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ABSTRACT
In a behavioral synthesis system, a typical approach used to guide
the scheduler is to impose hard constraints on the relative timing
between operations considering performance, area, power, etc., so
that the resulting RTL design is favorable in these aspects. The
mechanism is often flawed in practice because many such con-
straints are actually soft constraints which are not necessary, and
the constraint system may become inconsistent when many hard
constraints are added for different purposes. This paper describes a
scheduler that distinguishes soft constraints from hard constraints
when exploring the design space. We propose a special class of soft
constraints called integer-difference soft constraints, which lead to
a totally unimodular constraint matrix in an integer linear program-
ming formulation. By exploiting the total unimodularity, the prob-
lem can be solved optimally and efficiently using a linear program-
ming relaxation without expensive branch and bound procedures.
We also show how the proposed method can be used to support a
variety of design considerations. As an example application, we
apply the method to the problem of low-power synthesis with oper-
ation gating. In a set of experiments on real-world designs, our
method achieves an average of 33.9% reduction in total power;
it outperforms a previous method by 17.1% on average and gives
close-to-optimal solutions on several designs.
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Due to increasing design complexity and time-to-market pres-
sure, interest in behavioral synthesis has recently been revived.
Scheduling, i.e., the process of transforming a behavioral descrip-
tion into a cycle-accurate RTL model, is recognized as a key step
in behavioral synthesis [9, 20]. The design space of scheduling
is enormous, and scheduling results have a significant impact on
almost all the important design metrics, including performance,
power, area, reliability, etc. Not surprisingly, a large number of
interesting algorithms have been proposed in the literature to solve
various scheduling problems in behavioral synthesis. These algo-
rithms typically focus on intelligent strategies to automate the op-
timization of one or more objective functions under a set of design
constraints.

One important aspect in scheduling is the way that the scheduler
is guided towards a good solution. In a straightforward approach,
the optimization engine iteratively evaluates a number of (partial)
solutions using various estimators of QoR (quality of results, in-
cluding frequency, throughput, area, power, etc.), and hopefully
finds a satisfactory solution. This approach often makes it very
tricky to design a good searching strategy when multiple aspects
of the design are considered simultaneously. Enumerative and ran-
domized searching methods can often achieve good QoR on small
designs, but they are often too expensive computationally for mod-
erately large designs. In practice, local heuristic methods like list
scheduling [17, 18], force-directed scheduling [24] and their vari-
ants are often used. These heuristics require a translation from
complex models to priorities (in list scheduling) or forces (in force-
directed scheduling). The translation is most likely performed in an
ad hoc manner, because (1) multiple design requirements need to be
considered simultaneously, (2) practical models of QoR are often
too complex to be expressed using simple priorities or forces. As
a remedy, some systems add constraints about the relative timing
between operations to guide the scheduler. For example, the chain-
ing of operations can be determined before scheduling [19], and
artificial dependency constraints between operations can be added
during scheduling [3, 8, 22, 30]. These constraints are usually in-
troduced when they are considered favorable in a certain aspect of
QoR (like reducing area or saving power), and they can effectively
prune inferior solutions when used intelligently. This mechanism
seems natural, but it often leads to the following problems.

1. Design space is not well characterized. While these con-
straints eliminate inferior solutions from the search space, they can
also forbid the exploration of some feasible and possibly good so-
lutions due to low accuracy of estimation models at such a high
level. For example, if the estimated propagation delay of a com-
binational path consisting of two functional units is 10.5 ns dur-
ing scheduling, while the required cycle time is 10 ns, a simple
method would forbid the two operations to execute in one clock
cycle. However, it is probable that a solution with a slight nominal



timing violation can still meet the frequency requirement after vari-
ous timing optimization procedures in later design stages, like logic
refactoring, retiming, threshold voltage assignment, gate/wire siz-
ing, placement/routing, etc. In this case, artificial constraints elim-
inate the possibility of improving other aspects of the design with
some reasonable estimated violations.

2. Inconsistency can occur in the constraint system. When a lot
of constraints are added for different purposes, they will probably
contradict with each other. For example, scheduling two operations
in a certain order will lead to lower power dissipation, but the order
may conflict with other requirements like performance in less obvi-
ous ways (will be discussed in Section 3). When inconsistency hap-
pens, many scheduling algorithms will either fail or discard some
constraints completely.

