
Rapid GPU-Based Pangenome Graph Layout

Jiajie Li
Cornell University

Ithaca, NY, USA

jl4257@cornell.edu

Jan-Niklas Schmelzle
Technical University of Munich

Munich, Germany

ge75qew@tum.de

Yixiao Du
Cornell University

Ithaca, NY, USA

yd383@cornell.edu

Simon Heumos
University of Tübingen

Tübingen, Germany

simon.heumos@qbic.uni-tuebingen.de

Andrea Guarracino
UTHSC

Memphis, TN, USA

aguarra1@uthsc.edu

Giulia Guidi
Cornell University

Ithaca, NY, USA

gg434@cornell.edu

Pjotr Prins
UTHSC

Memphis, TN, USA

jprins@uthsc.edu

Erik Garrison
UTHSC

Memphis, TN, USA

egarris5@uthsc.edu

Zhiru Zhang
Cornell University

Ithaca, NY, USA

zhiruz@cornell.edu

Abstract—Computational Pangenomics is an emerging field
that studies genetic variation using a graph structure encom-
passing multiple genomes. Visualizing pangenome graphs is vital
for understanding genome diversity. Yet, handling large graphs
can be challenging due to the high computational demands of
the graph layout process.

In this work, we conduct a thorough performance character-
ization of a state-of-the-art pangenome graph layout algorithm,
revealing significant data-level parallelism, which makes GPUs
a promising option for compute acceleration. However, irregular
data access and the algorithm’s memory-bound nature present
significant hurdles. To overcome these challenges, we develop a
solution implementing three key optimizations: a cache-friendly
data layout, coalesced random states, and warp merging. Addi-
tionally, we propose a quantitative metric for scalable evaluation
of pangenome layout quality.

Evaluated on 24 human whole-chromosome pangenomes, our
GPU-based solution achieves a 57.3x speedup over the state-of-
the-art multithreaded CPU baseline without layout quality loss,
reducing execution time from hours to minutes.

Index Terms—Pangenomics, Bioinformatics, Graph layout,
GPU acceleration

I. INTRODUCTION

Low-cost genome sequencing [1], [2] has made it possible

to collect extensive genetic data for specific species, providing

opportunities for deeper exploration. Pangenomics [3] is an

emerging field of genomics that aims to understand the com-

plete picture of the genetic variation of a species by studying

multiple genomes [4], [5]. Graphical pangenomics models

a pangenome as a graph. This graph-based approach com-

plements traditional reference-based genomics by revealing

overlooked genetic variation when a single reference genome

is used [6]. In particular, the recent release of the first draft

of the human pangenome reference [7] represents a major

milestone. This achievement represents a significant advance

in human genetics, echoing the first release of the human

genome sequence in 2001 [8].

Pangenomes [9] can model the entire genomic variation of

a given population [10]. A variant refers to the differences

between different genome sequences and can provide biologi-

cal insights, such as disease susceptibility [11], [12], genome

functionality identification [13], and evolutionary studies [14].

A prevalent pangenomic model to represent these differ-

ences is the variation graph [15]. As illustrated in Fig. 1, the

variation graph captures both genomic sequences and varia-

tions amongst them. The data structure of a variation graph,

formed by merging identical segments from multiple genomes

into a single node, is depicted in Fig. 1a. Its visualization, as

seen in Fig. 1b, reveals variants including insertions, deletions,

and single nucleotide variants (SNVs). In general, visualization

is an effective way to reveal structural differences between

genomes and gain insights [3].

AA

T

GC…
TA

C

G

CA

AA

v0

v1
v2

v3

v4

v5
v6

C
v7

path0=[v0,v2,v4,v5,v6,v7]
path1=[v0,v2,v4,v5,v7]
path2=[v0,v1,v2,v3,v5,v6,v7]

(a) Variation graph data structure.

AA GC…TA

T

C

G

CA

AA

C

insertion

SNV

deletion

path0
path1
path2

(b) Visualization.

