not only consume more
resources but also result in severe timing degradation. If we relax the
latency of the floating-point addition, we must explore approaches
to resolve the inter-iteration carried dependencies.

Stream : Row 20, 16, 12 ,8, 4, 0 

+1 fh+1i+1j e d c b ag+1k+1l

Stream : Row 20, 16, 12 ,8, 4, 0, with row interleaving 

+1f h+1 i+1 je d c b ag +1 k+1 l

Addr:   5      4     3      2      1     0  0  0  0  0  0  0

Addr:       0  0  0  0  0                 0  5  4  3  2  1  0
Operation       Cycle 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

 Input a, addr = 0 RD ADD WR

 Input h, addr = 1 RD ADD WR

 Input i, addr = 2 RD ADD WR

 Input j, addr = 3 RD ADD WR

 Input k, addr = 4 RD ADD WR

 Input l, addr = 5 RD ADD WR

 Input b, addr = 0 RD ADD WR

 Input c, addr = 0 RD ADD WRBubbles

Figure 10: PE with row interleaving — Blue and red arrows
indicate the dependencies resolved by row interleaving and stalling,
respectively. "Addr" indicates the output buffer bank address.

One solution is to duplicate the output buffer into𝑛 partial buffers
and rotate the PE between different partial buffers, where 𝑛 is the

latency of buffer access and floating-point add. Each partial buffer
is updated every 𝑛 cycles, which resolves the carried dependencies.
We add up 𝑛 partial buffers to get the final results. If the read latency
is 1, the write latency is 2, and the floating-point add latency is 3, a
total of 6 partial buffers are required. This approach can provide
the same peak throughput as the fixed-point designs, but at a cost
of excessive on-chip memory usage. A small output buffer will
increase the number of complete vector loads, and a small vector
buffer will increase the synchronization overhead and decrease the
compute occupancy. Therefore, the partial buffer approach is only
acceptable when the matrix is so small that the increased tiling and
synchronization overhead is affordable.

Another solution is to add stall logic to resolve carried depen-
dencies at run time and interleave different rows to avoid stalling.
Figure 10 shows how row interleaving works on an example stream
with 6 rows. With row interleaving, the PE first processes the first
payload from row 0, then processes the first payload from rows 4,
8, etc., instead of processing all payloads in row 0 before moving to
row 4. Since the number of payloads in each row is not the same,
at the end of the stream, there are not enough rows to be inter-
leaved. The payloads marked with c to g illustrate such situations.
Therefore, the stall logic is still necessary. The key advantage of
row interleaving is that it preserves the high on-chip memory uti-
lization efficiency, and is thus more suitable than the partial buffer
approach when processing large matrices. However, due to the
inevitable stalls, the overall throughput would be lower than the
fixed-point counterpart.

6 EVALUATION
6.1 Experiment Setup
HiSparseConfiguration.We implementHiSparse onXilinxAlveo
u280 using 18 HBM channels (16 for the matrix, 2 for the input and
result vectors), offering a memory bandwidth of 258 GB/s. Further



scaling to more than 18 HBM channels causes routability issues.
The input vector buffer size is 128 KB, and the output vector buffer
size is 4 MB. We use UltraRAM (URAM), a high capacity on-chip
memory, as the implementation for both buffers. The sizes of the
buffers are determined by our exploration of the design space in
Section 6.2. The pack size is 8 since one HBM channel delivers 512
bits per access and a value-index pair takes 64 bits. HiSparse runs
at 237 MHz. Table 1 shows the resource utilization of HiSparse.

Table 1: Resource utilization of HiSparse.

LUT REG DSP BRAM URAM
544K (47.27%) 528K (22.7%) 688 (7.63%) 128 (7.22%) 512 (53.33%)

Configuration of Floating-Point Design. We also evaluate
two floating-point variants of HiSparse (i.e., partial buffer and row
interleaving) on the same platform. We use the IEEE-754 floating-
point standard and the addition latency is 4. For the partial buffer
design, the number of partial buffers is 8 so the logical output buffer
size is only 0.5 MB. For the row interleaving design, the buffer sizes
are the same as in the fixed-point design.