Both of the above deficiencies come from the rigid way in which
constraints are handled in the scheduler. So, we take a different
approach. We notice that many of these constraints are actually
preferences (also referred to as soft constraints) rather than essen-
tial constraints (referred to as hard constraints). Unlike hard con-
straints, soft constraints are supposed to be followed when possible
but not necessarily. Thus, soft constraints will neither limit the
design space nor cause inconsistencies even if conflicting soft con-
straints are present.

The conceptual structure of a scheduler with support for soft con-
straints is illustrated in Figure 1. The scheduler accepts a functional
specification and a number of QoR targets along with characteriza-
tions of the target platform. A number of hard/soft constraint gen-
erators produce hard/soft constraints based on the specifications.
Hard constraint generators usually impose essential requirements
of the design, like dependency between operations or performance
requirement. A typical soft constraint generator considers only one
aspect of the design, and formulates some favorable situations as
soft constraints. The cost of violating a soft constraint can also be
specified. Note that since conflicting soft constraints are allowed,
a soft constraint generator does not need to consider tradeoffs with
other design requirements or global feasibility of the constraint sys-
tem. This makes it very easy to design a soft constraint generator
and allows more accurate estimation models to be used. It is also
possible to expose the interface of a soft constraint generator to the
designer, so that the designer can gain detailed control over part
of the design by manually adding soft constraints when necessary.
The optimization engine then accepts all hard/soft constraints as
well as the optimization goal, and makes intelligent decisions to
get the results. The process can possibly be iterative by allowing
adjustment on soft constraints after an initial result is available.

Figure 1: Structure of a scheduler with soft constraints.

Although the concept of soft constraints makes it easier to ex-

press various design intentions and to guide the scheduler, it brings
major challenges for the implementation of the optimization en-
gine. Classical algorithms for scheduling in the behavioral synthe-
sis domain, like list scheduling [17, 18] and force-directed sched-
uling [24], are not designed to work with soft constraints. Some
scheduling algorithms, like the iterative modulo scheduling for soft-
ware pipelining [26], adopt iterative search strategies and allow ear-
lier decisions to be adjusted later, so that they are able to work on
highly constrained problems. However, we are not aware of any
algorithm in this category that explicitly supports soft constraints.
The soft scheduling algorithm [30], despite the name, actually adds
hard constraints iteratively. Similar approaches include [3, 22].
Exact methods for scheduling with soft constraints have been de-
veloped in the artificial intelligence community, using branch and
bound [23], integer-linear programming [29] or constraint satisfac-
tion [28]. This class of methods works very well for planning and
temporal reasoning problems with a small number of tasks but very
complex hard/soft constraints; however, exponential time complex-
ity prohibits the application of these methods to problems of a prac-
tical size in behavioral synthesis.

In this paper we investigate the use of soft constraints for a low-
power scheduling problem and propose an efficient scheduling al-
gorithm based on a mathematical programming formulation to sup-
port soft constraints in scheduling. The contribution of this work is
twofold.

∙ We propose a method to perform scheduling with support for
soft constraints. We find a class of soft constraints that can be
efficiently handled using mathematical programming. Our
method enables a methodological change on how the direc-
tion of optimization can be specified and how design space
can be explored. To the best of knowledge, this is the first
systematic way to formulate and support scheduling with soft
constraints in the behavioral synthesis domain.

∙ We discuss possible applications of soft constraints in sched-
uling. In particular, we apply them to a low-power schedul-
ing problem. Experimental results obtained using industrial
gate-level power estimators after RTL synthesis show a sig-
nificant power saving compared to a previous heuristic, and
the results are close-to-optimal on all the cases where an ex-
act formulation is affordable.

2. PRELIMINARIES
In a typical behavioral synthesis system, a compiler front-end

optimizes behavioral descriptions in high-level languages like C
and generates a control/data flow graph (CDFG). A CDFG is a
graph G = (V,E), where each node v ∈ V represents an operation
and each directed edge e ∈ E represents a data flow or a control
flow. For each operation v, an integer-valued scheduling variable
sv is introduced to represent the time slot in which operation v is
performed. A finite state machine with datapath (FSMD) model [9]
can be constructed once the scheduling variable for every operation
is decided [8]. The task of scheduling is thus to decide sv for every
operation v.

