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ABSTRACT 
In this paper we propose a new communication synthesis approach 
targeting systems with sequential communication media (SCM). 
Since SCMs require that the reading sequence and writing 
sequence must have the same order, different transmission orders 
may have a dramatic impact on the final performance. However, 
the problem of determining the best possible communication order 
for SCMs is not adequately addressed by prior work. The goal of 
our work is to consider behaviors in communication synthesis for 
SCM, detect appropriate transmission order to optimize latency, 
automatically transform the behavior descriptions, and 
automatically generate driver routines and glue logics to access 
physical channels. Our algorithm, named SCOOP, successfully 
achieves these goals by behavior and communication co-
optimization. Compared to the results without optimization, we 
can achieve an average 20% improvement in total latency on a set 
of real-life benchmarks.  

Categories and Subject Descriptors 
B.4.4 [Hardware] Input/Output and Data Commutations  

General Terms 
Algorithms, Performance, Experimentation 

Keywords 
Communication, FIFO, Optimization, Scheduling, Reordering 

1. INTRODUCTION 
With the rapid increase of complexity in system-on-a-ship (SoC) 
design, the synthesis community is moving from RTL (register 
transfer level) synthesis to a higher level of abstraction (e.g., 
behavioral-level and system-level synthesis). Two of the essential 
problems related to system-level design are partitioning and 
communication synthesis. The goal of partitioning is to distribute 
and parallelize the functionalities of a system to subsystems. 
Communication synthesis is another important sub-task for 
system-level synthesis [2]. Typical communication synthesis 
techniques adopt a top-down approach, including the following 
steps: (i) channel binding and network synthesis (e.g., [3][6][12]); 
(ii) protocol refinement (e.g., [4]); (iii) interface synthesis (e.g., 
[6][9][10][11]). The communication synthesis approach proposed 

by Yen in [3] handles the network topology generation. Their 
algorithm can create new PEs and buses to meet the design time 
constraints. Some platform-based approaches such as Daveau’s 
work in [5], take a given communication library and solve channel 
binding, protocol refinement and interface generation in a more 
integrated way as a binding problem. In [7] Knudsen incorporates 
the communication protocol selection as a design parameter within 
the hardware/software partitioning.  
Most of the aforementioned approaches [3][4][6][8][9][10][11] 
consider communication synthesis as the final step of the co-
synthesis systems, and the behavior of each subsystem is retained 
during communication synthesis. However, this type of approach 
may lose optimization opportunities, especially when SCMs 
(sequential communication media) are used to implement the 
communication channels. The transmission order of SCMs may 
have a dramatic impact on the performance of the entire system. 
According to our experiments on several real-life designs, the 
performance may be 2X better if the order is carefully optimized. 
A well-known example is the fast simplex link (FSL) [20] in 
Xilinx FPGAs. Buses could be also considered as an SCM with 
respect to each transaction from one specific master to a slave.  
An example is shown in Figure 1. Figure 1(a) shows the original C 
description of an application, which is a matrix multiplication 
algorithm. Suppose after the design exploration step, as shown in 
Figure 1(b), the system-level synthesis engine decomposes the 
system into two processes, one for generating arrays A and B, and 
the other for matrix multiplication. An abstract channel is 
introduced to transfer A and B. In Figure 1(c) the two processes 
are mapped to two processing elements (PE), and communicate 
data through a FIFO. A better order than the native row-based 
layout order is shown in Figure 1(d), which sends the two matrices 
in an interleave fashion, and calculates the product based on the 
data received. Our simulation result shows a 17% improvement in 
total latency with the new order.  
Our approach to communication synthesis mainly focuses on the 
following objectives: detect the optimal communication order and 
computation order for data communication on SCM to optimize 
total latency; transform the behavior description based on the 
computation order, and automatically generate drivers and glue 
logics. To our knowledge, this is the first work that integrates 
behavior transformation with communication optimization at the 
communication synthesis step.  
The remainder of our paper is organized as follows: Section 2 
formally defines our problem. An algorithm to solve this problem 
is explained in details in Section 3. Section 4 shows the 
experimental results and is followed by our conclusions in Section 
5. 
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for (int i=0; i<N; i++)  
for (int j=0; j <N; j++)  

S1: A[i][j] = …; 
for (int i=0; i<N; i++)  

for (int j=0; j <N; j++)  
S2: B[i][j] = …; 

for (int i=0; i<N; i++)  
for (int j=0; j<N; j++) { 

S3: C[i][j] = 0; 
for (int k=0; ... 

