
SoftVN: Efficient Memory Protection via Software-Provided
Version Numbers

Muhammad Umar†, Weizhe Hua†, Zhiru Zhang†, G. Edward Suh†§∗
†Cornell University, Ithaca, NY, USA

§Meta AI, Cambridge, MA, USA
{mu94,wh399,zhiruz,gs272}@cornell.edu,edsuh@fb.com

ABSTRACT
Trusted execution environments (TEEs) in processors protect off-
chip memory (DRAM), and ensure its confidentiality and integrity
using memory encryption and integrity verification. However, such
memory protection can incur significant performance overhead
as it requires additional memory accesses for protection metadata
such as version numbers (VNs) and MACs. This paper proposes
SoftVN, an extension to the current memory protection schemes,
which significantly reduces the overhead of today’s state-of-the-
art by allowing software to provide VNs for memory accesses. For
memory-intensive applicationswith simplememory access patterns
for large data structures, the VNs only need to be maintained for
data structures instead of individual cache blocks and can be tracked
in software with low efforts. Off-chip VN accesses for memory reads
can be removed if they are tracked and provided by software. We
evaluate SoftVN by simulating a diverse set of memory-intensive
applications, including deep learning, graph processing, and bioin-
formatics algorithms. The experimental results show that SoftVN
reduces the memory protection overhead by 82% compared to the
baseline similar to Intel SGX, and improves the performance by
33% on average. The maximum performance improvement can be
as high as 65%.

CCS CONCEPTS
• Security and privacy→ Security in hardware; • Computer
systems organization→ Architectures.

KEYWORDS
Trusted execution environment (TEE), Memory protection

ACM Reference Format:
Muhammad Umar, Weizhe Hua, Zhiru Zhang, G. Edward Suh. 2022. SoftVN:
EfficientMemory Protection via Software-Provided Version Numbers. In The
49th Annual International Symposium on Computer Architecture (ISCA ’22),
June 18–22, 2022, New York, NY, USA. ACM, New York, NY, USA, 13 pages.
https://doi.org/10.1145/3470496.3527378

∗Work was done at Cornell University.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
ISCA ’22, June 18–22, 2022, New York, NY, USA
© 2022 Association for Computing Machinery.
ACM ISBN 978-1-4503-8610-4/22/06. . . $15.00
https://doi.org/10.1145/3470496.3527378

1 INTRODUCTION
Many emerging data-intensive applications consume private or
sensitive data, which demand strong security protection. For ex-
ample, machine learning (ML) algorithms often need to collect,
store, and process a large amount of personal and potentially pri-
vate data from users to train a model. Moreover, due to their high
computational demand, these computations are often performed
on a remote server in the cloud rather than a client device such
as a smartphone. Unfortunately, in traditional computing systems,
private user data may be exposed or misused by the remote server
if it is either compromised or malicious.

A promising approach to providing strong confidentiality and
integrity guarantees even under untrusted software and poten-
tial physical tampering is to rely on trusted hardware to create a
hardware-protected execution environment. For example, Intel SGX
[30] provides a trusted execution environment (TEE) called an en-
clave, which protects security-sensitive computation and data even
from privileged software such as an operating system. The crypto-
graphic protection of off-chip memory, namely memory encryption
and integrity verification, represents an essential technology to
enable the TEE. However, the off-chip memory protection also rep-
resents the main source of performance overhead in the traditional
secure processor designs [12, 30, 44, 47]. Each cache block is en-
crypted before being written back to memory, and decrypted and
verified on a read.

To hide decryption latency, TEEs often use counter-mode encryp-
tion, which allows cipher (AES) operations to be overlapped with
memory reads. However, the counter-mode encryption requires
a version number (VN) for each cache block. In order to handle
arbitrary memory access patterns, VNs that count per-cache-block
writes are typically stored in the main memory (DRAM). To protect
the integrity of off-chip memory, either a message authentication
code (MAC) or a cryptographic hash also needs to be attached to
each cache block in memory. Moreover, to ensure freshness and
prevent replay attacks, the integrity verification requires a tree of
MACs. Unfortunately, the additional VN and MAC accesses can
lead to significant performance overhead for memory-intensive
workloads, even in presence of metadata caches. The depth of the
integrity tree also limits the maximum size of protected memory,
and makes protection difficult and more expensive for systems with
a large DRAM.

In this paper, we propose a new memory protection scheme,
named SoftVN, which enables low-cost memory encryption and
integrity verification even for memory-intensive applications by
allowing software inside a TEE to control VNs for a part of its pro-
tected memory space. We study more than 30 kernels across three
classes of memory-intensive applications, and make the following

https://doi.org/10.1145/3470496.3527378
https://doi.org/10.1145/3470496.3527378

ISCA ’22, June 18–22, 2022, New York, NY, USA Muhammad Umar, Weizhe Hua, Zhiru Zhang, G. Edward Suh

key observations. The memory-intensive kernels often have regular
memory access patterns and update multiple data elements in a
data structure in a similar fashion, resulting in the same number of
writes to many data blocks in a data structure. This implies that a
large number of data blocks have the same VN, which can easily
be determined in software by counting the number of writes to the
data structure. Moreover, the writes to these large data structures
are often sequential, as how a deep neural network (DNN) kernel
writes to output feature maps.

For data structures with regular write patterns, SoftVN enables
software to provide the VN for reads by tracking the VN per data
structure in software.1 This removes the need to fetch and ver-
ify the off-chip VNs on reads, which accounts for the majority of
today’s memory protection overhead. Because write-backs can hap-
pen in the background, reads are more critical to performance. The
software-provided VNs are still checked and written to off-chip
memory in the background so that they can be used for mecha-
nisms transparent to software such as cache write-backs. SoftVN
also provides hardware support for providing VNs for reads and
updating VNs for sequential writes so that these operations can
be performed with small changes to software. Note that SoftVN
allows reads to a data structure to be performed with an arbitrary
access pattern even though it is designed for data structures with
simple write patterns. Also, using SoftVN is optional. With SoftVN,
software maps data structures in a way that the associated VNs
can be easily tracked to the SoftVN region while keeping the rest
of code and data in the memory space guarded by the traditional
memory protection.

While conceptually straightforward, allowing software to control
VNs for memory encryption and integrity verification introduces
nontrivial challenges that need to be addressed through a careful
hardware-software co-design. For example, one challenge comes
from the granularity mismatch between load/store instructions and
off-chip accesses. While software writes one word at a time, off-
chip memory protection needs to ensure that all writes to a cache
block are collected together so that the block is encrypted at most
once with a new VN. The software-provided VNs also represent the
number of writes from software instead of the number of writes to
off-chipmemory. To address these challenges, we introduce a Secure
Memory Buffer (SMB) in a processor core and use virtual addresses
(VA) instead of physical addresses (PA) for memory protection.
Another challenge is efficiency; a new hardware-software interface
needs to specify VNs at run-time with low overhead. To address this,
we introduce a hardware VN table and a minimal ISA extension.
For security, we also need to ensure that software-provided VNs
do not introduce a vulnerability where an encryption counter is
used multiple times for one memory block using the same key. This
paper provides the details of how the software-provided VNs can
be realized while providing both security and efficiency.

We study the memory access behaviors of a variety of applica-
tions, including deep neural networks (e.g., convolutional neural
networks, recommender models, and language models), graph pro-
cessing (e.g., BFS and PageRank), and bioinformatics (e.g., genome
alignment), and show how the VNs for the large data structures can
1Note that we use the term data structure to refer to a group of memory locations that
share the same write patterns and the number of writes, such as a tile in a tiled matrix
multiplication, not necessarily the entire software data structure.

Encrypted Data

CTR = PA || VN

MACs

AES K

Plaintext

Off-chip DRAM

Chip boundary

VNs

Hash K’
on-chip

root

Figure 1: Traditional memory encryption and integrity verification.

be tracked in software. By exploiting the software-provided VNs,
we can greatly reduce the overhead for off-chip memory protection.

To demonstrate the effectiveness of SoftVN, we evaluate the
overhead of 12 representative benchmarks from three different
categories of memory-intensive applications. The experimental
results show that SoftVN can provide memory encryption and in-
tegrity verification with only 6% overhead on average. On the other
hand, applying the existing memory protection schemes on data-
intensive applications leads to 42% overhead on average, 86% in
the worst-case (which is reduced to 14% with SoftVN) and even
higher overhead with lower memory bandwidth. The proposed
SoftVN scheme achieves average and maximum performance im-
provements of 33% and 65% respectively and an average overhead
reduction of 82% over a baseline Intel SGX scheme.

2 BACKGROUND
2.1 Trusted Execution Environments
TEEs [1, 3–6, 11, 12, 24, 26, 30, 44, 45, 47, 50, 53] provide hardware-
protected execution environments where confidentiality and in-
tegrity are ensured even under an untrusted OS or physical at-
tacks. Intel’s Software Guard Extension (SGX) represents one of
the state-of-the-art trusted computing designs. SGX establishes a
secure environment called an enclave, and a remote user can offload
confidential computation and data into the enclave.

SGX reserves a special memory region for each enclave and pro-
tects that memory region from all non-enclave memory accesses,
including accesses from an OS kernel, a hypervisor, and periph-
erals. The confidentiality, integrity, and freshness of the special
region in DRAM is protected by the Memory Encryption Engine
(MEE) [14]. However, SGX’s threat model excludes side-channel
attacks such as power analysis and memory side-channel attacks.
In the next section, we provide details on today’s off-chip memory
protection scheme employed in SGX and point out the main sources
of overhead.

2.2 Memory Protection
As shown in Figure 1, existing memory protection techniques [14,
17, 44] leverage symmetric key cryptography to ensure the confi-
dentiality of data stored in off-chip memory. Prior arts typically
use the counter-mode encryption (AES-CTR) to hide AES latency.
The AES-CTR mode requires a non-repeating counter value for
each encryption under the same AES key. In a secure processor, the
counter value often consists of the physical memory address (PA)
of the data block that will be encrypted and a per-block version
number (VN) that is incremented on each memory write. When

SoftVN: Efficient Memory Protection via Software-Provided Version Numbers ISCA ’22, June 18–22, 2022, New York, NY, USA

Alex
Net

Inf.