Using the scheduling variables described above, the system of
difference constraints (SDC) formulation was proposed to solve
scheduling problems [8]. The method uses a special form of con-
straints in a linear program, so that it can avoid expensive branch
and bound procedures in traditional ILP formulations for schedul-
ing [10, 15] while still optimizing globally. SDC is flexible enough
to model a wide variety of constraints and objectives in behavioral
synthesis, and is extended in [16] to solve a time budgeting prob-
lem.



A special class of constraints, called integer-difference constraints,
is used to model various design constraints in SDC.

DEFINITION 1 (INTEGER-DIFFERENCE CONSTRAINT). An
integer-difference constraint is a constraint of the form su− sv ≤ d,
where d is a constant integer.

Using a system of integer-difference constraints, [8] is able to mo-
del dependency constraints and timing constraints precisely, and
model resource constraints heuristically. The advantage of integer-
difference constraints is that they can be solved very efficiently us-
ing linear programming.

In this work we will show that the “soft version” of an integer-
difference constraint, referred to as an integer-difference soft con-
straint, can also be handled efficiently in the optimization engine.

DEFINITION 2 (INTEGER-DIFFERENCE SOFT CONSTRAINT).
An integer-difference soft constraint is a soft constraint in the form
of su− sv ≤ d, where d is a constant integer.

Details on how to implement an optimization engine supporting
integer-difference soft constraint are discussed in Section 4.

3. AN EXAMPLE APPLICATION OF SOFT
CONSTRAINTS

Before describing our method for solving a scheduling problem
with soft constraints, let us first consider a low-power scheduling
problem where soft constraints can be applied naturally.

A scheduling strategy that enables power management during
scheduling was proposed in [22]. The strategy, referred to as opera-
tion gating in this paper, exploits observability don’t-cares at oper-
ation level to avoid unnecessary computations and save power. The
basic idea is to schedule the operation that computes the condition
(referred to as condition operation in the following, typically in-
cluding comparison (CMP) and Boolean AND/OR/NOT operations)
for a multiplexer early. This ensures that values not selected by the
multiplexer can be identified at run time and power management
techniques (clock gating, input isolation, power gating, etc.) can be
applied to corresponding components to reduce energy consump-
tion.

Figure 2: An example CDFG with opportunities for operation
gating.

Consider the example CDFG in Figure 2, where a SEL operation
selects one of its two data inputs as the result based on a Boolean
condition input (it corresponds to a 2-input multiplexer in hard-
ware). When CMP2 is evaluated as true for some input data, MUL3
will be unobservable, i.e., the value of MUL3 does not have any
impact on the output of the module, and so the execution of MUL3
is unnecessary. Similarly, it is possible to avoid ADD1 when CMP2
is evaluated as false, or to avoid MUL1 when CMP1 is evaluated
as false. In order to exploit such opportunities for power reduction,
the condition operation must be scheduled earlier than the operation

that can potentially be avoided — otherwise the operation cannot
be avoided because it might be useful depending on the result of the
condition operation. Figure 3 gives two possible schedules with the
same latency: in the first schedule (shown on the left), we can pos-
sibly avoid ADD1 or MUL3 but not MUL1; in the second schedule,
MUL1 can be avoided but ADD1 and MUL3 cannot. In this case, if
CMP1 is evaluated as true most of the time, the first schedule will
be a better choice than the second one.

Figure 3: Two possible schedules for the CDFG in Figure 2.

It might be tempting to schedule every operation after its ob-
servability condition is completely resolved, so that the operation
can be avoided when it is unobservable. However, this is not al-
ways possible, especially when a tight performance requirement is
present. For example, it is not possible to avoid both MUL1 and
MUL3 in Figure 2 when the total latency is limited to five clock cy-
cles, assuming each operation takes one cycle. Thus, it is important
to optimize the schedule to maximize the efficacy of operation gat-
ing. Operating gating efficacy is defined as the weighted number of
operation executions that are avoided due to operation gating, with
the weight being an estimated power of the corresponding opera-
tion. The problem of optimizing operation gating efficacy can be
described as follows.

Given: (1) a CDFG G = (V,E); (2) a set of hard constraints
which include longest-path latency constraint, cycle time constraint,
and possibly others; (3) profiling information; (4) a weight for each
operation reflecting the power dissipation for performing the oper-
ation.

Goal: schedule every operation so that the operation gating effi-
cacy is maximized and all hard constraints are satisfied.