} 
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for (int i=0; i<N; i++)  
for (int j=0; j<N; 

j++)  
S1: A[i][j] = …; 

for (int i=0; i<N; i++)  
for (int j=0; j<N; j++) {

S3: ... 
} 
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Figure 1. (a) Original C description; (b) Process network 
model after partitioning; (c) Hardware implementation model;  
(d) A better order than the native row-based order. 

2. PROBLEM DESCRIPTION 
In our SCM communication optimization approach, we assume 
that a set of processes P = {pi | i = 1, 2... n} is given. Since FIFO 
is widely used in practice, in the following context we will not 
distinguish SCM and FIFO. The behavior for each process pi, is 
captured by a control data flow graph (CDFGi). A CDFG contains 
a set of basic blocks connected by control edges. Each basic block 
is a data flow graph, in which a node represents an operation and 
an edge represents a data dependency between two nodes.  
For each process pi, we assume that it is already allocated to one 
physical processing element PEi. The characteristics of each PEi, 
such as delay, area and power, can be obtained from the target 
platform specification. Design constraints such as resource 
constraints and timing constraints are associated to each process as 
well.  
Processes communicate via a set of abstract channels C. Each 
abstract channel ci is associated with a data set D = {d1, d2… dm} 
to be transferred from the producer process to the consumer 
process. As mentioned before, Figure 1 shows an example of a 
process network and physical channels.  
With the above notions, we can formulate the SCM 
communication synthesis problem as follows:  
Problem: Given a set of processes P connected by channels in C, 
and a set of data D = {d1, d2, …, dm} to be transmitted on each 
channel cj, find the optimal transmission order based on the CDFG 
of each process, such that the overall latency of the process 
network is minimized subject to the given design constraints and 
platform specification, and generate drivers and glue logics for 
each process automatically.  
This problem can be divided into three sub-problems: 
(i) Communication order detection: Given the CDFG model of 
each process, the data to be transmitted and the platform 
information, we detect the optimal transmission order to minimize 
the total latency.  
(ii) Code transformation: To enable the optimal communication 
reordering, we may also need to change the computation order in 

the appropriate behavioral models. These changes are carried out 
without violating the data dependency.  
(iii) Interface generation: We generate interface drivers and glue 
logics for given physical channels. 

3. SCOOP ALGORITHM 
This section introduces our overall design flow to solve the SCM 
optimization problem. First, we try to detect the optimal order. 
Based on that order, we then automatically transform the code and 
generate the interfaces. An indices compression step is performed 
to further reduce loop transformation overhead. Our algorithm is 
called SCOOP (SCM CO-OPtimizaiton).  

3.1 Communication Order Detection 
In this step we try to find a transmission order of data 
communication that leads to the minimum latency, with the 
freedom to change the order of computations in processes as well. 
In particular, we show that our problem can be transformed to the 
resource-constrained scheduling problem. The main steps of our 
communication order detection algorithm are outlined below. 
Step 1: Construct a global CDFG by merging the individual 
CDFGs of each process in the process network.  
Step 2: Change each data element d which is transmitted by SCMi 
to a special type of operation Ti. At most k number of Ti operations 
can be executed at any point of time for each SCMi, where k is the 
number of concurrent operations allowed on SCMi (typically, k 
equals one for a FIFO). We then set up the correct data 
dependencies by linking the definition and uses of d to Ti.  
Step 3: Solve a resource-constrained scheduling problem to 
optimize the total latency of the global CDFG.  
Figure 2(a) shows a simple process network with two processes 
communicating by FIFO. In this example, we are transmitting 
three elements. Using the original order (1, 2, 3), the final total 
latency is seven cycles, as shown in Figure 2(b). If we add the T-
type operations and the appropriate data dependencies to obtain 
the global CDFG, we can reduce the totally latency to five cycles. 
The new schedule is shown in Figure 2(c) and the corresponding 
communication order is (1, 3, 2) which maximizes the overlap of 
computations and communications.  
Theorem: Solving the order detection problem is equivalent to 
solving the resource constrained scheduling problem on the global 
CDFG constructed in Step 2, and we can obtain the optimal 
solution if the algorithm used in Step 3 gives the optimal solution.  
Proof: Since we assume that each FIFO has a fixed transfer delay, 
it could be viewed as a special hardware resource. We could 
enforce the resource constraints in the scheduling problem as 
follows: There are |C| types of transmission resources T = {tr1, 
tr2 … tr|c|} where C is the set of available FIFOs in the process 
network. Hence, we are able to reduce the problem to the 
resource-constrained scheduling problem on the global CDFG 
constructed in Step 2.  
The scheduling problem with resource constraints is NP-complete 
in general. In this work we adopt a list-scheduling-based algorithm 
to solve our problem. List scheduling [13] is one of the most 
popular techniques for the resource-constrained scheduling. In our 
case, we combine the ALAP (as late as possible) and ASAP (as 
soon as possible) schedules to prioritize the operations. 
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Figure 2. (a) Merged CDFG; (b) Scheduling result with order 
(1, 2, 3); (c) Scheduling result with order (1, 3, 2). 
Note that the traditional list scheduling algorithm primarily works 
well on the data flow graphs. Nevertheless, we can further extend 
our algorithm to handle loop-intensive and data-intensive designs 
with control flows, which prevail in the multimedia processing 
domain. To apply our algorithm to general CDFGs, we try to 
collapse a CDFG C to a DFG D. For an if-then-else statement, our 
algorithm treats this structure as a non-decomposable operation in 
D, and takes the longest execution path as the latency. With a for 
loop, we cannot simply change the loop body into one operation 
since it may iterate multiple times. In one loop iteration, we 
change the loop body to a set of nodes in the new DFG D, and 
calculate indices for each array access. The iteration spaces in C 
are then fully expanded in D. Currently we do not perform any 
optimizations on more general loops (e.g. while loops). However, 
users may choose to restructure a while loop into a for loop if the 
iteration bound can be derived from the program.  
After the above transformations, the size of D may become much 
larger than the original CDFG. However, after the order detection 
step, we will use the code transformation techniques described in 
the following section to compress a set of nodes in D back into a 
loop structure.  

