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Abstract
Modulo scheduling is a popular technique to enable pipelined
execution of successive loop iterations for performance im-
provement. While a variety of modulo scheduling algorithms
exist for software pipelining, they are not amenable to many
complex design constraints and optimization goals that arise
in the hardware synthesis context.

In this paper we describe a modulo scheduling framework
based on the formulation of system of difference constraints
(SDC). Our framework can systematically model a rich set
of performance constraints that are specific to the hardware
design. The scheduler also exploits the unique mathemati-
cal properties of SDC to carry out efficient global optimiza-
tion and fast incremental update on the constraint system to
minimize the resource usage of the synthesized pipeline. Ex-
periments demonstrate that our proposed technique provides
efficient solutions for a set of real-life applications and com-
pares favorably against a widely used lifetime-sensitive mod-
ulo scheduling algorithm.

1. Introduction
Recent years have seen an increasingly important role of
high-level synthesis in improving both design productivity
and quality for nanometer-scale integrated circuits [4, 6].
High-level synthesis is particularly popular in computation-
intensive applications (e.g., image and video processing,
wireless communication, etc.) where loops abound in the in-
put behavioral descriptions. In such an application context,
loop pipelining is often used to meet the stringent perfor-
mance requirements, since it allows multiple iterations of a
loop to operate in parallel by starting an iteration before the
previous iteration finishes.

Modulo scheduling [27] is a popular compilation tech-
nique to enable loop pipelining. It constructs a static sched-
ule for a loop iteration so that the same schedule can be re-
peated at a constant interval without causing any resource
conflicts or dependence violations. The constant interval be-
tween the start of successive iterations is typically termed the
initiation interval (II). While a variety of modulo schedul-
ing algorithms exist for software pipelining [18], they are
not particularly amenable to many hardware-specific design
constraints and optimization goals. For example, a software
compiler can reasonably assume that most instructions take
one or more clock cycles. In hardware synthesis, however,
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many operations are cheap in delay (e.g., constant shifts, log-
ical operations, and bitwise operations) and contribute little
to the cycle time. Even nontrivial arithmetic operations may
chain with each other at a low operating frequency. Addi-
tional timing constraints such as latency and relative I/O con-
straints would further complicate the scheduling decisions.
Several scheduling algorithms have been proposed to man-
age different types of timing constraints in high-level syn-
thesis [5, 17, 24]. However, these algorithms primarily focus
on sequential non-pipelined architectures.

To address this deficiency, we propose a modulo schedul-
ing framework based on the formulation of system of differ-
ence constraints (SDC). Our framework can systematically
model a rich set of performance constraints that are specific
to the hardware design. The scheduler intelligently exploits
the unique mathematical properties of SDC to carry out effi-
cient global optimization and incremental update on the con-
straint system to minimize resource usage of the synthesized
pipeline. More specifically, our contributions are threefold:

(1) We generalize the SDC-based scheduling formula-
tion [5] to support loop pipelining. We show that various
forms of pipeline-dependent scheduling constraints can be
captured in the SDC system, enabling efficient feasibility
checking and global optimization based on linear program-
ming (LP).

(2) We formulate an LP problem over SDC to minimize
the overall value lifetimes for reducing registers in the syn-
thesized pipeline. Since the underlying constraint matrix of
SDC is totally unimodular, this problem can be solved opti-
mally with guaranteed integral solutions.

(3) We propose a novel incremental scheduling algorithm
to minimize pipeline II and register pressure under resource
constraints. This algorithm employs a perturbation-based
priority function and incrementally updates the SDC con-
straint system in an efficient stepwise manner to find legal
schedules for the resource-constrained operations.

The rest of this paper is structured as follows: Section 2
reviews the previous work on loop pipelining; Section 3 pro-
vides background of the SDC formulation and preliminaries
for the modulo scheduling problem; Section 4 presents our
SDC-based modulo scheduling algorithm; Section 5 reports
experimental results, followed by conclusions in Section 6.