To our knowledge, the first published work on operation gating
for power reduction is [22], where multiplexers in the circuit (or
SEL operations in the CDFG) are visited one by one. Virtual depen-
dency edges are added from the condition operation to operations
in the transitive fanin of the multiplexer, if latency constraint is not
violated. Authors of [22] noticed that the results of their method
depended on the order in which multiplexers were visited, and they
used reverse topological order in their implementation. A more so-
phisticated heuristic method to decide the order is proposed in [3],
using a priority function considering power saving and slack over-
head. However, decisions on operation gating are still made one
by one in a greedy manner, which probably leads to suboptimal
results.

Using soft constraints, it is very easy to express the intention of
operation gating. When it is preferred that a condition operation
c is scheduled before another operation v so that v can be avoided
when c takes a certain value, an integer-difference soft constraint
can be added as

sc− sv ≤−b−dc +1, (1)

where dc is the number of clock cycles operation c spans, and b is



an integer constant depending on the power management technique
and the target platform. A typical value of b is 1 if clock gating
or operand isolation is used. Then the problem of power optimiza-
tion using operation gating can be described in a mathematical-
programming form as follows.

min ∑k cksk
s.t. sui − svi ≤ pi, i = 1, . . . ,m (hard constraints)

sc j − sv j ≤ q j, j = 1, . . . ,n (soft constraints)
(2)

Here pi, q j and ck are constants. The linear objective function and
all integer-difference hard constraints including dependency, cycle
time, latency, resource, etc. are all formulated using techniques
in the SDC formulation [8]. An integer-difference soft constraint is
added between every operation pair (c j,v j), where c j is a condition
operation and v j is an operation that can potentially be avoided
when c j takes a certain value. In the next section, we describe
a method that considers all hard constraints and soft constraints
together and optimizes globally.

4. HANDLING SOFT CONSTRAINTS
In this section we describe our method for handling soft con-

straints using linear programming. Our method extends the ap-
proach in SDC by supporting integer-difference soft constraints,
while still guaranteeing efficient optimization.

4.1 A Penalty Method for Soft Constraints
To ease discussion, we can write the formulation in Equation 2

in vector and matrix form as

min cT s
s.t. Gs≤ p (hard constraints)

Hs≤ q (soft constraints).
(3)

Although a soft constraint does not need to be satisfied, there is
usually a cost when it is violated. Let H j be the jth row of H . For
each soft constraint H js ≤ q j, we introduce a violation variable
v j to denote the amount of violation. Then the soft constraint is
transformed to two traditional constraints as

H js −v j ≤ q j,
−v j ≤ 0. (4)

A penalty term depending on the amount of violation, φ j(v j), is
added in the objective function to denote the cost for violating the
jth soft constraint. Then the problem is formulated as a traditional
form of mathematical programming as follows.

min cT s+∑
n
j=1 φ j(v j)

s.t. Gs ≤ p
Hs −v ≤ q

−v ≤ 0.

(5)

The constraints can also be written in matrix form as⎡⎣G O
H −I
O −I

⎤⎦[x
v

]
≤

⎡⎣pq
0

⎤⎦ . (6)

4.2 Total Unimodularity and Implications
In the SDC formulation, total unimodularity is exploited to avoid

branch and bound procedures while still guaranteeing integral so-
lutions.

DEFINITION 3 (TOTAL UNIMODULARITY). A matrix A is to-
tally unimodular if every square submatrix of A has a determinant
either 0, 1 or -1.

Total unimodularity plays an important role in combinatorial opti-
mization, as shown in Lemma 1.

LEMMA 1 (HOFFMAN AND KRUSKAL, [14]). If A is totally
unimodular and b is a vector of integers, every extreme point of
polyhedron {x : Ax≤ b} is integral.

Lemma 1 implies that an integer linear programming problem

min cTx
s.t. Ax≤ b

x ∈ ℤn

can be solved by solving a linear-programming relaxation

min cTx
s.t. Ax≤ b

if A is totally unimodular and b is integral, because the solution of
the linear program can always be found at an extreme point of the
polyhedron {x : Ax≤ b}.

LEMMA 2 (CONG AND ZHANG, [8]). With only integer-dif-
ference constraints, the constraint matrix of the scheduling problem
is totally unimodular.

By exploiting the total unimodularity, the SDC formulation of sched-
uling can be efficiently solved using linear programming. Integral
solutions are guaranteed without the expensive branch-and-bound
procedure in typical integer-linear programming solvers.