ResN
et-

50 Inf.

VGG-16 Inf.

Alex
Net

Tra
in

ResN
et-

50 Tr
ain

VGG-16 Tr
ain

DLRM Inf.

BERT In
f. BFS

Pag
eRank SW NW

0.0

0.2

0.4

0.6

0.8

1.0

Hi
t R

at
e

MAC $ VN $

Figure 2: 32 KB metadata cache hit-rates for MACs and VNs.

Alex
Net

Inf.

ResN
et-

50 Inf.

VGG-16 Inf.

Alex
Net

Tra
in

ResN
et-

50 Tr
ain

VGG-16 Tr
ain

DLRM Inf.

BERT In
f. BFS

Pag
eRank SW NW

0

1

2

3

No
rm

al
ize

d

of
 M

em
or

y
Ac

ce
ss

es Data MACs VNs+Tree

Figure 3: DRAM accesses (misses in LLC and metadata caches)
by type, normalized to data accesses.

Alex
Net

Inf.

ResN
et-

50 Inf.

VGG-16 Inf.

Alex
Net

Tra
in

ResN
et-

50 Tr
ain

VGG-16 Tr
ain

DLRM Inf.

BERT In
f. BFS

Pag
eRank SW NW

1.0

1.2

1.4

1.6

1.8

2.0

No
rm

al
ize

d
Ex

ec
ut

io
n

Ti
m

e

Figure 4: Traditional memory protection overhead.

Alex
Net

Inf.

ResN
et-

50 Inf.

VGG-16 Inf.

Alex
Net

Tra
in

ResN
et-

50 Tr
ain

VGG-16 Tr
ain

DLRM Inf.

BERT In
f. BFS

Pag
eRank SW NW

0.0

0.2

0.4

0.6

0.8

1.0

Ra
tio

Memory Requests Memory Size

Figure 5: The percentage of off-chip data memory requests and
working sets that can use software-provided VNs.

a data block is written, the encryption engine increments the VN
and then encrypts the data. When a data block is read, the encryp-
tion engine retrieves the VN used for encryption and decrypts the
block. Let KEnc, 𝑈 , 𝑉 be the AES encryption key, plaintext, and
ciphertext, respectively. The AES encryption can be formulated
as 𝑉 = 𝑈 ⊕ AESKEnc (PA| |VN), where | | and ⊕ represent bit-field
concatenation and XOR, respectively.

As general-purpose processors can have an arbitrary memory
access pattern, the VN for each cache block can be any value at a
given time. In order to determine the VN for a later read, a secure
processor needs to store the VNs in DRAM. To avoid reusing the
same counter value, the AES key needs to change once the VN
reaches its maximum, which implies that the size of the VN needs
to be large enough to avoid frequent re-encryption.

Integrity Verification. To prevent off-chip data from being al-
tered by an attacker, integrity verification cryptographically checks
if the value from DRAM is the most recent value written to the
location by the processor. For this purpose, a MAC of the data value,
the memory address, and the VN is computed and stored for each
data block on a write, and checked on a read from DRAM. How-
ever, only checking the MAC cannot guarantee the freshness of the
data; a replay attack can replace the data and the corresponding
VN and MAC in memory with stale values without being detected.
To defeat the replay attack, a Merkle tree (i.e., hash tree) [13] is
used to verify the MACs hierarchically in a way that the root of the

tree is stored on-chip. As shown in Figure 1, a traditional memory
protection scheme [36] uses a Merkle tree to protect the integrity
of the VNs in memory, and includes a VN in a MAC to ensure
the freshness of data. It is worth noting that MEE in SGX uses
Carter-Wegman MAC [14] as the hash function. In this paper, we
use AES-GCM [9] for both encryption and message authentication.
Let us denote the key, plaintext, and ciphertext as KIV,𝑈 ,𝑉 , respec-
tively. The MAC of an encrypted data block can be calculated as
MAC = HKIV (𝑉 | |PA| |VN).

2.3 Limitations of Today’s Memory Protection
As the VNs are stored in off-chip memory, the integrity and fresh-
ness of VNs need to be protected with MACs. The performance
overhead of the off-chip memory protection mainly comes from
accessing the VNs and MACs, and traversing the integrity tree
stored in DRAM. To mitigate this overhead, recently-used VNs and
MACs are cached on-chip. However, even with dedicated metadata
caches, today’s memory encryption and integrity verification can
lead to a significant slowdown. For memory-intensive applications,
the VN/MAC caches often have low hit-rates (see Figure 2) due to
capacity misses and low temporal locality. The memory protection
also results in significant bandwidth and performance overhead. For
example, metadata accesses increase the off-chip bandwidth usage
by 2−3× for a recommender model (DLRM) and graph applications
(BFS and PageRank) as shown in Figure 3, both of which involve

ISCA ’22, June 18–22, 2022, New York, NY, USA Muhammad Umar, Weizhe Hua, Zhiru Zhang, G. Edward Suh

significant random reads which trigger traversal of an uncached
part of the integrity tree. The performance overhead is also sig-
nificant for large machine learning models and graph applications
with low locality (see Figure 4).

In addition, for memory-intensive applications with a large work-
ing set, the size of the protected memory region is large, which
leads to a proportionately deeper integrity tree, further increasing
the performance overhead. For example, the working set for large
recommender models such as variants of DLRM [32] can be over
1 TB. Supporting a protected memory region of this size requires a
depth of 9 for the integrity tree. Compared to SGX with a protected
memory size of 128 MB, the tree depth is more than doubled.

If memory protection can be provided without accessing VNs
and their integrity-tree in off-chip memory during data reads, we
can significantly reduce the performance overhead.

3 SOFTVN DESIGN
3.1 Intuition
While memory-intensive applications process a large amount of
data, they tend to have well-defined access patterns to various data
structures. We studied more than 30 computational kernels across
three classes of memory-intensive applications (Section 4), and
observed the access patterns.

We found that write patterns in kernels are usually regular (se-
quential) and same for many elements in a data structure. For exam-
ple, kernels such as matrix-multiply and activation in a DNN layer
update all elements of a tile in an output feature map sequentially
the same number of times. This is indicative of a general trend
in such applications to perform similar operations on a number
of data elements stored together in data structures. As such, all
elements within a data structure such as a tile in a tiled matrix
multiplication can share the same VN. Note that we use the term
‘data structure’ to broadly refer to a software-managed group of
memory locations that share the same write pattern, not necessarily
the entire software data structure. In most cases, the size of a data
structure is much larger than a cache line, and the number of data
structures is much smaller than the number of cache-line-sized
blocks in memory. The overhead of memory protection can be re-
duced significantly if a VN is tracked per data structure instead of
per cache block. Due to sequential writes, software can easily com-
pute the VN per data structure, such as a feature map, by keeping a
counter for each data structure.

Moreover, some data structures are read-only within a kernel
and use one (constant) VN that was last used to write them, even if
their read pattern is arbitrary. For example, the model parameters
in a DNN inference are read-only after initialization, and only need
a single constant as the VN. They may be read sequentially or even
randomly. Similarly, input feature maps are read (possibly multiple
times) by kernels, and can use one VN within a kernel.

We also note that whereas both cache reads and write-backs
access off-chip VNs in traditional protection, only the reads are
on the critical path for a program’s progress; write-backs can take
place in the background. In that sense, optimizing reads is more
important for performance.

Leveraging these observations, we propose to optimize off-chip
memory protection by allowing software to provide VNs for a

VNs + Integrity Tree

Memory protected by
SW-provided VNs.

CTR = VA || VN
& unique enclave key

MACs

Encrypted Data
(large SoftVN buffers)

VNs + Integrity Tree

Memory protected by
traditional protection.

CTR = PA || VN

MACs

Encrypted Data
(code + stack)

Unprotected memory Plaintext Data

Figure 6: Memory regions in a system with SoftVN.

portion of its memory space, during memory reads. We call this
memory protection scheme SoftVN. In SoftVN, the off-chip VNs
are determined by software, reflecting the number of writes by
software, and are no longer arbitrary as a result of unpredictable
cache eviction in traditional memory protection. Software provides
the VN for reads from the SoftVN region; hence, the VN fetch and
integrity tree traversal during reads are avoided, and the counter-
mode decryption can begin much sooner, improving performance.
For writes, a new write VN per cache block (usually the read VN+1),
is calculated by hardware and stored in memory. This VN still has
to be stored off-chip for mechanisms transparent to software exe-
cution, e.g. a cache line eviction, paging and prefetching. However,
the updates to the off-chip VNs are performed in the background,
via the metadata cache, which should have a high hit-rate as the
writes are sequential. Recall from Section 2.3 that the VN metadata
cache originally had a low hit-rate, due to capacity misses from
large data structures or random reads. For writable regions, SoftVN
improves performance by using software-provided VNs to avoid
VN accesses on a memory read, deferring the VN accesses to the
background for eventually updating/incrementing. For read-only
data regions, the off-chip VN accesses are completely eliminated,
reducing pressure on the metadata cache.

In a TEEwith SoftVN, software inside the TEE determines how to
protect different types of data, with traditional or SoftVN protection
(Section 3.2). Similar to the way that software inside an enclave is
trusted not to output secrets and responsible for protecting secrets
from side channels in today’s TEEs, software also needs to provide
correct VNs for reads for functional correctness. Note that the
integrity of an application’s code and control data are still protected
with the traditional memory protection so that software can be
trusted to provide intended VNs.

We studied a diverse range of applications (see Section 4). As
shown in Figure 5, we found that these applications can provide
VNs to major data structures that account for a large portion of
off-chip memory accesses and space.

3.2 Overview
SoftVN is proposed as an extension to the traditional memory
protection scheme shown in Figure 1. The enclave’s virtual (and
physical) address space now contains three distinct regions as in
Figure 6. The base protection region uses traditional memory pro-
tection, which can be used for code and data whose VNs are difficult
to generate in software. A new region, the SoftVN region, is in-
tended to store large data structures whose VNs can be assigned

SoftVN: Efficient Memory Protection via Software-Provided Version Numbers ISCA ’22, June 18–22, 2022, New York, NY, USA

and tracked in software. An enclave application can choose which
memory protection is needed for its data by placing them in an
appropriate virtual address (VA) range. The address ranges are con-
figured at the initialization, included in attestation, and fixed for
each enclave. The rest of the memory space is outside of an enclave
and used for I/O.