CPU and GPU Baselines. We compare HiSparse with vendor-
provided sparse libraries, specifically MKL (2019.5) on the CPU and
cuSPARSE (10.1) on the GPU. We conduct CPU experiments using
32 threads on a two-socket 32-core 2.8 GHz Intel Xeon Gold 6242
machine with 384 GBDDR4memory providing 282 GB/s bandwidth.
We conduct GPU experiments on a GTX 1080 Ti card with 3584
CUDA cores running at a peak frequency of 1582 MHz and 11 GB
GDDR5X memory providing 484 GB/s bandwidth.

FPGABaselines.Wealso compareHiSparsewith existing FPGA
sparse accelerators — ThunderGP [24] and Vitis Sparse Library
(VSL) [25]. ThunderGP is the state-of-the-art FPGA accelerator on
graph processing, although it is not targeting FPGAs with HBMs.
We compare with ThunderGP on several common graph datasets.
VSL is an optimized HLS library released as part of the Vitis 2020.2;
it utilizes HBM for acceleration. Due to a known issue [26], VSL
is incapable of running large matrices so we only compare with it
on small datasets. The SpMV accelerator from ThunderGP utilizes
the fixed-point data type, while VSL implements a floating-point
SpMV using the partial buffer approach. The ThunderGP design is
implemented on two FPGA platforms: Xilinx VCU1525 and Alveo
U250. Both platforms are equipped with 4 × 16GB DDR4 memory
delivering 77 GB/s bandwidth. We take the better result for com-
parison. We compile VSL on a Xilinx Alveo U280 platform with
16 HBM channels and 2 DDR channels providing 268 GB/s band-
width in total, which is the only configuration supported by VSL.
ThunderGP accelerator runs at 250 MHz, and VSL runs at 220 MHz.

Metrics. (1) Throughput, measured in Giga operations per sec-
ond (GOPS). The multiplication and addition are counted as 2 sepa-
rate operations. (2) Bandwidth efficiency, measured by throughput
per unit bandwidth, in MOPS/GBPS. (3) Energy efficiency, measured
by throughput per unit power, in GOPS/W.

Datasets. Table 2 lists the matrices we used for the evaluation.
googleplus, hollywood, and pokec are social network graphs;
they have been widely used in benchmarking graph processing sys-
tems. mouse-gene is a graph from computational biology. ogbl-ppa
and ogbn-products are from OGB [27], a benchmark suite for the
emerging graph neural networks. transformer-x is one layer from
a compressed Transformer [19] model with a sparsity of x%.

Table 2: Matrix datasets.
Dataset Size Density Dataset Size Density

transformer-50 512 × 33K 50% mouse-gene 45K × 45K 1.42%
transformer-60 512 × 33K 40% googleplus 108K × 108K 1.2 × 10−3

transformer-70 512 × 33K 30% ogbl-ppa 576K × 576K 127.9 × 10−6

transformer-80 512 × 33K 20% hollywood 1069K × 1069K 98.5 × 10−6

transformer-90 512 × 33K 10% pokec 1632K × 1632K 11.5 × 10−6

transformer-95 512 × 33K 5% ogbn-products 2449K × 2449K 20.6 × 10−6
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Figure 11: Design space exploration —We pick the design point
highlighted by a red circle. The top right region represents design
points that exceed the available URAM blocks.
6.2 Design Space Exploration
We explore the design space of HiSparse by varying the size of
the vector buffer and the output buffer. To speed up the design
space exploration, we build a performance model of HiSparse which
provides an estimation of the execution time without the need of
running hardware emulation. Our model calculates the cycle count
based on the matrix size, matrix density, buffer size, pack size, the
number of PEs, and the compute occupancy. All factors except
the compute occupancy are known given an input matrix and a
design configuration. The compute occupancy is determined by
format overhead — the markers and padding are not involved in
computation — and vector buffer bank conflicts. We analyze the
formatted matrices to obtain format overhead and run software
simulations to estimate the bank conflict ratio.

We exhaustively search the design space using the performance
model, on all datasets used in the evaluation. Figure 11 shows the
estimated geometric mean throughput on all datasets. When the
output buffer bank size is larger than 25KB and the vector buffer
bank size is larger than 16 KB, the performance plateaus at 130 to
135 operations per cycle.