3.2 Code Transformation 
Once we obtain the optimal communication order, we need to 
make necessary changes to the original behaviors, as well as 
generate the drivers and the glue logics for those processes. 
For DFG cases, the code transformation and interface generation 
are quite straightforward. We dump the behavior of each process 
based on the computation order we obtained, and insert drivers 
and glue logics for each process. If the computation order is 
consistent with the data communication order, drivers and glue 
logics are inserted immediately when the data is ready to be read 
or written to the physical channel; otherwise, we should delay the 
interface generation for one element until all the elements, which 
should be transmitted earlier, have been processed. 
The main difficulties in dealing with for CDFG code 
transformation are the loops. Since the loop iteration space has 
been completely expanded in code detection, it is not feasible to 
dump the expanded code directly. Therefore, we use the iteration 
reordering technique to generate reconstructed loops. In the 
compiler domain, a great deal of literatures focus on loop iteration 
reordering [14][15]. Our approach does the loop transformations 
in the compile-time, with auxiliary memory space to store the 
reordered sequence for handling general loop transformations.  
A loop’s iteration space is a set of integer tuples with constraints 

indicating the loop bounds.  

 J = {[j1, j2… jn] | lb1≤j1≤ub1 ∧…∧ lbn≤jn≤ubn} 
Each iteration space has a function f: J Z+ to map the iteration 
space to the logic time steps (Z+ denotes the positive integers). An 
iteration-reordering transformation is expressed with a mapping T 
that assigns each iteration vector ji in an original iteration space to 
ji’ in a new iteration space, so that f(ji)=f’(j’i). An intuitive way to 
implement iteration reordering is shown in Figure 3(b): a 
reordering array (RA) is generated for each loop, and at the 
beginning of each iteration, and we should read in the new 
iteration vector from the RAs. 

(a) 

Before: 

After: 

{(0,0),(0,1),(0,2),(0,3),…..(4,0),(4,1),(4,2),(4,3),(4,4)} 

{(0,0),(1,0),(2,0),(3,0),…..(0,4),(1,4),(2,4),(3,4),(4,4)} 

// Reordering arrays 
int RA_i = {0, 0, 0, 0,…4, 4, 4, 4} ;  
int RA_j = {0, 1, 2, 3,…1, 2, 3, 4};  
for (int i=0; i<N;i++) 

for (int j=0; j<N; j++) { 
int i’ = map_i(i); 
int j’ = map_j(j); 
A[i’][j’] = …; 
fifo_write(A[i’][j’]); 

}

(b) (c) 

// After indices compression 
for (int i=0; i<N;i++) 

for (int j=0; j<N; j++) { 
int i’ = j; 
int j’ = i; 
A[i’][j’] = …; 
fifo_write(A[i’][j’]); 

} 

 
Figure 3. (a) Iteration space before and after order detection; 
(b) Iteration reordering through reordering arrays; (c) 
Transformed code after indices compression. 
The overhead of above approach is a result of two factors: storage 
overhead introduced by RAs and computational overhead of 
memory access at the beginning of iterations. Pre-fetching can 
reduce the computational overhead if the target PE supports 
certain parallelism in execution. We also developed another 
technique to reduce storage size which is called indices 
compression. The problem is described as follows:  
Problem: Given two sets of m-tuples {J1, J2 …Jn} and {J’1, J’2,…, 
J’n} where each Ji (or Ji’) represents an indices vector of one 
iteration, find the minimum number of intervals [pi, qi], satisfying 
that within each interval there exists a (qi - pi + 1) × m matrix Mi, 
such that  
 Ji*Mi=J’i,     for all pi≤i≤qi 