Figure 6 shows that the SoftVN region also has MACs and off-
chip VNs. The VNs are still stored in off-chip for mechanisms trans-
parent to software, such as cache eviction to DRAM, paging and
prefetching. However, the VNs for memory reads in this region
come from software, and a data block can be decrypted without
accessing VN in off-chip memory. Note that the SoftVN region
uses a VA with a VN as a counter (CTR) for encryption so that the
virtual-to-physical mapping does not affect the encryption counter.
Also, SoftVN uses a different AES key for each enclave to avoid
leakage between enclaves.

3.3 Challenges
While the concept of using software-provided VNs is relatively
straightforward, exposing memory encryption to software intro-
duces a set of new technical challenges that need to be addressed
to realize the idea in modern processor designs.

In SoftVN, software uses a common VN for multiple memory
blocks with the same write pattern to efficiently maintain VNs2.
However, this design makes an implicit assumption that writes to
one cache block are collected together, and the entire cache block is
encrypted at most once with a given VN. Unfortunately, in modern
processors with caches, a cache block may be evicted and written
back to memory at any time. For example, consider the case where
an application sequentially updates an entire cache block. From
the application’s perspective, this cache block is updated only once,
and the VN only needs to be incremented by one. However, during
writes to the cache block, a partially-modified block may be written
back to memory multiple times. For security, software needs to
be able to ensure that multiple writes to one cache block can be
performed without an eviction. SoftVN introduces an in-processor
buffer for this purpose.

In SoftVN, VNs only reflect the number of writes from software
within each enclave, and the same pair of a memory address and a
software-provided VN may be used by multiple enclaves. Also, in
enclaves, an untrusted OS is responsible for paging and the virtual-
to-physical memory mapping can change over time. Therefore, the
traditional counter-mode construction that uses a concatenation of
a physical address and a VN may not be unique and cannot be used
with software-provided VNs. To address these problems, SoftVN
uses a different AES key for each enclave and uses virtual instead
of physical addresses in constructing its encryption counter.

The software-provided VNs imply that software needs to specify
a VN for each memory access instruction, which can be an expen-
sive proposition if VNs need to change frequently. For efficient
memory protection, a new hardware-software interface is needed
that allows software to specify VNs with low overhead i.e. a small
number of additional instructions, and minimal changes to existing

2This construction is also allowed in today’s memory encryption, and still secure
because a VN is concatenated with a memory address to form a counter value for
memory encryption.

VN / MAC
Metadata Caches

Processor Core

VN Table
Base VA Bound VA Read VN Updated VA

SMB
Valid VA Tag Data VN Table ID

MEE
Enclave ID Key

EPCM Cache

Data Caches

DRAM

MRBRs

MRBRs

Figure 7: Hardware structures in SoftVN. An SMB, a VN table,
and a per-enclave key table are added for SoftVN.

code. In SoftVN, we leverage the observation that many memory lo-
cations share one VN, which only needs to be updated infrequently,
and propose new instructions and hardware support that allows
the usual load/store instructions to be used with no change.

3.4 Hardware Architecture
SoftVN needs a small set of new hardware modules to support en-
cryption using software-provided VNs and virtual addresses (VAs)
as shown in Figure 7. The key metadata and operations of SoftVN
are discussed below and depicted in Figure 8.

We assume that memory region boundary registers (MRBRs)
exist inside both the core and the MEE, and contain the physical
address ranges for the three memory regions in Figure 6. These
registers are used to identify the region of a memory load/store
both inside the core and the MEE.

In our design, software tracks VNs for large memory buffers. To
allow software to efficiently specify a VN for loads, we introduce a
hardware VN table inside the core, which stores VNs for VA ranges,
has a fixed number of entries, e.g. 16, and is explicitly manipulated
by software with new instructions. On a read from the SoftVN
region, the VN table is used to determine the VN, which is used to
decrypt a data block if it needs to be fetched from off-chip memory.
The size of the VN table is known to software as an architecture
parameter.

To avoid an unpredictable eviction during multiple writes to a
cache block, we also place a small buffer called the Secure Memory
Buffer (SMB), between each core and its L1 data cache. The SMB
contains cache blocks in the SoftVN region while a processor writes
to them. Typically, kernels write to only a small number of buffers
at a time. The SMB only needs to hold one cache line per data
structure being written. For the kernels that we tested, a 256-B SMB
that can support up to 4 64-B slots for different data structures that
are simultaneously updated is sufficient. To software, SMB appears
as a fully-associative L0 cache that is accessed with a VA; software
simply uses regular load/store instructions to access VAs that are
loaded into SMB.

The VN table is first populated with the VA ranges for all the
buffers that a software kernel needs to use with software-provided
VN; then an output buffer from those ranges is mapped to an SMB
slot for writes. The SMB slot points to the corresponding entry
of the VN table, which is used to access the read VN for loading
data into SMB. At the end of a kernel, software clears the VN table
entries and the SMB slots that are in use.

ISCA ’22, June 18–22, 2022, New York, NY, USA Muhammad Umar, Weizhe Hua, Zhiru Zhang, G. Edward Suh

Memory instruction

inside core

Using core MRBRs, find the

target memory region.Core

SMB, VN table,

Mem. region boundary regs (MRBR)

Locations of Relevant Entities

MEE (Memory Controller)

VN metadata cache,

EPCM cache,

Mem. region boundary regs (MRBR)

DRAM

VN off-chip memory, EPCM

Type of operation? Normal load/store to L1D.

Write to SMB (no write to L1).Read from SMB.

Load
Store

Using MEE MRBRs, find region of

evicted block.

Load VN from VN off-chip memory

via VN metadata cache.

Load VA for the PA from page info

in EPCM, via EPCM cache.

Use VA || VN for encryption.

Write Data & MAC to off-chip

memory. No change to the VN in

the VN off-chip memory.

Normal write-back to DRAM.

Write-back from LLC

SMB Release by HW

Write the data block to L1, using

PA from TLB. To this block, also

attach VA from SMB and VN

from VN table, so that the block

can be reloaded into L1 on a miss.

Write the new VN value (+1) to

the VN metadata cache in the

background. Verify that it is

greater than the loaded value

from off-chip memory.

Send a read request to L1 data

cache, attached with VA from

mem op and VN from VN table.

Read from DRAM.

Use VA || VN from the read

request (instead of loading off-

chip VNs) for decryption and

MAC check.

Miss in LLC

Non-SoftVN

region

SoftVN

region

Load VN from

VN off-chip

memory into

VN metadata

cache in the

background, so

it can be

updated later.

Use SMB value, and

discard L1 request

completed in

parallel.

No further SMB action.

Use L1 value.

Wait for L1 request

to complete and

copy the value.

SoftVN

region

Non-SoftVN

region

Not mapped to SMB

Hit

Mapped but

miss in SMB

Miss in SMB

Figure 8: The overview of the SoftVN metadata and operations (load/store operations, SMB releases, LLC write-backs).

SMB exploits the sequential write pattern of typical memory-
intensive kernels to support writes with minimal software changes.
To modify data blocks in the SoftVN region, software maps a VA
range of an entire output buffer to one of the slots in the SMB. Then,
hardware automatically loads, via the regular memory hierarchy
(using a VN from the VN table and VA from SMB as part of the
memory request), one cache block into SMB on a write to that block,
and writes (releases) the cache block to the L1 cache upon a write
to another block in the same output buffer. Thus, software does
not need to explicitly load and unload the SMB for each cache line
in the output buffer, except for the very last block that is released
explicitly by software. Also, whereas loading the SMB frommemory
(i.e. write-allocate) uses a VN from the VN table in the memory
request, the actual off-chip VN also needs to be eventually loaded, so
it can be updated on an SMB release (see below). As an optimization,
as soon as SMB loads a new cache line, its VN to be updated is
fetched into the metadata cache in the background so it may hit in
the metadata cache by the time of an SMB release.

When a data block is released (evicted) from SMB, it is written to
the L1 cache. To cater for misses in the L1 cache, the block VA from
SMB and the VN from VN table are also provided, so the block can
be reloaded if required. At the same time, a new VN is calculated by
incrementing the read VN (read VN+1), and this overwrites the VN
value loaded in the VNmetadata cache in the background. To detect
software bugs that reuse one VN multiple times for one location,
the metadata cache raises an exception if the new VN is not greater
than the VN loaded from off-chip memory for the given memory
location. Note that instead of cache eviction incrementing the VN
as in traditional protection, releasing a block from SMB increments
the VN. Later, write-backs to the SoftVN region in off-chip memory

just read the updated VN and use it for encryption. An SMB release
also updates the corresponding VN table entry to keep track of
the latest VA that was released, in the ‘Updated VA’ attribute. This
is necessary for some kernels which re-read an earlier part of the
same sequentially-written output buffer, which needs to use VN +
1 for reads.

For processor writes in the SoftVN region (detected via core
MRBRs), only the SMB is accessed; whereas for reads in this region,
data can be present in either SMB or the L1 cache. Hence, for reads,
L1 is accessed in parallel to SMB; the L1 read request also contains
a VN from the VN table and a VA from the memory instruction.
The SMB value takes precedence if found; see Figure 8 for details.

The number of SMB slots is an architecture parameter known
to software. It is the software’s responsibility to keep track of the
available slots. If software tries to create more mappings than slots,
an exception is raised, which results in a termination of the enclave.
Similarly, a write to the SoftVN region that is not mapped into SMB
raises an exception.

Both the VN table and SMB are considered a part of the pro-
cessor’s architecture state, and tied to the enclave environment.
Their contents need to be saved/restored on a context switch. For
example, Intel SGX stores an enclave process state in the State Save
Area (SSA). The additional data size is similar to existing data that
may optionally be saved, such as AVX registers.