We select the design point with 32-KB output buffer banks and
16-KB vector buffer banks, where the performance just reaches
the plateau region. Because the size of one URAM block is 4096
words, we omit other design points with a smaller bank size to
avoid URAM under-utilization. The logical size of the output buffer
is 32 KB × 128 = 4 MB. The logical size of the vector buffer is 16 KB
× 8 = 128 KB. This design point runs at 237 MHz and delivers 16.65
GOPS throughput.

6.3 SpMV Evaluation
Table 3 shows the comparison of HiSparse with CPU and GPU base-
lines. Compared toMKL, HiSparse is 4.1× higher in throughput, and
4.6× higher in bandwidth efficiency. Compared to cuSPARSE, HiS-
parse achieves the same throughput within the range of error, and
is 1.9× higher in bandwidth efficiency. On graph datasets, HiSparse
is 4.4× and 1.3× higher in throughput than the MKL and cuSPARSE,



Table 3: Throughput (GOPS) and bandwidth efficiency
(MOPS/(GB/s)) compared to MKL and cuSPARSE.

Dataset Throughput Bandwidth efficiency
MKL cuSPARSE HiSparse MKL cuSPARSE HiSparse

transformer-50 5.9 26.9 21.9 20.9 55.5 84.7
transformer-60 5.6 21.5 18.9 19.9 44.5 73.4
transformer-70 5.2 17.7 16.5 18.3 36.6 63.9
transformer-80 4.1 19.4 14.8 14.6 40.1 57.4
transformer-90 2.3 13.6 9.7 8.1 28.0 37.8
transformer-95 1.2 10.7 5.7 4.3 22.2 22.0

Geomean 3.5 17.5 13.3 12.5 36.2 51.7
mouse-gene 12.1 29.0 27.2 43.0 59.9 105.4
googleplus 5.1 27.2 21.2 18.0 56.4 82.2
ogbl-ppa 4.1 18.0 24.4 14.7 37.2 94.6
hollywood 4.4 22.6 24.9 15.6 46.6 96.7

pokec 3.0 10.5 11.2 10.7 21.8 43.6
ogbn-products 3.1 5.0 20.6 11.0 10.3 79.9

Geomean 4.7 16.0 20.8 16.6 33.1 80.7
Overall Geomean 4.1 16.8 16.7 14.0 33.2 64.5

respectively; also 4.9× and 2.4× higher in bandwidth efficiency.
On the Transformer datasets, the numbers are 3.8× and 0.8× in
throughput, 4.1× and 1.4× in bandwidth efficiency, respectively.

Table 4: Comparison with ThunderGP.

Dataset Throughput Bandwidth efficiency
ThunderGP HiSparse ThunderGP HiSparse

mouse-gene 8.4 27.2 109.0 105.4
hollywood 9.7 24.9 126.0 96.7

pokec 8.7 11.2 113.7 43.6
Geometric mean 8.9 19.6 116.0 76.3

Table 5: Comparison with Vitis Sparse Library.

Dataset Throughput Bandwidth efficiency
VSL HiSparse VSL HiSparse

transformer-50 17.5 20.6 65.2 79.8
transformer-60 14.6 17.8 54.4 69.0
transformer-70 13.0 15.3 48.7 59.5
transformer-80 10.5 13.4 39.1 51.9
transformer-90 5.8 10.6 21.8 41.0
transformer-95 3.3 5.1 12.4 19.7
Geometric mean 9.4 12.6 34.9 48.9

Table 4 shows the comparison with ThunderGP [24]. HiSparse
delivers a 2.2× higher throughput than ThunderGP, but with a lower
bandwidth efficiency (at 0.7×). The main reason is ThunderGP
assigns more processing engines to one memory channel than
HiSparse, compensating for the under-utilization of PEs due to
bank conflicts and load imbalance. This approach is feasible in
ThunderGP since the total number of memory channels is only 4.
When scaled to 16 or more channels, the complexity of the shuffle
unit can easily cause routability problems. Therefore, to further
increase the bandwidth efficiency, a more lightweight shuffle unit
is required to assign more PEs to one memory channel.

Table 5 shows the comparison with VSL. Since the SpMV in VSL
is a floating-point design using the partial buffer approach, we also
use the partial-buffer floating-point design for a fair comparison.
HiSparse is 1.4× higher in both throughput and bandwidth effi-
ciency. The main reason is that the VSL SpMV only assigns 4 PEs
to one HBM channel. In addition, the vector buffer size and output

buffer size are only 2 KB and 8 KB, respectively. Using the smaller
buffers also increases the tiling and synchronization overhead.