LEMMA 3 (RAGHAVACHARI, [25]). If a m× n matrix A ∈
{−1,0,1}m×n has a row (or a column) with at most one nonzero
element, A is totally unimodular if and only if the resulting matrix,
after removing the row (or column) from A, is totally unimodular.

THEOREM 1. With only integer-difference constraints and in-
teger-difference soft constraints, the constraint matrix in the opti-
mization program in Eqn. 5 is totally unimodular.

PROOF. Using Lemma 3, we can first remove the last n rows of
the matrix in Eqn. 6, and then remove the last n columns of the
resulting matrix, without changing total unimodularity.⎡⎣G O

H −I
O −I

⎤⎦⇒ [G O
H −I

]
⇒
[
G
H

]
.

Then we only need to show that
[
G
H

]
is totally unimodular. Note

that each row of the matrix represents the difference of two vari-
ables, so the matrix is in the same form as the constraint matrix in
the SDC formulation, which is thus totally unimodular according
to Lemma 2.

4.3 Form of the Penalty Term
The penalty term for violation in the objective function, φ j(v j), is

supposed to model the cost of violating the jth soft constraint. Typ-
ically, φ j is 0 when there is no violation, and it is a non-decreasing
function for positive v j. That is,

φ j(v j) = 0, when v j = 0, (7)

φ j(v j)≥ φ j(v′j)≥ 0, when v j ≥ v′j ≥ 0. (8)

Note that it is impossible to have a negative v j because the con-
straints in our formulation forbid it (Eqn. 4).

If the cost is linear to the amount of violation, i.e.,

φ j(v j) = α jv j, (9)



where α j is a nonnegative constant, the problem in Eqn. 5 is a
linear program with a totally unimodular constraint matrix and in-
tegral right-hand side. According to Lemma 1, we can get optimal
integral solution efficiently.

In fact, our formulation allows φ j(v j) to be a nonlinear convex
function of v j without introducing significant complexity based on
the following result.

LEMMA 4 (HOCHBAUM AND SHANTHIKUMAR, [13]). For
the integer convex separable optimization problem

min ∑
n
i=1 fi(x)

s.t. Ax≤ b
x ∈ ℤn,

(10)

where fi is convex, A is totally unimodular and b is integral, the
optimal solution can be found in polynomial time.

It is shown in [21] that the problem in Eqn. 10 can be translated
into a linear program by piece-wise linearizing fi at integral points
and removing the integral constraints. The resulting linear program
is guaranteed to have an integral solution. Therefore, we have the
following theorem.

THEOREM 2. When only integer-difference constraints and in-
teger-difference soft constraints are used, and every φ j is convex,
the problem can be solved optimally with an integral solution in
polynomial time.

Theorem 2 allows a rich category of penalty functions to be used
in our formulation, including linear, quadratic, exponential and log
barrier functions, as illustrated in Figure 4. The selection of the
penalty form and its parameters can be performed on each individ-
ual soft constraint based on characteristics of the constraint. For
some cases, the simple linear model will work well; for some oth-
ers, the cost increases exponentially with the amount of violation.
Sometimes the log-barrier form is also useful to keep the amount
of violation within a certain range.
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Figure 4: Some typical penalty functions. An offset is added to
the exponential penalty to satisfy Eqn. 7.

Notably, although the cost of violating a soft constraint is often
convex with respect to the amount of violation, it is not always the
case. For example, the cost for violating some soft constraints can
be a constant for any amount of non-zero violation (denoted as the
binary penalty function). Let b(x) be the binary penalty function
with unit coefficient, defined as

b(x) =

{
1 if x > 0,
0 if x≤ 0.

(11)

Unfortunately, introducing such a penalty function directly to the
formulation in Eqn. 5 will make the problem NP-hard.1 So we
take a different approach. We first check every soft constraint with
binary penalty and eliminate the soft constraint if it obviously con-
flict with hard constraints. For the remaining soft constraints, we
iteratively solve a sequence of subproblems with slightly different
convex penalty functions to gradually approximate b(x). This is
motivated by the Lagrangian method [12], as well as the method
for linear wire length optimization using a quadratic model in Gor-
dianL [27]. At iteration k, we use a linear function b(k)(x) to ap-
proximate b(x) near x(k−1) (the value of x in the solution of the
previous iteration).

b(k)(x) =
x

max(1,x(k−1))
(12)

The idea is that when the process converges after k− 1 iterations,
we will have x(k) = x(k−1) and x(k) is a nonnegative integer; thus
b(k)(x(k)) = b(x(k)). For an intermediate iteration, when the viola-
tion is larger than one, the coefficient in the penalty term is scaled
down in the next iteration, effectively reducing the effort to satisfy
the corresponding soft constraint. In the extreme case where the
violation is very large, the optimization engine will tend to ignore
the soft constraint. Note that this technique cannot guarantee the
optimality of the solution, but it turns out a good heuristic and the
iterative process usually converges after several (less than four) it-
erations in our experiments.