As explained earlier, MEE needs VAs in the CTR for memory
transactions in the SoftVN region (detected using MEE MRBRs).
For decryption in MEE, reads can use the VA sent from the core
with the memory request to the caches. For encryption, cache write-
backs from the LLC to off-chip memory need to determine a VA
separately. Fortunately, a TEE already needs to store VAs to verify

SoftVN: Efficient Memory Protection via Software-Provided Version Numbers ISCA ’22, June 18–22, 2022, New York, NY, USA

Instruction Arguments

SoftVN_SetVN Table-ID, VA, Length, Read-VN
SoftVN_InvalidateVN Table-ID
SoftVN_Map SMB-Slot, Table-ID

Table 1: Extensions to the ISA.

address translation if the translation is controlled by an untrusted
OS. For example, SGX stores the VAs in the Enclave Page Cache
Map (EPCM), located in the off-chip memory protected by tradi-
tional memory protection. The EPCM also contains page ownership,
permission and status bits for each protected page. In our design,
we use VAs from the EPCM for encryption. For efficiency, the EPCM
entries are cached on-chip inside the MEE. We use a 128-bit EPCM
entry per page, estimated from SGX documentation [19]. When a
page is swapped out from an enclave, paging first flushes the page
from caches before updating the EPCM so that write-backs use
correct VAs. Also, the software-provided VNs in memory follow
the corresponding data on paging.

SoftVN requires each enclave to use a different AES key for
encrypting its SoftVN region. To support per-enclave encryption
key, the MEE is extended with a table that stores a key for each
enclave ID.

3.5 Instruction Set Extension
We introduce new hardware instructions to manage the SMB and
the VN table. Table 1 summarizes the new instructions. Note that
both the VN table and SMB instructions require ID/slot numbers
for explicit management. The arguments to these instructions are
passed via general purpose registers.

Software uses SoftVN_SetVN, which sets an entry in the VN
table, to specify a VN that should be used to read a VA range. To
read data in the SoftVN region, an enclave program simply uses
regular load instructions, which use a VN from the VN table to read
data from off-chip memory.

To modify a data region, software uses SoftVN_Map to map
one of the address ranges in the VN table into an SMB slot. On
a write to this range, the corresponding cache line is loaded into
SMB through the memory hierarchy, using the VN from the linked
VN table entry. There is no explicit UnMap instruction; the SMB
automatically releases a cache line upon a write to a different line
in the same address range.

When an address range is no longer in use, software releases the
VN table entry with SoftVN_InvalidateVN. This also releases the
last cache line in SMB and clears the SMB slot.

The top function in Figure 9 is the original code of a kernel that
adds two arrays element-wise and stores the result in one of the
arrays. The bottom function of the figure shows the kernel modified
for SoftVN. The read VNs represent the value last used to write data
to the arrays. The only code changes come from setting/clearing
the VN table and mapping the output buffer to SMB for writes. The
read VN is also incremented to reflect a write.

3.6 Implications of SoftVN
3.6.1 Programmability. In SoftVN, software has the additional re-
sponsibility of keeping track of the correct VN for its data structures
in the SoftVN region. Ideally, the software-provided VN should be

1 // original kernel code
2 void Add_Array_Elemwise(float *x, float *y, const int N) {
3 for (int i = 0; i < N; ++i)
4 x[i] += y[i];
5 }
6 // modified kernel code for use with SoftVN
7 void Add_Array_Elemwise(float *x, float *y, const int N,
8 uint64_t *VN_x, uint64_t *VN_y) {
9 // set read VN Table ID 0
10 SoftVN_SetVN(0, y, N * sizeof(float), *VN_y);
11 // set read/write VN Table ID 1
12 SoftVN_SetVN(1, x, N * sizeof(float), *VN_x);
13 // map Table ID 1 to SMB slot 0
14 SoftVN_Map(0, 1);
15 for (int i = 0; i < N; ++i)
16 x[i] += y[i];
17 // free VN Table ID 0
18 SoftVN_InvalidateVN(0);
19 // free VN Table ID 1, also frees SMB slot 0
20 SoftVN_InvalidateVN(1);
21 // update the original VN
22 *VN_x += 1;
23 }

Figure 9: Example kernel code and its changes for SoftVN.

designated at a coarse granularity to reduce the number of VNs
that software needs to track. For applications with a small num-
ber of buffers, programs can easily track VNs by storing them in
local variables. For more complex applications, programs can use a
separate data structure such as a dictionary to keep track of VNs
for different data structures. Note that applications can still use
the traditional protection for data structures whose VNs cannot be
efficiently maintained in software.

We found that data-intensive kernels usually operate on a small
number of data structures at a time. In the kernels we studied, no
more than 2 outputs are written simultaneously using the SMB (out
of 4 possible), and no more than 6 (out of 16) VN table entries are
used at a time. Moreover, we found that scaling up the workload
does not necessarily require more SMB or VN table entries; e.g.
while the size of data structures grow, larger ML models do not
necessarily use more data structures at a time, i.e. the sizes of the
SoftVN hardware structures do not need to increase for bigger
workloads.

SoftVN introduces some small constraints for programming. For
example, buffers in the SoftVN memory region need to be aligned
to cache line boundaries, which can be achieved through a modified
malloc. As the VN table has a limited number of entries, each
kernel also needs to limit the number of data structures that use
SoftVN at the same time.

We modified the data-intensive kernels in our experiments, and
found that the changes required for software to use SoftVN are
fairly small and straightforward for typical kernels. As shown in
Table 2, for the applications that we studied (Section 4), the number
of lines of code that are added is very small, so is the increase in
dynamic instructions. Note that these software changes only need
to be made to a part of the program, i.e. data-intensive kernels
that represent majority of off-chip data accesses. The changes to
many different kernels are similar, e.g. specifying the read VNs and
mapping the output buffers. We believe that these changes can be
automated by a compiler. Also, for most workloads, these modified
kernels can be a part of well-vetted libraries or frameworks, and
would not have to be re-invented and re-verified by individual
programmers.

ISCA ’22, June 18–22, 2022, New York, NY, USA Muhammad Umar, Weizhe Hua, Zhiru Zhang, G. Edward Suh

Application
Kernel
Count

Kernel
Examples

LoC
Added

SoftVN Memory
Working Set Size Example VN Increments Max. SMB & VN

Table Usage

DNNs Inf./Train
(CNNs, DLRM, BERT) 28

GEMM, Im2Col, Pool,
Activate, Normalize etc.
Backprop versions of these

6 per kernel
on average

222 MB in ResNet Inf.
to 15 GB in DLRM

+1 for output feature maps per kernel write,
fixed VN for weights during inference 1/4 & 6/16

BFS 1 Breadth-First Search 6 231 MB Fixed VN for read-only input graph 0/4 & 3/16

PageRank 1 PageRank 13 272 MB +1 for rank vector per iteration 1/4 & 5/16

SW 1 Local Alignment 10 477 MB +1 for output matrices per sequence alignment 2/4 & 4/16

NW 1 Global Alignment 10 477 MB +1 for output matrices per sequence alignment 2/4 & 4/16

Table 2: Kernels in example applications.

3.6.2 Memory Allocation. In SGXv1 [30], the maximum workload
(heap) memory size has to be specified at enclave creation time. Sim-
ilarly, in SoftVN, the memory ranges for the software-provided VNs
and the traditional memory protection are specified during initial-
ization. Then, a programmer can specify which memory protection
is used for each data structure by placing it in the corresponding
virtual addresses. In our experiments, we found that many memory-
intensive applications allocate their buffers initially and use them
during an execution, which simplifies memory allocation. If heap
memory in the SoftVN region needs to be freed and reused dynam-
ically, the VNs for the reused memory locations must be carefully
tracked by the program (or the enclave memory manager); it needs
to keep track of the most recent (maximum) VN that was used for
a freed memory chunk and avoid reusing the same VNs.

3.6.3 Multi-core Support. SMB is meant as a temporary space that
holds data to combine multiple writes to a cache block into one
memory write. In that sense, we treat SMB similar to registers from
the cache coherence perspective, even though it keeps memory
blocks; hardware does not provide coherence for data in SMB, and
software is responsible for ensuring that different threads do not
write to one cache block concurrently. We studied multi-threaded
implementations of DNN models, and found that multiple threads
process different data and write to different parts of output buffers.

3.6.4 SIMD Extensions. While we described our scheme for a scalar
processor, SoftVN can be extended for SIMD extensions of cache
line granularity, which use wide registers and explicitly move data
between registers and memory. The VN table can be traversed to
obtain the VN for reads. If SIMD registers match the width of a
cache block, as in AVX-512, writes can be made without SMB, using
the read VN+1.

3.7 Security Analysis
SoftVN assumes the typical threat model in today’s TEE/enclave
such as Intel SGX where software inside an enclave is trusted and
needs to be written correctly to be secure; enclave software can
output its data unencrypted, and is also responsible for protec-
tion against side channels [18]. Similarly, we assume that enclave
software provides correct VNs.

Security when enclave software is correctly-written: When
trusted enclave software provides correct read VNs, SoftVN pro-
vides confidentiality and integrity protection that is equivalent to
that of the traditional memory protection.
Confidentiality: The counter-mode encryption (𝑉 = 𝑈⊕AESK (CTR),
CTR= VA| |VN) is secure if each encryption uses a unique CTR value

for a given key (K). In SoftVN, each enclave uses a different key (K),
and SMB provides a new VN (read VN+1) on each write (release) of
a cache block. The new VN is updated/stored in memory and used
for encryption on a write-back to memory. The VNs are protected
by an integrity tree in memory and MACs on paging, as in SGX.
If the read VN is correctly provided by enclave software, CTR is
unique for each write of a cache block.
Integrity: The integrity of a read from the SoftVN region is checked
by the MAC (HK (𝑉 | |VA| |VN)), similar to the traditional protection
except the key is per-enclave and the address is VA instead of PA.
Without knowing the MAC key, an adversary cannot change/gen-
erate a value (𝑉). Relocating 𝑉 to another enclave or address is
detected through the per-enclave key and VA. VN prevents replays;
for replay attacks, a VN from enclave software needs to be replayed
as well. SoftVN still uses the traditional memory protection for
code and other data including software-provided VNs so that the
integrity of enclave software and VNs are protected.
Information leak through VNs: VNs are per-enclave, and one en-
clave cannot access VNs for other enclaves.