Fig. 1: A variation graph and its visualization example —

the three genomes are depicted in different colors; the path of

interconnected nodes represents the original genome.

The visualization of a pangenome combines layout and

rendering, with the layout component being fundamental to the

graph visualization quality. In particular, the layout of a varia-

tion graph is crucial to variant discovery in large pangenomes.

Fig. 2 shows the layout of the HLA-DRB1 gene [16], which

encodes an immune system protein associated with reduced

severity of COVID-19 disease [17]. Genome researchers can

easily identify the location and structure of variants with an

optimized, planar 2D layout of the variation graph, aiding in

the study of pangenomes.

However, general graph layout frameworks are not well-

suited to effectively lay out pangenome graphs. This limitation

primarily arises from the unique biological significance associ-

ated with the nodes and paths within a pangenome. Currently,

only specialized tools [18]–[22] for pangenome graphs offer

effective support. Yet, pangenome graph layout, especially for

SC24, November 17-22, 2024, Atlanta, Georgia, USA
979-8-3503-5291-7/24/$31.00 ©2024 IEEE

https://orcid.org/0000-0002-6775-2843
https://orcid.org/0000-0001-8566-4049
https://orcid.org/0000-0002-6106-1283
https://orcid.org/0000-0003-3326-817X
https://orcid.org/0000-0001-9744-131X
https://orcid.org/0000-0001-8925-3239
https://orcid.org/0000-0002-8021-9162
https://orcid.org/0000-0003-3821-631X
https://orcid.org/0000-0002-0778-0308

Large Structural
Variant

Loop

Divergence

Fig. 2: Layout of the HLA-DRB1 gene — three distinct

variant types are shown in the bounding boxes.

large human pangenome graphs, remains an extremely time-

consuming process. The current state-of-the-art approach odgi-

layout [20] requires hour-scale time to generate the layout of

the variation graph for a single human chromosome with a

32-core server-class Intel Xeon CPU. In addition, the layout

process often requires multiple rounds of parameter tuning

to achieve an optimal layout, resulting in a bottleneck in the

pangenome analysis pipeline.

This work aims to accelerate the computation of pangenome

graph layouts, a crucial step in pangenomics. We show that

the pangenome layout algorithm exhibits a substantial degree

of data-level parallelism, albeit underutilized in the current

state-of-the-art CPU implementation [20], impeding progress

in pangenome research. With significant data parallelism avail-

able, GPU acceleration holds promise for this application.

However, challenges arise due to the irregular data access

pattern and memory-bound nature of the algorithm.

In this paper, we present a novel solution to pangenome

graph layout computation, by leveraging the computational

power of modern GPUs and optimizing the data access pattern.

Our approach not only accelerates layout computation but also

improves the overall efficiency and scalability of pangenomics

analyses. Our main contributions are as follows:

• To our knowledge, we present the first GPU-based solu-

tion to accelerate pangenome graph layout, which enables

minute-scale layout for the entire chromosome dataset. Our

implementation achieves an average speedup of 57.3× com-

pared to an optimized, state-of-the-art CPU implementation.

We will open-source our software in a format that facilitates

easy integration into the pangenomic analysis pipeline.

• To identify the performance bottleneck, we perform a de-

tailed workload characterization of the pangenome graph

layout algorithm. Our analyses indicate that this workload

has a highly irregular data access pattern and is memory-

bound. Thus, a naı̈ve approach is inadequate for fully

exploiting GPU’s computational capabilities.

• We introduce three key optimizations to improve GPU

performance: (1) optimizing the data layout for improved

cache efficiency, (2) enabling coalesced memory accesses by

coalescing random states, and (3) reducing warp divergence

through warp merging.

• We propose a quantitative metric called sampled path stress

to assess the quality of GPU-generated layouts in a scalable

manner. Through a case study, we demonstrate the potential

to explore performance-quality trade-offs using this metric,

leading to additional speedup.