4.4 Overall Flow
Since our optimization engine is highly efficient by taking ad-

vantage of the special constraint structure, it is feasible to run the
optimization engine repeatedly in an iterative manner: after each
iteration, we can adjust the soft constraints and solve again for bet-
ter QoR. There are many ways soft constraints can be adjusted: a
soft constraint can be added or deleted, and the penalty function of
a soft constraint can be changed (e.g., the technique discussed in
Subsection 4.3 that deals with binary cost). The detailed strategy
for adjusting should be designed considering characteristics of the
soft constraint.

When various soft constraints designed for different aspects of
QoR are present, it is important that the penalty terms be carefully
designed to allow a reasonable tradeoff. Orthogonal to the selec-
tion of the form of the penalty function (among which are linear,
quadratic, exponential), the coefficient (weight) in the penalty term
can always be adjusted in the objective function. Note that the cost
of violating a soft constraint can usually be interpreted as over-
head in certain QoR metrics like performance/area/power. Thus,
adjusting the coefficients for different types of soft constraints en-
ables different tradeoffs. For example, if tradeoffs between power
and area are desirable, we may want to select the weights so that
the penalty of a 10% power increase is comparable with that of
a 10% area increase. To do this for a soft constraint considering
area, we can normalize the area penalty for unit violation (δA) to
the estimated total area (A), and multiply it by a manually selected
constant α. Then the penalty term is

φ(v) = α
δA

A
p(v),

where p(v) is a convex function as discussed in Subsection 4.3. The
same can be done for a soft constraint for power consideration. In
practice, a robust approach is to run the optimization multiple times
with different combinations of weights to get a sequence of Pareto
1A reduction from MAX-2-SAT is straightforward, omitted here due
to page limitation.



optimal solutions — and then the designer can select a subset of
solutions to go through later design processes.

5. SOFT CONSTRAINT GENERATOR FOR
OPERATION GATING

The motivation and formulation for operation gating using soft
constraints have been discussed in Section 3. In this section, we
describe details of the soft constraint generator for operation gat-
ing. In particular, we describe the method used to find candidates
for operation gating, and the penalty term associated with the soft
constraint.

5.1 Identification of Gating Candidates
To describe our method of identifying candidate operations for

gating, we adopt the concept of fanout-free subgraph (FFS) and
maximum fanout-free subgraph (MFFS) defined in [7].

DEFINITION 4 (FFS & MFFS). In a direct acyclic graph G=
(V,E) with the set of sink nodes denoted as T ⊆V , for a set of nodes
R⊆V ,

FFSR = {u ∈V ∣ for any path p from u to a sink node w,
p passes through v in R},

MFFSR = {u ∈V ∣ u is in some FFSR}.

MFFSR can be computed in O(∣V ∣+ ∣E∣) [7].
Informally, the maximum fanout-free subgraph of a data-flow

graph induced by a subset of operations R is the set of operations
that influences the output only by influencing values in R. Let
Rc=true (Rc=false) be a set of unobservable operations when a con-
dition operation c is evaluated as true (false). Then all other oper-
ations in MFFSRc=true are also unobservable when c is evaluated as
true. Thus, we only need to find a number of “seed” operations that
can be avoided.

Without loss of generality, consider the case when a condition
operation c is evaluated as true. A straightforward situation where
an operation u can be avoided is when it is only used as the false-
input by a SEL operation with c as the condition input. Actually, if
u is only used as the false-input by multiple such SEL operations,
it can still be avoided. For example, MUL1 in Figure 5 is unobserv-
able when CMP1 is evaluated as true. However, if the operation is
also used by other operations, it cannot be avoided; for example,
ADD1 in Figure 5 can still be necessary even if CMP1 is evaluated
as false, because it is used by MUL2.

Figure 5: Another example CDFG with correlations between
condition operations.