Table 6: Power consumption and energy efficiency.
MKL 32 threads cuSPARSE HiSparse

Power (W) 276 153 45
Energy efficiency (GOPS/W) 0.01 0.10 0.37

Table 6 shows the real-measured power consumption and energy
efficiency of MKL, cuSPARSE, and HiSparse. HiSparse is 37× and
3.7× more energy-efficient than MKL and cuSPARSE.

6.4 Floating-Point vs. Fixed-Point
Table 7: Fixed-point (FX), partial buffer (PB) floating-point,
and row interleaving (RI) floating-point designs.

Dataset Size Throughput
FX PB RI

transformer-80 512 × 33K 14.8 13.4 6.3
mouse-gene 45K × 45K 27.2 25.0 13.1

pokec 1632K × 1632K 11.2 3.4 9.1
ogbn-products 2449K × 2449K 20.6 6.7 16.3

Table 7 shows the comparison among the fixed-point design and
two floating-point designs proposed in Section 5 with similar total
on-chip buffer utilization. The operating frequency of the partial
buffer (PB) design and the row interleaving (RI) design are 218 MHz
and 206 MHz, respectively. On small matrices such as mouse-gene
and transformer-80, the PB design is comparable to the fixed-
point design, while the RI design only achieves less than 50% of the
throughput of the fixed-point design. However, on large datasets,
the increased tiling overhead of the PB design significantly degrades
the performance. The RI design, on the other hand, achieved 80%
throughput of the fixed-point counterpart. The results clearly show
that adopting fixed-point delivers the best performance with high
hardware efficiency. The partial buffer design is better at processing
small matrices while the row interleaving approach is suitable to
handle larger datasets.

6.5 Preprocessing Cost
Preprocessing refers to converting a CSR matrix into our custom
format. Table 8 shows the preprocessing cost of HiSparse and VSL,
both using only one thread. On 8 out of the 12 datasets, the pre-
processing can finish within a second. Even on the largest dataset,
ogbn-products, the preprocessing can finish within 11 seconds. In
comparison, the preprocessing of VSL on ogbn-products takes 49
seconds. For graph analytics such as PageRank, the preprocessing
cost is amortized over multiple iterations; for compressed machine
learning inference like Transformers, the preprocessing cost can
be ignored since a trained model runs inference for a long time, at
least days, before being retained.

7 DISCUSSION
Extending HiSparse beyond SpMV. HiSparse can be easily ex-
tended to other sparse linear algebra operators such as SpMSpV
and SpMM, by reusing the optimized hardware modules.

SpMSpV exploits the sparsity in the input vector and only loads
the necessary columns of the sparse matrix. We can accelerate SpM-
SpV using similar architecture as HiSparse with small modifications.



Table 8: Preprocessing time with one thread.

Dataset Time (s) Dataset Time (s)
HiSparse VSL HiSparse VSL

transformer-50 0.24 7.72 mouse-gene 0.87 20.58
transformer-60 0.16 6.18 googleplus 0.39 8.09
transformer-70 0.11 4.38 ogbl-ppa 1.89 17.24
transformer-80 0.08 2.80 hollywood 4.68 59.40
transformer-90 0.04 1.66 pokec 3.43 13.00
transformer-95 0.02 0.74 ogbn-products 10.60 49.45

The vector loader assigns different vector values to different clusters
instead of duplicating the same vector value. The result draining
unit merges partial results from clusters by addition rather than
concatenation. The clusters compute the scalar-vector product be-
tween one vector value and the corresponding column from the
matrix. Since the accesses to the output buffer are random, we can
reuse the shuffle unit to assign matrix non-zeros to PEs and resolve
the bank conflicts on the output buffer. The compute pattern in the
PEs is not changed, so the PEs can also be reused.

SpMM can be expressed in a batch of SpMV, therefore it has the
same access pattern as SpMV. The rows of the sparse matrix are
streamed in and duplicated to multiple SpMV instances. The vector
loaders of different SpMV instances load different columns from
the input dense matrix. Each SpMV instance generates one column
of the result dense matrix.