Implication of bugs in enclave software: While not necessary
for correctly-written enclave software, SoftVN performs checks to
detect software bugs and reduce security risks.
Confidentiality: The metadata cache in SoftVN checks to ensure
that the new VN on a write (SMB release) is greater than the VN
from the last write to the same address. If buggy software provides a
stale VN, this check raises an exception before the VN is re-used for
encryption. Thus, a write VN is guaranteed to be unique for each
address, and confidentiality is ensured even if VN management in
enclave software is buggy.
Integrity: Both substitution and relocation attacks are detected by
the MAC, independent of VNs from enclave software. If buggy
software provides an incorrect VN for a read, a MAC check still
detects the bug in most cases. If the VN was never used before or
does not match the current content in memory, the MAC check will
fail. The bug is not detected only when enclave software provides
an old VN and an attacker rolls back memory to the matching stale
value at the same time.

Note the SoftVN also raises an exception on functional bugs such
as accesses to the SoftVN region without specifying a VN. In sum-
mary, SoftVN ensures confidentiality and substitution/relocation
protection even when VN management in software is buggy.

SoftVN: Efficient Memory Protection via Software-Provided Version Numbers ISCA ’22, June 18–22, 2022, New York, NY, USA

Convolution

Batch Norm

Activation

Layer 1 Output

Input

Layer 1 Weights

Workspaceim2col

Layer 1 Output

matmul

normalize

1

2

3

VNout+=1

VNout+=1

VNout+=1

VNworkspace+=1

Layer 1 Output scale

VNout+=1 Layer 1 Output ReLU

Figure 10: An example sequence of DNN layers with their
kernels (orange) and processed data buffers (yellow).

4 EXAMPLE APPLICATIONS
We studied a diverse range of applications to understand the appli-
cability of SoftVN. Below we briefly describe each application and
how we track its VNs.

4.1 Deep Neural Networks
DNNs provide state-of-the-art performance on a variety of ML tasks.
DNNs consist of a succession of layers of different types, typically
including convolution, fully-connected, and pooling. Each layer’s
computation calls one or more kernels from a DNN library, such as
linear operation (e.g., matrix multiplication), matrix rearrangement
(e.g., image-to-column), activation, etc. A DNN library also allo-
cates a number of memory buffers to store the intermediate results
(features) and network parameters (weights) of the layers. Each
subsequent layer (and constituent kernels) processes the output of
the earlier layers, and feeds its output to the next.

The memory access pattern of a DNN is typically deterministic,
unless dynamic pruning is involved, or embedding table lookups are
present (described shortly). Software can track the VNs for different
buffers or tiles. The VN for sequentially written buffers such as
feature maps is incremented once per write. Read-only buffers, such
as weights during inference, can use a constant value as the VN.
During training, weights are also updated sequentially. Figure 10
shows a back-to-back sequence of layers in a neural network, in
which the buffer for output of Layer 1 is written sequentially four
times over three layers, increasing its VN by 4.

SoftVN can also support multiple writes per kernel, such as in a
tiled matrix multiplication, in which output tiles are written once
for each input tile multiplication, and all tiles eventually share a
single VN which is set for the entire matrix.

For our experiments, we use DarkNet [35], a DNN framework
that supports many popular DNN models, and extended it as re-
quired for new models. Below, we describe variants of DNN models
which we implemented.

4.1.1 Convolutional Neural Networks (CNNs). MainstreamMLmod-
els used to classify images are mostly based on CNNs, which typi-
cally consist of convolution, pooling, and fully-connected layers.
Popular models include AlexNet [23], VGG [41], and ResNet [16].
We consider both inference over multiple runs and training of these
networks over a few minibatches with a small batch size, on the
ImageNet [7] dataset.

Dense Features Categorical Features

Bottom
Fully-Connected

Embedding
Tables

Pairwise Interaction

Concatenate

Top
Fully-Connected

Click Probability

(a) DLRM Recommender Model

Input Embedding

Multi-Head Attention

Positional
Encoding

Add & Norm

Add & Norm

Fully-Connected

Input Word Tokens

Encoder Output

(b) BERT input & encoder block
Figure 11: Recommender and NLP model structures.

4.1.2 RecommenderModels. Recommendermodels arewidely used
to provide personalized recommendations to online shoppers and
social media users. Such models take both dense (numerical) and
sparse (categorical) features, and predict the probability of a click
on a suggested item. While the dense features are readily processed
using fully-connected layers, the categorical features first have to
be transformed into numerical features by indexing into large em-
bedding tables, which may be hundreds of GBs in size. Since such
embedding table lookups access random locations, they have low
spatial locality and can benefit significantly from software-provided
VNs. For inference, these embedding tables are read-only – they are
only read after written once during loading. Therefore, we assign a
single VN to all the embedding tables. For our experiments, we use
DLRM [32] (Figure 11a) over a synthetic dataset.

4.1.3 Language Models. In recent years, Transformers [48] have
become the state-of-the-art in natural language processing (NLP).
We implemented BERT [8] inference as an example NLP application.
A BERTmodel (Figure 11b) consists of only the encoder blocks from
the Transformer architecture. BERT processes a long sequence of
input word tokens at once, and uses attention and residual fully-
connected layers. Our BERT model uses 4 encoder blocks, and 12
attention-heads per block.

4.2 Graph Algorithms
4.2.1 Breadth-First Search (BFS). BFS is a standard graph algorithm
with a variety of uses. We consider a BFS task that traverses through
an entire graph, and assigns a parent to each node and marks its
distance relative to the root node. In our implementation, the read-
only input graph adjacency list uses SoftVN. The BFS node queue
is updated at a fine granularity and uses the traditional protection,
as do the graph nodes which are visited and updated in a random
order. For experiments, we performed BFS over an existing graph
dataset [22] with 1.8 million nodes and 29 million edges.

4.2.2 PageRank. PageRank is awell-known algorithm used in rank-
ing search results [34]. It takes a graph as input, and calculates the
relative importance of each node using incoming node edges. The
algorithm runs iteratively until the importance scores (or PageRank
vector) converge. In our implementation, the read-only hyperlink
and dangling node matrices derived from the input graph are as-
signed a single VN during a load. Two PageRank vectors are al-
ternately used as previous and current outputs, and thus can be

ISCA ’22, June 18–22, 2022, New York, NY, USA Muhammad Umar, Weizhe Hua, Zhiru Zhang, G. Edward Suh

assigned a VN equal to the iteration count. The elements of the pre-
vious PageRank vector are read randomly as the hyperlink matrix
is sparse. For the experiments, we used the same existing dataset
[22] as in BFS.

4.3 Bioinformatics
Genome alignment is an important memory-intensive task in bioin-
formatics. For local and global alignments, we study the Needleman-
Wunsch (NW) [33] and Smith-Waterman (SW) [42] dynamic pro-
gramming (DP) algorithms, respectively. In these algorithms, DP
matrices are written sequentially after processing elements towards
the above and left of the current element, and thus can be written
to memory with a single output VN. For the experiments, we used
two genome sequences with a length of 10K each.

5 EXPERIMENTAL RESULTS
5.1 Methodology
To evaluate the performance of SoftVN, we performed detailed
simulations of the applications described in Section 4. We used
ZSim [39], a cycle-level CPU simulator based on Pin [29], integrated
with Ramulator [21]. The simulation parameters are shown in Table
3. We implement a scheme similar to Intel SGX MEE [14] as the
baseline, which includes an 8-ary Merkle tree with 56-bit VNs and
MACs per 64-byte cache line. Both the baseline and SoftVNmemory
protection engines are inserted between the LLC and the DRAM.
AES-GCM mode is used to perform authenticated encryption in
both schemes. Each memory request triggers additional metadata
accesses. The memory protection engine is also augmented with
VN, MAC and EPCM caches to store the most recently accessed
metadata. We model 16 GB each for the base and SoftVN protected
memory regions. The memory regions are large enough for our
applications, and no paging is needed. We report results for only the
main computation portion for each application e.g. forward-pass
in a neural network, not the initialization.

Processor 3 GHz, Out-of-Order
ROB Depth 224

Issue/Retire Width 8 max. per cycle

Caches

L1-I/D: 32 KB, 4 ways, 4 cycle lat.
L2: 1 MB, 8 ways, 12 cycle lat.
L3: 8 MB, 16 ways, 27 cycle lat.

64 B cache lines

DRAM
DDR4-2400 32 GB

1 Channel × 4 Ranks
Read/Write Queue Size: 32

MAC/VN $ 32 KB each, 4 ways
EPCM $ 4 KB, 4 ways
AES 128-bit, 40 cycle latency

GF Multiply 8 cycle latency

Table 3: Simulation parameters.

For each application, we simulate three modes: a system with
no memory protection (NP), an Intel SGX-like baseline protection
scheme (BP), and one with SoftVN (BP+SoftVN).

5.2 Performance Overhead
Figure 12 shows the execution time of both BP and SoftVN, nor-
malized to no protection (NP). The performance overhead for BP

is substantial compared to NP. The usage of software-provided
VNs leads to average and maximum performance improvements
of 33% and 65% respectively, and an average overhead reduction
of 82% over the baseline. On average, SoftVN incurs only 6% per-
formance overhead, compared to 42% of the baseline. The worst
case BP overhead of 86% is reduced to 14% in SoftVN. Figure 13
depicts each application’s MPKI (miss-per-kilo-instructions) for
the LLC. The BP overhead is higher for applications with a higher
LLC miss-rate per instruction, as more LLC misses lead to off-chip
accesses. SoftVN can achieve low protection overhead even for
memory-intensive applications with a large number of off-chip
accesses, which depend on the working set size, computations and
the memory access pattern of the underlying kernels, as long as
most application memory buffers can use software-provided VNs.
Moreover, the VN metadata accesses are reduced by 66%. The ac-
cesses to the EPCM region for reading the VA introduce only a
negligible amount of metadata, as the EPCM cache has a very high
hit rate, since it stores coarse-grained per-page base VAs.