2. Related Work
Various forms of loop pipelining have been proposed for
high-level synthesis in the past. Loop winding [11] focuses
on pipelining acyclic data flow graphs without recurrences
(i.e., loop feedbacks). The classic force-directed scheduling
algorithm [22] can also be extended to support loop wind-
ing by folding the resource distribution graph. Sehwa [21]
is capable of generating multiple pipelined implementations
and exploring the design space with an exhaustive search.
Rotation scheduling [2] uses a retiming formulation to iter-
atively move operations across iterations to create a more
compact schedule for the loop body. A recent work extends
list scheduling for pipelining and considers binding for more
accurate timing estimation [16].

In the compiler domain, loop pipelining is known as soft-
ware pipelining [18], and is extensively used to achieve a
higher order of instruction-level parallelism by moving op-
erations across iteration boundaries. Modulo scheduling [27]
is arguably the most popular technique to enable software
pipelining since it can achieve high-quality solutions with
relatively low overhead in terms of code expansion. Since
finding an optimal modulo schedule is NP-hard in general
with the presence of both recurrences and resource con-
straints, various heuristics have been proposed and imple-
mented in research and production compilers. Iterative mod-
ulo scheduling [26] schedules and unschedules operations
with backtracking to find the minimum possible II under
the given resource constraints. Slack modulo scheduling [13]
uses a slack-based priority function for operation ordering
and employs a bidirectional approach to choosing the time
slots so that the conflicting variable lifetimes are minimized.
Swing modulo scheduling [20] is able to reduce the regis-
ter requirements of the resulting schedule by placing each
operation close to either its predecessors or successors. A
comparative study and quantitative analysis of these modulo
scheduling heuristics can be found in [3].

Several recent high-level synthesis systems have adopted
the modulo scheduling approach for loop pipelining. For ex-
ample, PICO-NPA [28] (now part of Synopsys Synphony C
compiler) employs iterative modulo scheduling for synthe-
sizing nonprogrammable loop accelerators in hardware. An
integer linear programming (ILP) formulation is proposed
in [8] to solve a cost-sensitive modulo schedule problem in
a loop accelerator synthesis flow derived from PICO-NPA.
Another formulation based on satisfiability modulo theory
(SMT) is introduced in [9] to optimize loop accelerators
with limited degree of programmability. C-to-Verilog [1]
performs modulo scheduling to reduce memory port usage
under a fixed II constraint.

As previously mentioned, existing modulo scheduling
algorithms for software pipelining lack support for many
hardware-specific scheduling constraints, such as frequency
constraints, latency constraints, etc. General-purpose formu-
lations based on ILP [8] or SMT [9] can capture these con-
straints but not in scalable forms. Prior techniques also lack
efficient global optimization to reduce the register require-
ments. Instead, they often resort to ad hoc solutions. In this

paper we propose an efficient SDC-based modulo scheduling
algorithm to address these limitations.

3. Preliminaries and Motivations
In this section we review the SDC-based scheduling formula-
tion and provide preliminaries and motivations for our mod-
ulo scheduling problem.

3.1 SDC-Based Scheduling Formulation
SDC-based scheduling algorithm [5] uses a linear program-
ming formulation based on system of difference constraints.
Unlike previous ILP approaches which use O(mn) binary
variables to encode a scheduling solution with n operations
and m steps [14], SDC formulation uses a continuous rep-
resentation of time with only O(n) variables: for each oper-
ation u, a scheduling variable su is introduced to represent
the time step at which the operation is scheduled. By limiting
each constraint to the integer-difference form, i.e.,

su − sv ≤ du,v (1)

where du,v is an integer, it is shown that a totally unimodu-
lar constraint matrix can be obtained. A totally unimodular
matrix (TUM) defined as a matrix whose every square sub-
matrix has a determinant of 0 or ±1. A linear program with
a totally unimodular constraint matrix is guaranteed to have
integral solutions. Thus, an optimal integer solution can be
obtained without expensive branch-and-bound procedures.

A set of commonly encountered constraints in high-level
synthesis can be expressed in the form of integer-difference
constraints. For example, data dependences, control depen-
dences, relative timing in I/O protocols, clock frequencies,
and latency bounds can all be expressed precisely. Some
other constraints, such as resource limitation, do not directly
fit into the form. In such cases, approximations can be made
to generate pair-wise orderings that can then be expressed as
integer-difference constraints. Other complex constraints can
be handled in similar ways, using approximations or other
heuristics. In Section 4.1 we shall generalize the SDC for-
mulation to support several pipelining constraints.