II. BACKGROUND

This section introduces the background of pangenomics, its

variation graph representation, and its graph layout algorithm.

A. Variation Graph

Graph-based pangenomics aims to study genome variation

within a population of samples. The variation graph serves as

the primary model to describe graph-based pangenomes.

A variation graph G = (P, V,E) is a directed graph

composed of a set of paths P , nodes V and edges E, as shown

in Fig. 1a. Each node represents a nucleotide sequence, each

edge represents the connection of an ordered pair of nodes,

and each path describes a walk over nodes.

The path consists of interconnected nodes and represents the

original genome, e.g., path 2 in Fig. 1a embodies a genome

sequence of AATGC...TAGCAAAC. While most nodes are

shared across all paths, variants exist in the form of unique

nodes. These variants are revealed by visualizing the variation

graph, as shown in Fig. 1b. For instance, the T insertion in

path 2 serves as a variant and is the primary discovery focus.

Variation graphs representing biological sequences typically

exhibit a linear structure, as opposed to the more commonly

encountered planar graphs. This characteristic stems from

the linear nature of the genome sequences they represent,

where the majority of segments are identical due to sequence

homology. Consequently, variation graphs display a notably

low average node degree and density. As an example, the

average node degree of human pangenome graphs released by

the HPRC [7] is 1.4, and the average density is 3.5 × 10−7.

These graph properties, along with the genome-specific path

information, make variation graphs particularly unique, open-

ing opportunities for ad-hoc algorithmic optimizations.

B. Pangenome Graph Layout

The aim of a pangenome graph layout is to organize nodes

and edges in order to highlight the genetic variation present in

the genomes represented in the graph. This enables the large-

scale study of the diversity and evolution embodied in tens

or hundreds of genomes. For example, the layout structure

of a pangenome graph representing the 5 acrocentric human

chromosomes of the HPRC pangenome revealed heterologous

recombination in the human pangenome [13].

Existing general graph layout frameworks [23], [24] strug-

gle to reveal the structural variants of pangenome graphs. We

illustrate this by using Gephi [23] to lay out the HLA-DRB1

gene with algorithms including Fruchterman-Reingold [25],

ForceAtlas2 [26] and Yifan Hu [27]. These algorithms, while

creating 2D structures, fail to uncover the underlying structural

variants. This is due to their design for calculating distances

between all nodes, whereas pangenome graphs only consider

nodes on the same path meaningful.

Given that both the biological meanings of nodes and paths

must be factored into the layout process, only specialized

tools for pangenome graphs prove effective. Among these,

the current state-of-the-art approach is odgi-layout, which is

part of the comprehensive pangenome analysis framework

ODGI [28]. By adapting Zheng et al.’s work [24] to the

pangenomic field, odgi-layout utilizes a path-guided stochastic

gradient descent (Path-Guided SGD) algorithm to minimize

stress, a proxy metric quantifying the difference between

reference and layout distances. With its multi-threaded CPU

implementation, odgi-layout stands as the only tool capable of

handling whole-chromosome graphs with millions of nodes.

However, more efficient graph layout solutions are needed

to rapidly compute layouts of increasingly large and complex

pangenomes. Indeed, odgi-layout demands hours on a 32-

core Intel Xeon CPU to generate a pangenome graph layout

for just one human chromosome. Specifically, computing the

layout of the chromosome 1 (Chr.1) pangenome — the largest

chromosomal pangenome released by HPRC — alone exceeds

2.5 hours. Completing the layouts for all 24 chromosomal

pangenome graphs from HPRC sums up to a significant

28 hours. Notably, running the layout computation once

takes up nearly a third of the entire pangenomics analysis

pipeline [29]’s duration. Given that multiple runs are often

performed for optimization, the layout computation becomes

an even more pronounced bottleneck.