The benefit of using software-provided VNs is more pronounced
for workloads with considerable memory traffic. This is especially
true for applications with random (low locality) read accesses such
as BFS and PageRank. For random accesses, metadata caches ex-
perience a large number of misses as shown in Figure 2, and the
MAC tree needs to be traversed from a leaf to a higher-level node
on each memory access. The performance improvement for BFS is
lower compared to PageRank because BFS uses traditional memory
protection for a sizeable portion of its working set (see Figure 5). On
the other hand, workloads with high spatial locality such as DNNs
show relatively high hit-rates for metadata caches. However, if the
working set is large, then poor temporal locality in the metadata
caches can lead to significant overhead as in VGG-16.

Nevertheless, even in applications with a vast majority of VN
accesses being eliminated, a small overhead still remains. This can
be attributed to MAC accesses, which have to be fetched per cache
line even for the SoftVN region.

5.2.1 Detailed Analysis of DNNs. As a case study, we look at the
inference for the VGG-16 CNN using DarkNet. The normalized per-
layer execution time for both BP and SoftVN is shown in Figure 14,
along with the total size of the layer’s working set (weights, input
and output feature maps, temporary workspace). All these data
buffers and all layers can use software-provided VNs. Figure 14
shows that different layers in the network contribute differently to
the overall overhead. The convolution (conv) and fully-connected
(fc) layers involve matrix multiplication of features and weights.
The layers with a large working set show high BP overhead, as
such sets do not fit in the cache, and also lead to more metadata
cache capacity misses. Other layers such as pooling have a smaller
working set and little overhead. The figure shows that SoftVN
greatly reduces the overhead in the memory-intensive layers.

5.2.2 Sensitivity Analysis. We studied the effect of varying different
parameters on performance for both BP and SoftVN.

LLC Size Figure 15 shows the effect on the execution time
as the LLC size varies from 2 MB to 8 MB. The figure shows that
both the BP and SoftVN overhead numbers increase as the LLC
size decreases. It is interesting to note that for VGG-16 inference,
the cache miss-rates are high even for 8 MB, so smaller LLC sizes

SoftVN: Efficient Memory Protection via Software-Provided Version Numbers ISCA ’22, June 18–22, 2022, New York, NY, USA

Alex
Net

Inf.

ResN
et-

50 Inf.

VGG-16 Inf.

Alex
Net

Tra
in

ResN
et-

50 Tr
ain

VGG-16 Tr
ain

DLRM Inf.

BERT In
f. BFS

Pag
eRank SW NW

1.0

1.2

1.4

1.6

1.8

2.0

No
rm

al
ize

d
Ex

ec
ut

io
n

Ti
m

e BP BP + SoftVN

Figure 12: Normalized execution time for BP and SoftVN.

Alex
Net

Inf.

ResN
et-

50 Inf.

VGG-16 Inf.

Alex
Net

Tra
in

ResN
et-

50 Tr
ain

VGG-16 Tr
ain

DLRM Inf.

BERT In
f. BFS

Pag
eRank SW NW

0

5

10

15

20

25

M
PK

I

Figure 13: The MPKI for the LLC in each of the applications.

con
v1
con

v2
pool

1
con

v3
con

v4
pool

2
con

v5
con

v6
con

v7
pool

3
con

v8
con

v9
con

v10
pool

4
con

v11
con

v12
con

v13
pool

5 fc1 fc2 fc3

sof
tm

ax

1.0

1.2

1.4

1.6

1.8

2.0

No
rm

al
ize

d
Ex

ec
ut

io
n

Ti
m

e

BP BP + SoftVN

con
v1
con

v2
pool

1
con

v3
con

v4
pool

2
con

v5
con

v6
con

v7
pool

3
con

v8
con

v9
con

v10
pool

4
con

v11
con

v12
con

v13
pool

5 fc1 fc2 fc3

sof
tm

ax

0

50

100

150

200

250

300

350

400

W
or

ki
ng

 S
et

 (M
B)

Figure 14: VGG-16 inference per-layer normalized execution
times, with working set size marked as ×.

do not increase the overhead significantly, whereas overhead dras-
tically increases for AlexNet at smaller LLC sizes. However, the
SoftVN overhead is quite low even for smaller LLC sizes, which
suggests a potential to provide even more significant benefits for
cases when multiple programs concurrently run and share the LLC
and memory channels. Note that the SoftVN overhead increases
noticeably for BFS when the cache size is reduced. This is because
these applications still rely on the traditional memory protection
for a sizeable portion of their data.

Metadata Cache Size Figure 16 shows the execution time
when the metadata cache size is varied from 32 KB to 256 KB each
for MACs and VNs. The overhead for most applications does not
change noticeably due to the large working sets. We separately
tested and found that a very large metadata cache size, ranging
in megabytes, is needed to achieve noticeable overhead reduction
in most applications. Given that there is limited area available for
the memory protection engine, significantly increasing metadata
caches will be difficult in practice. Using software-provided VNs
for reads is an effective way to reduce the performance overhead
without requiring large metadata caches.

5.3 Area and Energy Overhead
The hardware overhead of SoftVN is minimal as the new hardware
structures are small. SoftVN adds an SMB with 4 64-byte entries
and a VN table with 16 32-byte entries per core, which add only
a 2.3% area overhead relative to L1 using CACTI [2] estimates. In

addition, the MEE has a new 4 KB EPCM cache per chip. Moreover,
a significant reduction (66%) in the number of off-chip accesses for
metadata (VNs) leads to considerable off-chip energy savings.

6 RELATEDWORK
Our scheme builds upon existing processor memory protection
mechanisms and optionally enables applications to remove VN
accesses by providing VNs in software.

The previous designs for memory encryption [43, 52] use the
counter-mode and smaller VNs to optimize memory encryption
and tree representation. For integrity verification, several recent ef-
forts [10, 15, 36] propose a counter-based integrity tree to improve
efficiency. Prior work [13, 25] also proposes caching metadata to
exploit metadata locality. Alternative designs [28, 40, 51] propose
to reduce the latency of integrity verification by predicting VN or
using a unverified VN speculatively. Various integrity-tree opti-
mizations have been proposed. VAULT [46] proposes variable arity
in different levels to cater for different update frequency, and MACs
over multiple blocks to lower the overhead. Morphable Counters
[37] further reduce the overhead by compressing the counter rep-
resentation dynamically and using an even denser 128-ary hash
tree. Synergy [38] proposes to store MACs inline in ECC DRAM
to avoid the extra MAC fetch access. While the previous studies
focus on optimizing VNs stored in memory, this paper proposes to
expose VNs to software and remove the need to wait for VNs from
off-chip memory on reads.

Recent studies [20, 49, 54] propose to extend TEEs to GPUs. GPUs
read and write from the device memory to the local memory during
and after computation. Recently, researchers observed that many
memory locations share the same counter value in GPU kernels,
and number of distinct counters is small, and so proposed to scan
the memory to discover regions with uniform counters and lower
the overhead by caching common counters on-chip [31]. In TNPU
[27], a similar observation regarding memory location inside a
tensor sharing a single VN was used to propose a tree-less secure
neural accelerator with software-managed VNs. The high-level
observation that many memory locations share a VN is similar to
ours. However, these approaches target different hardware i.e. GPUs
and accelerators, whereas we study CPUs with virtual memory and
transparent data caches. In our work, we show how exposing the
memory protection to software and a careful SW-HW co-design

ISCA ’22, June 18–22, 2022, New York, NY, USA Muhammad Umar, Weizhe Hua, Zhiru Zhang, G. Edward Suh

AlexNet
 Inf.

ResNet-50
 Inf.

VGG-16
 Inf.

AlexNet
 Train

ResNet-50
 Train

VGG-16
 Train

DLRM Inf. BERT Inf. BFS PageRank SW NW

1.0

1.2

1.4

1.6

1.8

2.0

2.2

No
rm

al
ize

d
Ex

ec
ut

io
n

Ti
m

e

BP 2 MB BP + SoftVN 2 MB BP 4 MB BP + SoftVN 4 MB BP 8 MB BP + SoftVN 8 MB

Figure 15: Normalized execution times as the LLC size varies from 2 MB to 8 MB.

AlexNet
 Inf.

ResNet-50
 Inf.

VGG-16
 Inf.

AlexNet
 Train

ResNet-50
 Train

VGG-16
 Train

DLRM Inf. BERT Inf. BFS PageRank SW NW

1.0

1.2

1.4

1.6

1.8

2.0

No
rm

al
ize

d
Ex

ec
ut

io
n

Ti
m

e

BP 32 KB BP + SoftVN 32 KB BP 128 KB BP + SoftVN 128 KB BP 256 KB BP + SoftVN 256 KB

Figure 16: Normalized execution times as the metadata cache size varies from 32 KB to 256 KB each for MACs and VNs.

can enable memory protection with low overhead by efficiently
leveraging common VNs across a large number of cache blocks
even for CPUs.

7 CONCLUSION
In this paper, we propose SoftVN, a memory protection scheme
that allows data-intensive applications to use software-provided
VNs for accessing data structures whose VNs can easily be tracked
in software, thereby reducing VN fetch overhead. We analyzed a
number of different applications, and demonstrated a significant
reduction in overhead for these when using SoftVN, relative to
traditional memory encryption and integrity verification.

8 ACKNOWLEDGMENT
We thank the anonymous reviewers for their constructive feedback.
At Cornell, Weizhe Hua and Muhammad Umar are supported in
part by NSF Award CCF-2007832, ECCS-1932501, and CCF-2118709.
Weizhe Hua is also supported in part by the Facebook fellowship.