In addition to the analysis based purely on topology, we also ex-
ploit the propagation of logic values to uncover more opportunities
for operation gating. Consider the case when CMP1 is evaluated as

true in Figure 5; the naive method will give RCMP1=true = {MUL1}.
If we analyze the propagation of logic values, we find that C3 =
CMP1 OR CMP2 will be true no matter what value value CMP2
takes — thus CMP2 ∈ RCMP1=true. Since C3 is true, we can fur-
ther find that MUL2 is unobservable and thus MUL2 ∈ RCMP1=true.
Then we can compute RCMP1=true = MFFS{MUL1,MUL2,CMP2} and
get {ADD1,MUL1,MUL2,CMP2,SEL2} as the set of operations that
can be avoided when CMP1 is evaluated as true.

Compared to the method used in [3, 22], our approach considers
more than one multiplexer simultaneously, and is able to uncover
more opportunities for operation gating with analysis of Boolean
AND/OR/NOT operations. For a formal description of the algorithm
to compute R for every Boolean value, interested readers may refer
to [6].

5.2 Soft Constraint Generation
We use the binary function described in Subsection 4.3 to penal-

ize the violation of a soft constraint for operation gating between
condition operation c and another operation v. The coefficient in
the penalty function is the estimate of potential energy saving if the
soft constraint is satisfied based on profiling information.

Such an estimate, however, can be nontrivial, because the exe-
cution of operation v may also depend on other condition opera-
tions. For example, in Figure 5, we have MUL2 ∈ RCMP1=true and
MUL2 ∈ RCMP2=true (i.e., MUL2 is unobservable when either CMP1
or CMP2 is evaluated as true). Then, even if the soft constraint that
CMP2 is scheduled earlier than MUL2 is not satisfied, MUL2 may
still be avoided if it is scheduled after CMP1. Thus, an exact eval-
uation of the energy saving for such a soft constraint will require a
full profiling of all possible value combinations in a group of con-
dition operations. However, such a process can be prohibitively
expensive. In practical compilers and synthesis systems, profiling
is usually done on each individual value, instead of on combina-
tions of values [11]. So, we assume that each Boolean value by a
CMP operation is independent. Without loss of generality, suppose
{c1,c2, . . . ,cn} is the set of independent conditions (with pi being
the probability that ci is true), and v is unobservable if any condi-
tion in the set is true. When we estimate the cost of violating a soft
constraint between cj and v, we assume that other constraints are
satisfied (if a soft constraint can never be met given all the hard con-
straints, or is not met in previous design iterations, it is excluded),
then the probability of executing v when the soft constraint is satis-
fied is ∏

n
i=1(1− pi), and the probability becomes ∏

n
i=1(1−pi)

1−p j
when

the soft constraint is violated. Then we get the cost of violating the
soft constraint considering the increase in the execution probability
of v as

costv
cj =

p j

1− p j

(
n

∏
i=1

(1− pi)

)
Ev, (13)

where Ev is the energy consumed for performing operation v. This
costv

cj is helpful to decide the weight of the binary penalty function.

6. EXPERIMENTAL RESULTS

6.1 Experiment Setup
Techniques proposed in this paper have been implemented in

the scheduler of AutoPilot, a commercial behavioral synthesis tool
from AutoESL Design Technologies, Inc. [1]. The tool accepts
C/C++/SystemC as the input language and generates RTL specifi-
cations in VHDL or Verilog. Here we evaluate the effectiveness
of our approach on the problem of latency-constrained operation
gating for power reduction as described in Section 3.



Our scheduler introduces soft constraints, formulates the prob-
lem using techniques described in Section 4, and uses the iterative
technique to approximate the binary penalty functions. We make
comparisons to three other approaches: (1) a baseline scheduler
using the SDC formulation without operation gating; (2) the itera-
tive algorithm described in [3] for operation gating; (3) an integer-
linear programming (ILP) formulation to handle binary penalty ex-
actly for optimal operation gating. We will not compare our ap-
proach with the original work on operation gating in [22] as [3] is
algorithmically similar to [22] with improved strategy. All these
approaches are implemented in C++, and the programs run on a
workstation with four 2.4GHz 64-bit CPU and 8G primary mem-
ory.