This performance issue impedes the study of large and/or

complex pangenome graphs because of the prolonged layout

generation times. Importantly, a fast layout solution would

facilitate interactive visualization, allowing on-the-fly explo-

ration of specific loci, genomic regions, entire chromosomes,

or even whole genomes. This would further pave the way for

the development of next-generation pangenome browsers, un-

locking the study of population-scale genetic variability. This

motivates us to pursue substantial acceleration in pangenome

graph layout generation.

C. Path-Guided SGD Algorithm

Alg. 1 presents the pseudocode for the path-guided SGD

algorithm used in odgi-layout. This algorithm iteratively se-

lects one pair of nodes (ni, nj) from the same path p (lines

7-11). For each of these nodes, represented by a line segment

in the layout, a visualization point is selected (lines 12,

13). This yields a pair of visualization points (vi,vj), each

corresponding to an endpoint of the respective node’s line

segment. This pair of visualization points forms a loss function

(known as stress) with its reference distance dref and current

layout distance ||vi − vj|| (line 14). Then the coordinates are

updated based on the gradient (line 15).

The update process is illustrated in Fig. 3, where both nodes

are moved against the direction of the gradient [24].

III. WORKLOAD CHARACTERIZATION

In this section, we describe the workload characterization

of the multi-threaded CPU implementation of odgi-layout on

a 32-core Intel Xeon Gold 6246R 3.4GHz CPU. For detailed

profiling, we use Linux Perf [30] and Intel VTune profiler [31].

Algorithm 1 Path-Guided Pangenome Graph Layout

Input: pangenome graph G = (P, V,E), SGD schedule S,

total iteration count Niters

Output: a 2D layout L consisting of line segments. L[n]
returns an array of 2 vectors pointing to its endpoints given

n ∈ V .

1: Nsteps ← 10×∑
p∈P |p| ▷ |p|: # of nodes in path p

2: for iter ← 0 to Niters do

3: η ← S[iter] ▷ learning rate

4: for step← 0 to Nsteps do in parallel

5: p← RandomSelect(P , prob ∝ |p|)
6: cooling ← (iter ≥ Niters/2) or FlipCoin()

7: if cooling then

8: ni, nj ← RandomSelect(p, Powerlaw)

9: else

10: ni, nj ← RandomSelect(p, Uniform)

11: end if

12: vi ← FlipCoin() ? L[ni].start : L[ni].end

13: vj ← FlipCoin() ? L[nj].start : L[nj].end

14: stressij ← ((||vi − vj|| − dref)/dref)
2 ▷ loss

15: (vi,vj)← (vi,vj)− η∇stressij ▷ update

16: end for

17: end for

ACGTA

TTAC

Path

Fig. 3: Layout update within one step — ni and nj are

two nodes representing the nucleotide sequences “ACGTA”

and “TTAC”, respectively.

We evaluate the layout computation on three representative

pangenomes of varying sizes, as detailed in Table I.

TABLE I: Properties of representative pangenomes —

Nuc. is the number of nucleotides.

Pangenome # Nuc. # Nodes # Edges # Paths

HLA-DRB1 2.2× 104 5.0× 103 6.8× 103 12

MHC 5.9× 106 2.3× 105 3.2× 105 99

Chr.1 1.1× 109 1.1× 107 1.5× 107 2, 262

Our analysis highlights three key observations: (1) the

algorithm exhibits high data-level parallelism; (2) it is highly

memory-bound; (3) randomness is critical to the layout quality.

In the following, we delve deeper into each of them.

A. Data-level Parallelism

The multi-threaded CPU implementation of odgi-layout

runs the inner loop in parallel and updates the layout asyn-

chronously in a Hogwild! [32] manner. This means that the

for loop at line 4 in Alg. 1 has high data-level parallelism

for a graph with a large number of nodes. While the intrinsic

race condition between parallel threads could introduce errors,

the layout quality is barely affected since pangenome graphs

are so sparse that the probability of multiple threads updating

the same nodes simultaneously is low.

1 2 4 8 16 32
Number of Threads (#)

0.2

0.4

0.8

1.6

3.2

Ru
n

Ti
m

e
(s

ec
on

ds
)

(a) HLA-DRB1.