It is clear that if we can find a matrix Mi for each interval [pi, qi], 
we then can express the new iteration vector using a linear 
combination of old indices variables. In Figure 3(c), the total 
iteration vectors can be merged into one interval with Mi as a 
reverse matrix, the new code after indices compression can 
remove all those RAs. We solve this problem in a greedy but near-
optimal way. We start at an interval with zero length, and the 
interval continues to grow as long as the above condition is 
satisfied. If the current interval cannot grow any more, a new 
interval is inserted. The condition test can be performed by solving 
linear equations. If the number of intervals is small, then we can 
transform the original loops into several loops. Otherwise, we will 
store the start position of intervals and their matrices Mi in RAs, 
and change the loop body to calculate reordered iteration vectors 
based on current interval. In the worst case, after these 
optimizations the overhead introduced by iteration reordering may 
still offset the performance gain by reordering. However, in 



practice, the number of intervals we generated is reasonably small 
due to the regular patterns in the programs. 

4. EXPERIMENTAL RESULTS 
We implemented our SCOOP communication synthesis system in 
C++/Unix environments. The target communication architecture in 
this experiment is currently fixed to a two-process producer-
consumer model. Our SCOOP algorithm works as an optimization 
pass in our platform-based system-level and behavior-level 
synthesis infrastructure [1], which can take C or SystemC as the 
input. The scheduler [17] inside our behavior-level synthesis 
system is used to solve the scheduling problem mentioned in 
Section 3.1. Without the SCM co-optimization, our system will 
transmit data, including arrays and scalars, based on their original 
program order, and each array is sent according to the memory 
layout. After the SCM co-optimization, we will insert drivers to 
access SCM based on the optimized order, as discussed before. 
We use the mathematics library LAPACK++ [18] to solve linear 
equations in indices compression. We generate the VHDL code 
using the RTL backend of the system-level synthesis system for 
both scenarios. To obtain the final latency, Modelsim [19] is used 
as the simulator, and we developed a FIFO module in VHDL 
which resembles the behaviors of the Xilinx FSL. 
Benchmarks can be divided into two categories. One set of 
benchmarks includes DCT1, DWT and Haar, which are all DFG 
examples. The DCT1 example is an unrolled version of 
chenDCT8x8, which does the row and column DCT 
transformation on an 8x8 data block. The DWT example is part of 
the JPEG2000 program. The Haar example implements a simple 
Haar transformation in image processing. The comparison results 
on those benchmarks are shown in Table 1. We can see that 
SCOOP will improve about 10% on those three examples in terms 
of latency in cycles. 

Table 1 .Experimental results. 
 Total latency (Cycle#) RAs Compression 
Designs Trad. SCOOP Reduction Before After 

DCT1 325 290 10.77% 0 0 
DWT 689 617 10.45% 0 0 
Haar  142 134 5.63% 0 0 
DCT2 483 419 13.25% 80 64 
Dot 1903 1084 43.04% 300 0 
Masking 620 420 32.26% 192 0 
Mat_mul 408 339 16.91% 96 20 
 

Another set of benchmarks consists of CDFG examples, including 
DCT2, Dot, Masking, and Mat_mul. The DCT2 example is the 
CDFG version of chenDCT8x8. Mat_mul and Image masking are 
all from Mediabench [16]. The Dot production example 
implements a dot production algorithm. An average of 26% 
improvement in total latency can be achieved for those examples, 
as shown in Table 1. Intuitively our approach gets better results on 
CDFG cases because CDFG has more control dependencies on 
operations than DFG (e.g., the instructions in the loop body must 
be executed consecutively), thus our decision will have a bigger 
impact for CDFGs. As shown in Table 1, RA compression can 
dramatically reduce the storage size (in number of integer data 
entries) needed for iteration reordering. 

5. CONCLUSIONS AND FUTURE WORK 
In this paper the behavior-communication co-optimization 
problem is addressed for SCMs, and a two-step approach is 

developed to solve this problem. Our algorithm applies to both 
DFG and CDFG. Experimental results demonstrate the efficacy of 
our work. Our future work will focus on further reducing the 
overhead introduced by reordering and applying the SCOOP 
algorithm in our platform-based synthesis system for design space 
exploration. 
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