REFERENCES
[1] Thaynara Alves and D. Felton. 2004. Trustzone: Integrated Hardware and Software

Security. White Paper. ARM.
[2] Rajeev Balasubramonian, Andrew B. Kahng, Naveen Muralimanohar, Ali Shafiee,

and Vaishnav Srinivas. 2017. CACTI 7: New Tools for Interconnect Exploration in
Innovative Off-Chip Memories. ACM TACO 14, 2, Article 14 (Jun 2017), 25 pages.
https://doi.org/10.1145/3085572

[3] Thomas Bourgeat, Ilia Lebedev, Andrew Wright, Sizhuo Zhang, Arvind, and
Srinivas Devadas. 2019. MI6: Secure Enclaves in a Speculative Out-of-Order Pro-
cessor. In Proceedings of the 52nd Annual IEEE/ACM International Symposium on
Microarchitecture (Columbus, OH, USA) (MICRO ’52). Association for Computing
Machinery, New York, NY, USA, 42–56. https://doi.org/10.1145/3352460.3358310

[4] David Champagne and Ruby B. Lee. 2010. Scalable architectural support for
trusted software. In HPCA - 16 2010 The Sixteenth International Symposium on
High-Performance Computer Architecture. 1–12. https://doi.org/10.1109/HPCA.
2010.5416657

[5] Siddhartha Chhabra, Brian Rogers, Yan Solihin, and Milos Prvulovic. 2011. Se-
cureME: A Hardware-Software Approach to Full System Security. In Proceed-
ings of the International Conference on Supercomputing (Tucson, Arizona, USA)
(ICS ’11). Association for Computing Machinery, New York, NY, USA, 108–119.
https://doi.org/10.1145/1995896.1995914

[6] Victor Costan, Ilia Lebedev, and Srinivas Devadas. 2016. Sanctum: Minimal
Hardware Extensions for Strong Software Isolation. In 25th USENIX Secu-
rity Symposium (USENIX Security 16). USENIX Association, Austin, TX, 857–
874. https://www.usenix.org/conference/usenixsecurity16/technical-sessions/
presentation/costan

[7] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. 2009. Im-
ageNet: A Large-Scale Hierarchical Image Database. Conf. on Computer Vision
and Pattern Recognition (CVPR) (2009), 248–255.

[8] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2019. BERT:
Pre-training of Deep Bidirectional Transformers for Language Understanding. In
Proceedings of the 2019 Conference of the North American Chapter of the Association
for Computational Linguistics: Human Language Technologies, Volume 1 (Long and
Short Papers). Association for Computational Linguistics, Minneapolis, Minnesota,
4171–4186. https://doi.org/10.18653/v1/N19-1423

[9] Morris J. Dworkin. 2007. SP 800-38D. Recommendation for Block Cipher Modes of
Operation: Galois/Counter Mode (GCM) and GMAC. Technical Report. Gaithers-
burg, MD, USA.

[10] Reouven Elbaz, David Champagne, Ruby B. Lee, Lionel Torres, Gilles Sassatelli,
and Pierre Guillemin. 2007. TEC-Tree: A Low-Cost, Parallelizable Tree for Effi-
cient Defense Against Memory Replay Attacks. In Cryptographic Hardware and
Embedded Systems - CHES 2007, Pascal Paillier and Ingrid Verbauwhede (Eds.).
Springer Berlin Heidelberg, Berlin, Heidelberg, 289–302.

[11] D. Evtyushkin, J. Elwell, M. Ozsoy, D. Ponomarev, N. A. Ghazaleh, and R. Riley.
2014. Iso-X: A Flexible Architecture for Hardware-Managed Isolated Execution.
In 2014 47th Annual IEEE/ACM International Symposium on Microarchitecture.
190–202.

[12] Christopher W. Fletcher, Marten van Dijk, and Srinivas Devadas. 2012. A Secure
Processor Architecture for Encrypted Computation on Untrusted Programs. In
Proceedings of the Seventh ACMWorkshop on Scalable Trusted Computing (Raleigh,
North Carolina, USA) (STC ’12). ACM, New York, NY, USA, 3–8. https://doi.org/
10.1145/2382536.2382540

[13] B. Gassend, G. E. Suh, D. Clarke, M. van Dijk, and S. Devadas. 2003. Caches
and hash trees for efficient memory integrity verification. In The Ninth Inter-
national Symposium on High-Performance Computer Architecture, 2003. HPCA-9
2003. Proceedings. 295–306. https://doi.org/10.1109/HPCA.2003.1183547

[14] S. Gueron. 2016. Memory Encryption for General-Purpose Processors. IEEE
Security Privacy 14, 6 (Nov 2016), 54–62. https://doi.org/10.1109/MSP.2016.124

[15] W. Eric Hall and Charanjit S. Jutla. 2006. Parallelizable Authentication Trees. In
Proceedings of the 12th International Conference on Selected Areas in Cryptography

https://doi.org/10.1145/3085572
https://doi.org/10.1145/3352460.3358310
https://doi.org/10.1109/HPCA.2010.5416657
https://doi.org/10.1109/HPCA.2010.5416657
https://doi.org/10.1145/1995896.1995914
https://www.usenix.org/conference/usenixsecurity16/technical-sessions/presentation/costan
https://www.usenix.org/conference/usenixsecurity16/technical-sessions/presentation/costan
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.1145/2382536.2382540
https://doi.org/10.1145/2382536.2382540
https://doi.org/10.1109/HPCA.2003.1183547
https://doi.org/10.1109/MSP.2016.124

SoftVN: Efficient Memory Protection via Software-Provided Version Numbers ISCA ’22, June 18–22, 2022, New York, NY, USA

(Kingston, ON, Canada) (SAC’05). Springer-Verlag, Berlin, Heidelberg, 95–109.
https://doi.org/10.1007/11693383_7

[16] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. 2016. Deep Residual
Learning for Image Recognition. In 2016 IEEE Conference on Computer Vision and
Pattern Recognition (CVPR). 770–778. https://doi.org/10.1109/CVPR.2016.90

[17] Michael Henson and Stephen Taylor. 2014. Memory Encryption: A Survey of
Existing Techniques. ACM Comput. Surv. 46, 4, Article 53 (Mar 2014), 26 pages.
https://doi.org/10.1145/2566673

[18] Intel Corporation. 2017. Intel SGX and Side-Channels. https:
//www.intel.com/content/www/us/en/developer/articles/technical/intel-
sgx-and-side-channels.html

[19] Intel Corporation. 2021. Intel® 64 and IA-32 Architectures Software Developer’s
Manual Volume 3D: System Programming Guide, Part 4. (Jun 2021).

[20] Insu Jang, Adrian Tang, Taehoon Kim, Simha Sethumadhavan, and Jaehyuk Huh.
2019. Heterogeneous Isolated Execution for Commodity GPUs. In Proceedings
of the Twenty-Fourth International Conference on Architectural Support for Pro-
gramming Languages and Operating Systems (Providence, RI, USA) (ASPLOS ’19).
Association for Computing Machinery, New York, NY, USA, 455–468.

[21] Y. Kim, W. Yang, and O. Mutlu. 2016. Ramulator: A Fast and Extensible DRAM
Simulator. IEEE Computer Architecture Letters 15, 1 (2016), 45–49.

[22] Christine Klymko, David F. Gleich, and Tamara G. Kolda. 2014. Using Triangles
to Improve Community Detection in Directed Networks. In The Second ASE
International Conference on Big Data Science and Computing, BigDataScience.

[23] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E. Hinton. 2012. ImageNet Clas-
sification with Deep Convolutional Neural Networks. In Proceedings of the
25th International Conference on Neural Information Processing Systems - Vol-
ume 1 (Lake Tahoe, Nevada) (NIPS’12). Curran Associates Inc., USA, 1097–1105.
http://dl.acm.org/citation.cfm?id=2999134.2999257

[24] Dayeol Lee, David Kohlbrenner, Shweta Shinde, Krste Asanovic, and Dawn
Song. 2020. Keystone: An Open Framework for Architecting Trusted Execution
Environments. In Proceedings of the Fifteenth European Conference on Computer
Systems (EuroSys’20).

[25] J. Lee, T. Kim, and J. Huh. 2016. Reducing the Memory Bandwidth Overheads of
Hardware Security Support for Multi-Core Processors. IEEE Trans. Comput. 65,
11 (Nov 2016), 3384–3397. https://doi.org/10.1109/TC.2016.2538218

[26] R. B. Lee, P. C. S. Kwan, J. P. McGregor, J. Dwoskin, and Zhenghong Wang.
2005. Architecture for protecting critical secrets in microprocessors. In 32nd
International Symposium on Computer Architecture (ISCA’05). 2–13.

[27] Sunho Lee, Jungwoo Kim, Seonjin Na, Jongse Park, and JaehyukHuh. 2022. TNPU:
Supporting Trusted Execution with Tree-less Integrity Protection for Neural
Processing Unit. In 2022 IEEE International Symposium on High-Performance
Computer Architecture (HPCA) (HPCA).

[28] T. S. Lehman, A. D. Hilton, and B. C. Lee. 2016. PoisonIvy: Safe speculation
for secure memory. In 2016 49th Annual IEEE/ACM International Symposium on
Microarchitecture (MICRO). 1–13. https://doi.org/10.1109/MICRO.2016.7783741

[29] Chi-Keung Luk, Robert Cohn, Robert Muth, Harish Patil, Artur Klauser, Geoff
Lowney, Steven Wallace, Vijay Janapa Reddi, and Kim Hazelwood. 2005. Pin:
Building Customized Program Analysis Tools with Dynamic Instrumentation.
SIGPLANNot. 40, 6 (June 2005), 190–200. https://doi.org/10.1145/1064978.1065034

[30] FrankMcKeen, Ilya Alexandrovich, Alex Berenzon, Carlos V. Rozas, Hisham Shafi,
Vedvyas Shanbhogue, and Uday R. Savagaonkar. 2013. Innovative Instructions
and Software Model for Isolated Execution. In Proceedings of the 2nd International
Workshop on Hardware and Architectural Support for Security and Privacy (Tel-
Aviv, Israel) (HASP ’13). ACM, NY, USA, Article 10.