The ILP formulation (for the purpose of optimality study) is
briefly described as follows. In addition to all variables and con-
straints in Eqn. 5, a variable wi is introduced for each violation
variable vi in a binary penalty function. We add constraints

vi−N×wi ≤ 0, (14)
wi ∈ {0,1}, (15)

where N is a large constant number so that the constraint in Eqn. 14
can always be satisfied when wi = 1. Then we replace b(vi) with wi
in the objective function, and explicitly enforce the constraint that
every variable is an integer. It is easy to verify that in the solution
of the ILP formulation, we have

wi =

{
1 when vi > 0,
0 otherwise,

which means wi = b(vi).
After scheduling, a binding algorithm described in [4] is per-

formed. The RTL code generated by the behavioral synthesis tool
is fed to the Magma Talus RTL-to-GDSII toolset. Gate-level sim-
ulation under typical input vectors is performed using the Aldec
Riviera simulator to obtain power dissipation. All designs are im-
plemented using a TSMC 90nm standard cell library. In this exper-
iment the actual operation gating is carried out by the clock gating
on the output registers of the gated operations. Further power sav-
ings can potentially be achieved if we apply additional low-power
techniques (e.g., feeding sleep vectors for leakage reduction).

Several designs in arithmetic and multimedia applications are
used in our experiments. Characteristics of these designs are given
in Table 1.

Table 1: Benchmark Characteristics.
Name #node Description

addr 88 address space translation unit
BoxMuller 333 Gaussian noise generator
dfmul 351 floating-point multiplier
MotionComp 1306 motion compensation (MPEG4 decoder)
MotionEst 621 motion estimation (MPEG4 encoder)

6.2 Results and Analysis
Results of the four approaches are reported in Table 2. Here, area

and power after gate-level implementation are reported for each
approach. Since the Magma Talus synthesis tool meets the clock
cycle time constraint for all cases, we do not report the frequency
for each individual approach. We also normalize the power values
to those generated by the approach with soft constraints. For some
larger designs, the exact ILP formulation (solved by Clp [2], a state-
of-the-art open-source ILP solver) fails to find a solution within

7200 seconds. All the three other methods finish within 60 seconds
for all cases.

From the results, it is clear that operation gating is a useful tech-
nique to create opportunities for power management at the RT level
without significant overhead in area. Compared to the SDC sched-
uling algorithm without considering operation gating, all of the
three other methods that optimize for operation gating improve the
power dissipation: on average, the method in [3] reduces power by
20.1%, the exact method given by ILP reduces power by 34.6%,
and our proposed method by 33.9%. The reduction tends to be par-
ticularly significant when the design has a complex control struc-
ture, like addr. When large memory blocks are present and the
access pattern is fixed (for example, the total size of RAM in Mo-
tionEst is over 10Mb and the memory traffic is fixed; the situation
is similar for MotionComp), operation gating tends to be less effec-
tive, because the memory power is roughly a constant. While power
consumed in memory blocks can be a very important part of total
power, it is usually not controlled by the operation scheduler when
memory operations are unavoidable and the access pattern is fixed.
Possible techniques that help to reduce memory power include be-
havioral transformations (loop transformation to enhance memory
locality, to leverage burst-mode memory access, etc.), memory ar-
chitecture selection, memory partitioning [5], etc, but those are be-
yond the scope of this study. For a fair comparison, we include the
memory power for every design in Table 2.

Compared to [3], the proposed approach further reduces total
power dissipation by an average of 17.1%. As discussed above, the
reduction can be more significant if memory power is excluded.
This saving is because we are able to consider all opportunities for
operation gating simultaneously, and optimize globally in our ap-
proach. The approximation of binary penalty function turns out to
work very well — the results generated using our approach are very
close to those by the exact formulation, and the observed optimality
gap in term of power is about 1%. At the same time, our method is
much more scalable than the exact formulation.

7. CONCLUSION
In this work we introduce the concept of soft constraints to sched-

uling in behavioral synthesis and show its application in power op-
timization. Following the idea of [8], we find a class of soft con-
straints — integer-difference soft constraints, which enable optimal
solutions within polynomial time. Potentially conflicting soft con-
straints are allowed, so that various optimization strategies can be
specified easily, either by automatic soft constraint generators or
possibly by the designer. The optimization engine is then able to
make tradeoffs with a global view of the design objective and hard
constraints, as well as all soft constraints together. Such a scheduler
not only provides a more user-friendly interface to the designer, but
also allows a methodological change in how the scheduler can be
guided and how the design space can be explored. More soft con-
straint generators, such as ones for chaining and slack distribution,
can be developed to make our scheduler more versatile and power-
ful. We believe that automatic soft constraint generators based on
machine learning and statistical methods are possible, and we leave
them for future work.
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