3.2 Limiting Factors of Pipeline Rate
It is important to note that not every loop is fully pipelinable
to achieve II = 1, as the pipeline rate can be limited by sev-
eral factors. Recurrences arise from data feedbacks between
loop iterations and often play a major role in limiting the
maximum pipeline rate. More precisely, a loop contains a re-
currence if an operation in the loop has a direct or indirect
dependence on the same operation from a previous iteration.

The resource limitation is another key factor in determin-
ing the final II . Other timing constraints such as frequency
and latency constraints may impact the II as well. Needless
to say, the scheduling heuristic is crucial to handle the in-
terplay between all these constraints to achieve the highest
possible pipeline rate (i.e., lowest II).

Figure 1 uses a small example to illustrate the challenges
facing a modulo scheduler when both recurrence and re-
source constraints are involved. The recurrence manifests it-
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Figure 1. Scheduling with recurrence and resource con-
straints: (a) C code; (b) Corresponding data flow graph; (c)
An illegal schedule violating the inter-iteration dependence;
(d) A suboptimal schedule given a single multiplier resulting
in II = 3; (e) An optimal schedule achieving II = 2.

self as a circuit in the data flow graph in Figure 1 (b). This
recurrence circuit contains one multiplication M1 and one
addition A1 which uses and updates the value of acc[i] ev-
ery iteration, 1 respectively. The forward edge in this circuit
captures the intra-iteration dependence betweenA1 andM1.
There is also a feedback edge between these two operations
representing an inter-iteration dependence. This feedback
edge is associated with a distance value (=1), which indi-
cates the number of iterations separating the two operations
involved in this inter-iteration dependence.

Assuming that a multiplier and an adder cannot be chained
in one cycle to meet the required frequency, it is infeasible
to achieve II = 1 without violating the inter-iteration de-
pendence between A1 and M1. If we are given an additional
resource constraint to only use one multiplier, the modulo
scheduler has to carefully prioritize M1 and M2 to achieve
the optimal II = 2 in Figure 1 (e). In fact, conventional
heuristics typically place M1 ahead of M2 since M1 belongs
to a recurrence circuit. Without backtracking and reschedul-
ing, such decision would lead to a suboptimal solution shown
in Figure 1 (d). In Section 4 we will propose a perturbation-
based priority function to mitigate this ordering problem.

3.3 Register Pressure
Reducing the register pressure is one of the main optimiza-
tion objectives of a modern modulo scheduler. In a pipelin-
ing context, lifetimes of data values produced in one itera-
tion may overlap with lifetimes of those produced in the sub-
sequent iterations, thereby leading to additional register re-
quirements in hardware. Lifetime-sensitive modulo schedul-
ing techniques have been proposed and employed in produc-
tion compiler toolchains [12,13,20]. Existing heuristics typ-
ically place operation nodes either in a top-down topologi-
cal order where each node is scheduled as soon as possible
(ASAP) to be near to its predecessors or in a bottom-up re-

1 We omit array load and store operations in the data flow graph for brevity.

verse topological order where each node is scheduled as late
as possible (ALAP) to be close to its successors. However,
such ad hoc ordering schemes may often result in suboptimal
schedules in register requirements due to the lack of global
optimization. This limitation can be especially pronounced
for high-level synthesis when operation chaining is allowed
and data values have non-uniform bitwidths.
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Figure 2. Scheduling strategies for register reduction: (a)
Data flow graph; (b) An ASAP schedule resulting in 32
register bits; (c) An ALAP schedule resulting in 32 register
bits; (d) An optimal schedule achieving 16 register bits.

Consider the data flow graph in Figure 2 (a) and three dif-
ferent scheduling strategies to reduce the register usage. Here
we assume that a constant left shift (S1) only incurs negligi-
ble delay and a 16-bit adder (A1) can be combinationally
chained with a 16-bit multiplier (M1, M2) or a 32-bit adder
(A2) without violating the frequency constraint. Figure 2 (b)
shows that scheduling operations ASAP in a top-down man-
ner would result in a 32-bit register to store the output of S1.
An ALAP schedule in Figure 2 (c) also requires 32 register
bits in total since the results of both M1 and M2 need to be
saved. The optimal schedule is shown in Figure 2 (d) where
only 16 register bits are necessary with A1 chained with its
predecessor and S1 chained with its successors, respectively.