[31] Seonjin Na, Sunho Lee, Yeonjae Kim, Jongse Park, and Jaehyuk Huh. 2021.
Common Counters: Compressed Encryption Counters for Secure GPU Mem-
ory. In IEEE International Symposium on High-Performance Computer Architec-
ture, HPCA 2021, Seoul, South Korea, February 27 - March 3, 2021. IEEE, 1–13.
https://doi.org/10.1109/HPCA51647.2021.00011

[32] Maxim Naumov, Dheevatsa Mudigere, Hao-Jun Michael Shi, Jianyu Huang,
Narayanan Sundaraman, Jongsoo Park, Xiaodong Wang, Udit Gupta, Carole-Jean
Wu, Alisson G. Azzolini, Dmytro Dzhulgakov, Andrey Mallevich, Ilia Cherni-
avskii, Yinghai Lu, Raghuraman Krishnamoorthi, Ansha Yu, Volodymyr Kon-
dratenko, Stephanie Pereira, Xianjie Chen, Wenlin Chen, Vijay Rao, Bill Jia, Liang
Xiong, and Misha Smelyanskiy. 2019. Deep Learning Recommendation Model
for Personalization and Recommendation Systems. CoRR abs/1906.00091 (2019).
https://arxiv.org/abs/1906.00091

[33] Saul B. Needleman and Christian D. Wunsch. 1970. A general method applicable
to the search for similarities in the amino acid sequence of two proteins. Journal
of Molecular Biology 48, 3 (1970), 443–453.

[34] L. Page, S. Brin, R. Motwani, and T. Winograd. 1998. The PageRank citation
ranking: Bringing order to the Web. In Proceedings of the 7th International
World Wide Web Conference. Brisbane, Australia, 161–172. citeseer.nj.nec.com/
page98pagerank.html

[35] Joseph Redmon. 2013–2016. Darknet: Open Source Neural Networks in C. http:
//pjreddie.com/darknet/.

[36] Brian Rogers, Siddhartha Chhabra, Milos Prvulovic, and Yan Solihin. 2007. Us-
ing Address Independent Seed Encryption and Bonsai Merkle Trees to Make
Secure Processors OS- and Performance-Friendly. In Proceedings of the 40th An-
nual IEEE/ACM International Symposium on Microarchitecture (MICRO 40). IEEE

Computer Society, Washington, DC, USA, 183–196.
[37] Gururaj Saileshwar, Prashant J. Nair, Prakash Ramrakhyani, Wendy Elsasser,

Jose A. Joao, and Moinuddin K. Qureshi. 2018. Morphable Counters: Enabling
Compact Integrity Trees for Low-Overhead SecureMemories. In Proceedings of the
51st Annual IEEE/ACM International Symposium on Microarchitecture (Fukuoka,
Japan) (MICRO-51). IEEE Press, 416–427.

[38] G. Saileshwar, P. J. Nair, P. Ramrakhyani, W. Elsasser, and M. K. Qureshi. 2018.
SYNERGY: Rethinking Secure-Memory Design for Error-Correcting Memories.
In 2018 IEEE International Symposium on High Performance Computer Architecture
(HPCA). 454–465. https://doi.org/10.1109/HPCA.2018.00046

[39] Daniel Sanchez and Christos Kozyrakis. 2013. ZSim: Fast and Accurate Mi-
croarchitectural Simulation of Thousand-Core Systems. In Proceedings of the 40th
Annual International Symposium on Computer Architecture (Tel-Aviv, Israel) (ISCA
’13). Association for Computing Machinery, New York, NY, USA, 475–486.

[40] Weidong Shi and Hsien-Hsin S. Lee. 2006. ASE. In Proceedings of the 39th An-
nual IEEE/ACM International Symposium on Microarchitecture (MICRO 39). IEEE
Computer Society, Washington, DC, USA, 103–112.

[41] Karen Simonyan and Andrew Zisserman. 2015. Very Deep Convolutional Net-
works for Large-Scale Image Recognition. In 3rd International Conference on Learn-
ing Representations, ICLR 2015, SanDiego, CA, USA,May 7-9, 2015, Conference Track
Proceedings, Yoshua Bengio and Yann LeCun (Eds.). http://arxiv.org/abs/1409.1556

[42] Temple F Smith, Michael S Waterman, et al. 1981. Identification of common
molecular subsequences. Journal of molecular biology 147, 1 (1981), 195–197.

[43] G. Edward Suh, Dwaine Clarke, Blaise Gassend, Marten van Dijk, and Srinivas
Devadas. 2003. Efficient Memory Integrity Verification and Encryption for Secure
Processors. In Proceedings of the 36th Annual IEEE/ACM International Symposium
on Microarchitecture (MICRO 36). IEEE Computer Society, Washington, DC, USA,
339–. http://dl.acm.org/citation.cfm?id=956417.956575

[44] G. Edward Suh, Dwaine Clarke, Blaise Gassend, Marten van Dijk, and Srinivas
Devadas. 2003. AEGIS: Architecture for Tamper-evident and Tamper-resistant
Processing. In Proceedings of the 17th Annual International Conference on Super-
computing (San Francisco, CA, USA) (ICS ’03). ACM, New York, NY, USA, 160–171.
https://doi.org/10.1145/782814.782838

[45] Jakub Szefer and Ruby B. Lee. 2012. Architectural Support for Hypervisor-
Secure Virtualization. In Proceedings of the Seventeenth International Conference
on Architectural Support for Programming Languages and Operating Systems
(London, England, UK) (ASPLOS XVII). Association for Computing Machinery,
New York, NY, USA, 437–450. https://doi.org/10.1145/2150976.2151022

[46] Meysam Taassori, Ali Shafiee, and Rajeev Balasubramonian. 2018. VAULT: Reduc-
ing Paging Overheads in SGX with Efficient Integrity Verification Structures. In
Proceedings of the Twenty-Third International Conference on Architectural Support
for Programming Languages and Operating Systems (Williamsburg, VA, USA) (AS-
PLOS ’18). Association for Computing Machinery, New York, NY, USA, 665–678.

[47] David Lie Chandramohan Thekkath, Mark Mitchell, Patrick Lincoln, Dan Boneh,
John Mitchell, and Mark Horowitz. 2000. Architectural Support for Copy and
Tamper Resistant Software. In Proceedings of the Ninth International Conference
on Architectural Support for Programming Languages and Operating Systems
(Cambridge, MA, USA) (ASPLOS IX). ACM, New York, NY, USA, 168–177.

[48] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,
Aidan N Gomez, Ł ukasz Kaiser, and Illia Polosukhin. 2017. Attention is All
you Need. In Advances in Neural Information Processing Systems, I. Guyon, U. V.
Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett (Eds.),
Vol. 30. Curran Associates, Inc.

[49] Stavros Volos, Kapil Vaswani, and Rodrigo Bruno. 2018. Graviton: Trusted
Execution Environments on GPUs. In 13th USENIX Symposium on Operating
Systems Design and Implementation (OSDI 18). USENIX Association, Carlsbad,
CA, 681–696. https://www.usenix.org/conference/osdi18/presentation/volos

[50] R. N. M. Watson, J. Woodruff, P. G. Neumann, S. W. Moore, J. Anderson, D.
Chisnall, N. Dave, B. Davis, K. Gudka, B. Laurie, S. J. Murdoch, R. Norton, M. Roe,
S. Son, and M. Vadera. 2015. CHERI: A Hybrid Capability-System Architecture
for Scalable Software Compartmentalization. In 2015 IEEE Symposium on Security
and Privacy. 20–37.

[51] Weidong Shi, H. S. Lee, M. Ghosh, Chenghuai Lu, and A. Boldyreva. 2005. High
efficiency counter mode security architecture via prediction and precomputation.
In 32nd International Symposium on Computer Architecture (ISCA’05). 14–24.

[52] Chenyu Yan, Daniel Englender, Milos Prvulovic, Brian Rogers, and Yan Solihin.
2006. Improving Cost, Performance, and Security of Memory Encryption and
Authentication. SIGARCH Comput. Archit. News 34, 2 (May 2006), 179–190.

[53] Jun Yang, Youtao Zhang, and Lan Gao. 2003. Fast Secure Processor for Inhibiting
Software Piracy and Tampering. In Proceedings of the 36th Annual IEEE/ACM
International Symposium onMicroarchitecture (MICRO 36). IEEEComputer Society,
USA, 351.

[54] J. Zhu, R. Hou, X. Wang, W. Wang, J. Cao, B. Zhao, Z. Wang, Y. Zhang, J. Ying, L.
Zhang, and D. Meng. 2020. Enabling Rack-scale Confidential Computing using
Heterogeneous Trusted Execution Environment. In 2020 IEEE Symposium on
Security and Privacy (SP). 1450–1465.

https://doi.org/10.1007/11693383_7
https://doi.org/10.1109/CVPR.2016.90
https://doi.org/10.1145/2566673
https://www.intel.com/content/www/us/en/developer/articles/technical/intel-sgx-and-side-channels.html
https://www.intel.com/content/www/us/en/developer/articles/technical/intel-sgx-and-side-channels.html
https://www.intel.com/content/www/us/en/developer/articles/technical/intel-sgx-and-side-channels.html
http://dl.acm.org/citation.cfm?id=2999134.2999257
https://doi.org/10.1109/TC.2016.2538218
https://doi.org/10.1109/MICRO.2016.7783741
https://doi.org/10.1145/1064978.1065034
https://doi.org/10.1109/HPCA51647.2021.00011
https://arxiv.org/abs/1906.00091
citeseer.nj.nec.com/page98pagerank.html
citeseer.nj.nec.com/page98pagerank.html
http://pjreddie.com/darknet/
http://pjreddie.com/darknet/
https://doi.org/10.1109/HPCA.2018.00046
http://arxiv.org/abs/1409.1556
http://dl.acm.org/citation.cfm?id=956417.956575
https://doi.org/10.1145/782814.782838
https://doi.org/10.1145/2150976.2151022
https://www.usenix.org/conference/osdi18/presentation/volos

	Abstract
	1 Introduction
	2 Background
	2.1 Trusted Execution Environments
	2.2 Memory Protection
	2.3 Limitations of Today's Memory Protection

	3 SoftVN Design
	3.1 Intuition
	3.2 Overview
	3.3 Challenges
	3.4 Hardware Architecture
	3.5 Instruction Set Extension
	3.6 Implications of SoftVN
	3.7 Security Analysis

	4 Example Applications
	4.1 Deep Neural Networks
	4.2 Graph Algorithms
	4.3 Bioinformatics

	5 Experimental Results
	5.1 Methodology
	5.2 Performance Overhead
	5.3 Area and Energy Overhead

	6 Related Work
	7 Conclusion
	8 Acknowledgment
	References