Potential Enhancements in HLS Tools. Based on the lessons
learned from developing HiSparse, we give the following sugges-
tions on how HLS tools can be improved to better support devel-
oping high-performance sparse accelerators. First, sparse linear
algebra operators all contain random access patterns with data
reuse, which requires efficient on-chip buffering. We suggest hard-
ware templates similar to the shuffle unit be included in the HLS
libraries. Second, sparse linear algebra operators often imply ac-
cumulation. The load-store forwarding in HiSparse can serve as a
general approach to resolving inter-iteration carried dependencies.
The HLS tools can offer pragmas or options to implement the IFWQ
and the dependence resolution logic at compile time. Finally, when
any module consumes resources more than one die, the HLS tool
can automatically switch to pipelined communication protocols
and insert registers or at least warn the programmer of potential
timing degradation.

8 RELATEDWORK
Sparse Formats and Sparse Accelerators. There is an active
body of research on accelerating sparse linear algebra operators [5,
28–34]. The cyclic channel interleaving scheme in our customized
format is adopted from cyclic channel sparse rows (C2SR), a format
proposed for a sparse-sparse matrix multiplication (SpGEMM) ac-
celerator [29]. One major difference between C2SR and our format
is that C2SR performs vectorized memory accesses to every single
row, while our format performs vectorized memory accesses to
packed rows. The latter better exploits the parallelism in SpMV.
Our format also draws inspiration from compressed interleaved
sparse rows (CISR), a format proposed for an SpMV accelerator
[5]. Our format borrows from CISR the general idea of explicitly
encoding parallelism into the sparse matrix format, but avoids the
centralized row encoding/decoding in CISR. Therefore we achieve

higher throughput when scaling to multiple HBM channels and
lower preprocessing cost.

Graph Accelerators on FPGAs. ThunderGP [24] implements
SpMV using the programming model for graph algorithms. Thun-
derGP provides optimized kernels with high bandwidth efficiency
and frequency, but the performance is limited by DDR memory
bandwidth. GraphLily [34] formulates graph algorithms with SpMV
in one unified FPGA bitstream. Although utilizing HBM, GraphLily
only operates at 165 MHz, which limits its performance. We believe
the techniques mentioned in this paper, especially kernel splitting,
can be applied to GraphLily to further improve its performance.

Vitis Sparse Library. To the best of our knowledge, the Vitis
Sparse Library (VSL) [25] is the only work prior to HiSparse that
accelerates SpMV on a multi-die HBM-equipped FPGA. It adopts
compressed sparse column format to exploit the parallelism across
columns, with the floating-point data type. Our performance gain
over VSL comes from the increased number of PEs and buffer size.
VSL utilizes combinational arbiters to resolve bank conflicts so that
the numbers of PEs and shared banks are limited to 4 for high
frequency. The compute pattern of VSL requires the results from
different PEs to be added instead of concatenated, and it follows the
partial buffer approach to handle floating-point. These two factors
significantly decrease the on-chip buffer utilization efficiency.

Timing Optimization of FPGA HLS. There are several prior
attempts aiming at improving the frequency of the HLS designs by
considering the physical information at an early stage. AutoBridge
[21] proposes floorplan-guided pipelining for HLS dataflow designs
to achieve substantial timing improvements on multi-die FPGAs.
AutoBridge does not support pipelining the control signals and the
remote accesses to HBM; hence currently it cannot be applied to
our sparse accelerator design. Guo et al. [35] propose to pipeline the
high-fanout signals generated by HLS, although this work does not
target multi-die HBM-equipped FPGAs. Zheng et al. [36] propose
an iterative HLS flow that incorporates place-and-route (PAR) to
gradually optimize the critical paths. For large-scale designs that
saturate the HBM bandwidth, the long running time of PAR would
undermine the productivity benefits of HLS.

9 CONCLUSION
This paper proposes HiSparse, a high-performance SpMV acceler-
ator on HBM-equipped FPGAs. We present techniques to tackle
challenges in four aspects — HBM bandwidth utilization, on-chip
memory utilization, compute occupancy, and timing closure on
multi-die heterogeneous fabrics. Evaluation results verify the ad-
vantages of HiSparse over competitive CPU, GPU, and FPGA base-
lines in throughput and bandwidth efficiency. We further discuss
how to extend HiSparse to support sparse linear algebra operators
beyond SpMV, such as SpMSpV and SpMM. Our study also provides
guidance on potential enhancements in HLS tools to better support
developing high-performance sparse accelerators.
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