In Section 4.2 we shall provide an LP-based formulation
to minimize the value lifetimes in scheduling to address the
aforementioned limitations in prior approaches.

4. SDC-Based Modulo Scheduling
In this section we propose an SDC-based modulo scheduling
algorithm which can efficiently handle various scheduling
constraints, minimize the initiation interval, and in the mean
time, effectively reduce the register usage. The problem we
seek to solve is formally stated as follows.

Given: (1) A loop L represented by a cyclic control data
flow graph with intra- and inter-iteration dependences; (2) A
set of scheduling constraints C which may include resource
constraints, cycle time constraints, latency constraints, and
relative timing constraints.



Goal: The scheduler generates a pipelined schedule for L
with minimum initiation interval II without violating any
given constraints in C, and at the same time, minimizing
value lifetimes to reduce register requirements.
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Figure 3. SDC-based modulo scheduling framework.

Figure 3 shows the overall framework of our modulo
scheduling algorithm. The SDC serves as a central model
in this design flow and it consists of the scheduling con-
straints whose formations are specific to the target II and
other constraints that are independent from the pipeline rate.
We employ the techniques described in [5] to convert the
II-independent scheduling constraints into the SDC model.
These constraints typically include intra-iteration depen-
dences and possibly other timing constraints that are speci-
fied over the loop body.

To obtain the initial target II , we leverage the techniques
described in [26] to compute the lower bound on II , de-
noted as MII , based on existing recurrences in the loop
(RecMII) and available resources (ResMII). Afterwards,
we can convert the II-dependent constraints into SDC as
well. Most of these constraints are induced by the recur-
rences. Section 4.1 will discuss this step in more detail.

Once the base SDC is formed, we solve a minimum-
lifetime scheduling problem based on a linear programming
formulation (Section 4.2). This step provides the reference
schedule for every operation in the loop under the SDC con-
straints. We then perform an incremental scheduling (Sec-
tion 4.3) which accounts for the resource constraints and in-
telligently exploits the unique properties of SDC to perform
fast incremental update on the constraint system. In case the
incremental scheduling is unable to find a legal schedule, we
will increase the target II , update the II-dependent differ-
ence constraints in SDC, and reschedule loop kernel in an it-
erative fashion. After the process finishes, all feasible sched-
ules that satisfy the SDC also satisfy resource constraints;

then we can solve the min-lifetime linear program again to
obtain the final schedule.

4.1 Modeling Pipelining Constraints
The SDC-based scheduler is able to efficiently convert a
number of pipeline-independent scheduling constraints into
a set of difference constraints. To account for the pipelin-
ing behavior, we generalize the methods described in [5] to
model the following pipeline-specific scheduling constraints.

Inter-iteration dependence constraint Given an inter-
iteration dependence between operations u and v with a
distance Distu,v , we need to guarantee that operation u in
iteration k is finished before we start the operation v in it-
eration k + Distu,v . This can be captured by the following
difference constraint.

su − sv ≤ II ×Distu,v − Latu (2)

Here Latu denotes the latency of operation u, which can be
either a combinational (Latu = 0) or multi-cycle operation.

Cycle time constraint Loop pipelining exposes possibili-
ties of chaining operations across iterations; namely, the re-
sult produced by an operation can be directly consumed in
the same clock cycle by another operation that belongs to a
later iteration. If such a path exists and involves one or mul-
tiple inter-iteration dependences (i.e., back edges), we need
to construct the following constraint to ensure that a regis-
ter is inserted on this path to prevent the unfavorable cross-
iteration chaining from causing a frequency violation.

Tcycle < Delay(cp(u, v)) ≤ 2× Tcycle :
su − sv ≤ II ×Distcp(u,v) − Latu − 1

where Distcp(i1,ik) =
k∑

p=2
Distip−1,ip

with u = i1 and v = ik

(3)

Here we use cp(u, v) to denote a timing-critical path between
two operations u and v if the total combinational delay along
this path exceeds the target cycle time Tcycle. Equation (3)
can also be expressed as sv + II × Distcp(u,v) > su +
Latu, which enforces that the instance of operation v after
Distcp(u,v) iterations must not chain with operation u of the
current iteration to avoid a potential frequency violation.

Relative timing constraints Relative timing constraints
can also be specified between the operations in the consec-
utive iterations. These constraints are particular useful to
capture the user-specified I/O protocols which may require
that an input port read must happen in a fixed number of
cycles after an output port write of the previous iteration.
(i) A minimum timing constraint MinLatu,v between u in
iteration k and v in iteration k + 1:

su − sv ≤ II −MinLatu,v (4)

(ii) A maximum timing constraint MaxLatu,v between u in
iteration k and v in iteration k + 1:

sv − su ≤MaxLatu,v − II (5)



It is worth noting that we can use a maximum relative timing
constraint to model a cross-iteration latency constraint over
a group of operations.

4.2 Minimum-Lifetime Schedule over SDC
We provide a linear programming formulation over SDC to
minimize the overall register pressure. As indicated in Fig-
ure 3, this global optimization problem is solved twice. The
first invocation is to provide the ideal positions for all opera-
tions before resource constraints are resolved by incremental
scheduling. The second time is to generate the final schedule.

For a value produced by operation p (the producer) and
used by operations q1, q2, · · · , qk (consumers of p), the life-
time of the value produced by operation p (later referred to as
value p for convenience) starts at the step where p is sched-
uled, and ends at the step where the last consumer is sched-
uled. Let lp be the lifetime of value p, we have

sqi − sp − lp ≤ dqi,p, i = 1, 2, . . . , k.
where dqi,p = Latp −Distp,qi × II

(6)

Equation (6) can also be expressed as (sqi + Distp,qi ×
II) − (sp + Latp) ≤ lp, which indicates that the time span
between the instance of consumer qj afterDistp,qi iterations
and the producer p from the current iteration is bounded by
the lifetime variable lp.

We can then combine these lifetime-related constraints
with other SDC constraints in the form of Equation (1), and
optimize the weighted sum of the value lifetimes using the
following linear programming formulation.

min
∑

i wili
s.t. sq − sp − lp ≤ dq,p ∀q using p

su − sv ≤ du,v other SDC constraints
(7)

Here wi is a constant factor determined by the bitwidth of
the corresponding value.

Similar to a proof described in [15] where a time budget-
ing problem is shown to have a totally unimodular constraint
matrix, we can also leverage a theorem from [10] and prove
the new constraint matrix with the additional lifetime vari-
ables remains a TUM.2 The TUM property of the constraint
matrix guarantees that we can optimally solve the above life-
time minimization problem with integral solutions to directly
obtain the ideal schedule for each node.

4.3 Incremental Scheduling
In this section we propose an incremental scheduling algo-
rithm which performs efficient update on the SDC model in
a stepwise manner to avoid resource conflicts. The novelties
of our approach are threefold:

(1) Unlike previous approaches, this step only attempts
to fix schedules of the resource-constrained operations while
preserving scheduling freedom for the rest of operations. The
final schedule of these “free” operations will be determined
by the global linear programming optimization (Section 4.2)
to minimize the overall value lifetimes.
2 We omit the formal proof here due to the page limit.

(2) We determine the schedule of a resource-constrained
operation by incrementally adding difference constraints into
SDC. Each scheduling decision is fully aware of the existing
constraints and efficiently maintains the feasibility of the
SDC model (Section 4.3.1).

(3) We compute a unique priority function during in-
cremental scheduling so that the perturbation to the SDC
model is minimized when a resource-constrained operation
is moved from its ideal position (Section 4.3.2).

4.3.1 Constraint Graph and Incremental Update
An SDC can be conveniently represented by a constraint
graph [23], in which every scheduling variable becomes a
vertex, and every constraint u−v ≤ d becomes a d-weighted
directed edge from u to v. An SDC is feasible if and only
if its corresponding constraint graph is free of negative cy-
cles. Hence we can apply Bellman-Ford algorithm to solve a
single-source shortest-path (SSSP) problem on the constraint
graph to check the feasibility for the given SDC.

From the feasible solution to the SSSP problem, we can
derive the ASAP schedule for each operation by negating
the resulting shortest path distance to each vertex on the
constraint graph. The ALAP schedule can be obtained in
a similar way examining the shortest path distances on the
reversed constraint graph, i.e., a graph with the same vertex
set as the original graph, but with edge directions reversed.

More importantly, for each newly added (or modified)
difference constraint, we can employ an algorithm proposed
in [25] to incrementally update the SDC constraint graph.
The core idea of [25] is to apply Dijkstra’s algorithm with
the scaling technique in [7] to update the shortest path values
on the subgraph consisting of the vertices impacted by the
new constraint. It is able to either compute a new feasible
solution or detect a negative cycle. The time complexity is
O(∆ + δlogδ), where δ is the number of variables whose
feasible values are affected by the new constraint and ∆ is
the number of constraints involving the affected variables.

Therefore, we can incrementally test/add new schedul-
ing constraints on the SDC constraint graph and its reversed
graph to check/maintain the feasibility of the constraint sys-
tem, and at the same time, efficiently update the ASAP and
ALAP schedules of each operation.

4.3.2 Stepwise Legalization
As previously mentioned, the SDC-based scheduling formu-
lation does not attempt to directly model the resource con-
straints. To avoid resource violation, we start from an initial
schedule and legalize the solution by incrementally adding
to SDC an additional set of difference constraints on the
resource-constrained operation nodes so that the infeasible
solutions are gradually pruned away.

The pseudo code of our incremental scheduling algorithm
is sketched in Algorithm 1. The inputs to this scheduler in-
clude the subject loop L, target II , and the base SDC formed
by the II-independent as well as II-dependent scheduling
constraints. At the beginning, this step invokes the LP solver
to obtain an ideal schedule that minimizes the total value life-
times. While this min-lifetime schedule may not satisfy all



Algorithm 1: IncrementalScheduling(L, SDC, II)

1 use min-lifetime schedule as the reference solution
/* All schedules remain tentative here. */

2 step← 0; /* Start from the first step. */

3 while more resource-constrained nodes to schedule do
4 foreach unscheduled resource-constrained node n

currently at step, in priority order do
5 for s in {step, step− 1, . . . , ASAP (n)} do
6 if scheduling n at s is feasible then
7 add constraint sn = s to SDC
8 update resource scoreboard
9 break

10 if Backward search fails then
11 Add constraint sn ≥ step+ 1 to SDC
12 if SDC is infeasible then
13 report failure and exit

14 put n to step+ 1 in the reference solution

15 step← step+ 1;

resource constraints, it provides a useful initial reference for
the scheduler to gradually refine to a legal solution.

More specifically, our incremental scheduling algorithm
operates in a stepwise manner. In each time step, we inspect
resource-constrained operations that are tentatively placed to
this particular step3 (Line 4) and compute a priority for each
of these operations. We then try to commit the operation with
the highest priority to the current step (Line 5–8). Here we
need to update the SDC model with an equality constraint
(i.e., a pair of inequality constraints) to fix the schedule of an
operation (Line 7). We also need to update a scoreboard-like
data structure that tracks the resource usage of II number
of issue slots by marking the corresponding resource on
slot sn%II as “taken” (Line 8). In the event of a resource
conflict with previously committed operation(s), we search
backward towards the earliest feasible schedule (Line 5).
If such backward search fails, we impose a new constraint
to SDC to postpone the operation schedule to a later time
step (Line 11). If this new constraint breaks the feasibility of
SDC, the incremental scheduling will return failure and the
overall modulo scheduling flow will increase the target II.

One of the main rationales behind our stepwise legaliza-
tion scheme is to minimize the perturbations to SDC and thus
preserve as much proximity as possible between the legal so-
lution and the ideal schedule for minimal value lifetimes. To
achieve this goal, we use a perturbation-based priority func-
tion to rank the operation nodes. Given a time step and a set
of candidate operations, we attempt to move each operation
away from the given step by tentatively adding an inequality
constraint to SDC. By tracing the incremental update process
on the SDC constraint graph, we can collect information on
how many SDC vertices are impacted due to this change,
which is essentially the δ value discussed in Section 4.3.1.

3 More intuitively, this step is the preferred schedule in order to minimize
value lifetimes.

Intuitively, this δ value provides a useful measure of the cost
of moving an operation away from its preferred schedule
step. If two nodes have equal perturbations, the ALAP/ASAP
values are used to break ties in priority ranking. Revisiting
the example in Figure 1, we can observe that moving opera-
tion M1 away from cycle 1 will directly impact the schedule
of A1, resulting in a perturbation cost of 1. In contrast, the
perturbation cost for M2 is 2 since moving it to cycle 2 will
first impact A1 which in turn affects the schedule of M1 to
achieve II = 2. Hence M2 would receive a higher prior-
ity and stay in cycle 1 and our approach is able to find the
optimal schedule shown in Figure 1 (e).

4.3.3 Complexity Analysis
Given a loop L(V, E), the number of vertices in the SDC
constraint graph (i.e., scheduling variables) n is O(|V |), and
the number of edges in the constraint graph (i.e, difference
constraints) m is O(|V |2). Since each resource-constrained
operation can be moved at most II times and each con-
straint update costs O(m + nlogn) in worst case [25], the
overall time complexity of the incremental scheduling is
O(II(m+nlogn)n). We note that in practice: (1) m is typi-
cally linear to |E|; (2) resource-constrained operations often
represent a small subset of V ; and (3) an incremental con-
straint update usually only affects a small number of vari-
ables and constraints.

5. Experimental Evaluation
In this section we report experimental results on a few loop-
intensive C/C++ functions, including dataflow-intensive
DSP modules which do not contain variable-bound loops
and conditional blocks (Table 1), as well as others with more
complex control structures extracted from an MPEG-4 de-
coder (Table 2). The MPEG-4 modules also feature more
complex interface accesses to FIFO channels and memories,
where limited FIFO/memory ports naturally impose resource
constraints. These designs only contain integer operations.

We have implemented the proposed scheduling algorithm
in the LLVM compiler infrastructure [19]. Our synthesis
flow performs front-end parsing and standard LLVM code
optimization together with customized transformation passes
for hardware synthesis. Specifically, we perform scalar pro-
motion, bitwidth optimization, and if-conversion to reduce
hardware cost and increase instruction-level parallelism.
Scheduling is performed after these transformations. The
pipeliner implements the proposed algorithm, as well as the
swing modulo scheduling [20] for comparison. For code re-
gions that are not pipelined, the SDC-based scheduling algo-
rithm presented in [5] is used.

The swing modulo scheduling algorithm processes opera-
tions following the topological order, interleaving top-down
and bottom-up passes to schedule operations close to their
processors or successors. When cycles are present in the de-
pendence graph due to inter-iteration dependences, it starts
from operations in the cycle with the least slack. Swing mod-
ulo scheduling is designed to optimize register pressure un-
der resource constraints as well as intra- and inter-iteration



Table 1. Register usage on simple dataflow-intensive loops.

Design II Resource 300 MHz 200 MHz 100 MHz

(×,±) swing sdc ratio swing sdc ratio swing sdc ratio

1 (160, 178) 33358 31534 0.95 24362 23498 0.96 9660 6331 0.66
chem 4 (40, 45) 13875 14247 1.03 11153 9518 0.85 5011 4115 0.82

8 (20, 23) 8595 6680 0.78 4661 4533 0.97 4823 2548 0.53

1 (52, 55) 5505 5345 0.97 4046 3982 0.98 1371 891 0.65
dir 4 (13, 14) 1938 2017 1.04 1295 1135 0.88 588 556 0.95

8 (7, 7) 1025 958 0.93 1057 814 0.77 605 637 1.05

1 (62, 457) 30530 24680 0.81 22479 15755 0.70 9005 5556 0.62
feig 4 (16, 115) 12698 9351 0.74 7415 6036 0.81 7792 4403 0.57

8 (8, 58) 7577 6345 0.84 8809 6377 0.72 8041 4969 0.62

1 (48, 47) 4400 4224 0.96 3328 3200 0.96 1253 540 0.43
honda 4 (12, 12) 2081 1852 0.89 1439 1279 0.89 894 734 0.82

8 (6, 6) 1313 1104 0.84 1233 1071 0.87 913 687 0.75

1 (19, 29) 3069 2163 0.70 2826 1826 0.65 1469 588 0.40
lee 4 (5, 8) 1361 803 0.59 1232 768 0.62 733 492 0.67

8 (3, 4) 864 738 0.85 766 558 0.73 637 525 0.82

1 (26, 74) 4996 4756 0.95 3176 3037 0.96 1398 861 0.62
mcm 4 (7, 19) 1591 1351 0.85 1351 1204 0.89 1269 580 0.46

8 (4, 10) 1303 1047 0.80 1175 996 0.85 1127 613 0.54

1 (16, 26) 1955 1827 0.93 1730 1506 0.87 491 331 0.67
pr 4 (4, 7) 943 590 0.63 1039 751 0.72 926 429 0.46

8 (2, 4) 1040 720 0.69 1024 720 0.70 815 592 0.73

1 (18, 26) 2235 1755 0.79 2042 1434 0.70 579 195 0.34
wang 4 (5, 7) 1305 615 0.47 871 695 0.80 726 324 0.45

8 (3, 4) 792 503 0.64 437 421 0.96 549 389 0.71

geomean 0.81 0.82 0.62

Table 2. Register usage on loops with more complex control structures and interfaces.

Design II Resource 300 MHz 200 MHz 100 MHz

(×,±) swing sdc ratio swing sdc ratio swing sdc ratio

IDCT Row 4 (3, 8) 707 675 0.96 601 569 0.95 386 354 0.92
IDCT Col 8 (2, 3) 1554 1418 0.91 1076 950 0.83 861 731 0.85

MotionCompensate 4 (1, 12) 1091 878 0.80 (II=5) 681 618 0.91 (II=5) 582 516 0.89
TextuerUpdate 4 (1, 4) 1015 991 0.98 860 835 0.97 817 761 0.93

geomean 0.91 0.93 0.90

data dependence constraints; yet it lacks support for other
types of constraints, like cycle time and latency constraints.
Latency constraints are often necessary in our pipeline syn-
thesis flow, because the loop exit condition needs to be com-
puted within the first II steps of the pipeline, in order to de-
termine whether the next iteration should start when specula-
tive execution is not performed. Thus, we implement swing
modulo scheduling on top of the SDC system: every edge in
the SDC constraint graph is regarded as a data dependence.
Then the latency constraint is handled in the same way as
an inter-iteration data dependence, except that the constraint
does not involve the lifetime of any value.

We target a generic technology library where the delay
of a 32-bit integer ALU (for addition/subtraction) is about

1.8ns and that of a 32-bit integer multiplier is about 3.2ns.
Under the same functional unit constraints and target II , the
total number of register bits is reported based on the post-
binding resource estimation. Table 1 shows the results for
simple loops, and Table 2 shows the results for more com-
plex loops. For different target clock frequencies and IIs,
we report the ratio of the register usage of our algorithm (sdc)
compared with that of the swing modulo scheduling (swing).
The results show that our SDC-based pipelining algorithm
outperforms swing modulo scheduling in terms of register
usage in most scenarios. The reduction in total register bits
can be more than 50%, and is particularly significant in cases
where high performance is required and abundant functional
units are available. In many cases, the advantage is more



prominent when clock frequency is lower, because there is
more opportunity to optimize operation chaining for register
reduction, as illustrated in Figure 2. For modules extracted
from the MPEG-4 design, the advantage in register pressure
is less significant. This is partly due to the streaming nature
of the design, where the ordering of operations is influenced
by the order of FIFO/memory accesses. Hence different al-
gorithms tend to generate similar schedules. Nevertheless,
we note that our algorithm is able to achieve a smaller II for
MotionCompensate at lower frequencies.

6. Conclusions
In this paper we propose an SDC-based modulo scheduling
algorithm to support loop pipelining. Our algorithm unifies
the normal scheduling constraints and the pipeline-specific
constraints into a single SDC. It incrementally searches for
the operation schedule to achieve the best possible initia-
tion interval and uses linear programming to minimize the
register usage. The experimental results demonstrate that
our technique compares favorably against swing modulo
scheduling, a widely used heuristic algorithm.
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