1 2 4 8 16 32
Number of Threads (#)

2
4
8

16
32
64

Ru
n

Ti
m

e
(m

in
ut

es
)

(b) MHC.

1 2 4 8 16 32
Number of Threads (#)

2
4
8

16
32

Ru
n

Ti
m

e
(h

ou
rs

)

(c) Chr.1.

Fig. 4: Scaling of odgi-layout.

Fig. 4 reveals a linear scaling pattern of odgi-layout with

CPU threads. However, the CPU cannot fully take advantage

of the high degree of data-level parallelism that exists in

the inner loop, particularly for larger graphs. For instance,

the pangenome graph of the human chromosome 1 (Chr.1)

requires six billion node pair updates per iteration, making it

less ideal for a CPU with a limited number of threads.

B. Memory-Bound

We use the top-down approach proposed in [33] to identify

the performance bottleneck. Fig. 5 displays the results of

the bottleneck analysis. It is apparent that odgi-layout uses

a significant portion of the microarchitecture’s pipeline slots

for memory operations on all three graphs, demonstrating its

memory-bound nature. We then profile the memory stall and

cache performance of odgi-layout. As illustrated in Table II,

workload performance is bottlenecked by a high percentage

of memory stall cycles and a significant miss rate of last-

level cache (LLC) loads. As a result, the memory operations

dominate the run time of the layout process.

Front-End
 Bound

Bad
 Speculation

Memory
 Bound53.5%

Core Bound

(a) HLA-DRB1.

Front-End
 Bound

Bad
 Speculation

Memory
 Bound65.4%

Core Bound

(b) MHC.

Front-End
 Bound

Bad
 Speculation

Memory
 Bound

70.9%

Core Bound

(c) Chr.1.

Fig. 5: Microarchitecture bottleneck analysis with VTune.

TABLE II: Memory stall and cache performance of odgi-

layout profiled by Perf.

Pangenome HLA-DRB1 MHC Chr.1

Run Time (h:mm:ss) 0:00:00.4 0:01:47 2:32:38
Memory Stall Cycle Percentage 67.67% 78.07% 77.38%

LLC-load Miss Rate 75.09% 77.84% 89.88%

We observe that the random memory accesses to L (lines 12,

13) and obtaining dref outweigh the computational part (lines

14, 15). Given the massive size of these data structures, e.g.,

the graph of Chr.1 is composed of 11.1M nodes, the scope for

data reuse is severely limited due to random memory access.

This leads to the unusually high LLC load miss rate.

Additionally, the repeated use of pseudo-random number

generator (PRNG) (lines 5, 6, 8, 10, 12, 13) increases memory

traffic. odgi-layout uses Xoshiro256+ [34], a PRNG utilizing

linear-feedback shift registers (LFSR). LFSR-based PRNG is

known for its low computational requirements, which adds to

the memory-bound nature of the layout process.

C. Randomness & Layout Quality

Randomness is essential for fast convergence and high-

quality layout generation in this path-guided SGD algorithm.

This is consistent with the discussion in the paper by Zheng

et al. [24], from which the path-guided SGD algorithm was

adopted. Random path and node pair selections (lines 5, 8, 10)

are performed in each step to ensure the layout quality, as a

naı̈ve iteration could cause the algorithm to get stuck in local

minima due to biases. Fig. 6 shows a non-converged layout

created by forcing all selected pairs of nodes to be 10 hops

away. This node pair selection scheme significantly reduces

randomness in node selection and does not converge within the

same number of iterations. In contrast, the optimized layout

of the same gene shown in Fig. 2 clearly reveals the variants,

which are the primary targets of pangenome graph layout.

Fig. 6: Layout of poor quality — the yellow box captures

the “Large Structural Variant” region in Fig. 2.

IV. PANGENOME GRAPH LAYOUT IN PYTORCH

As previously discussed, CPUs cannot fully exploit the

substantial data-level parallelism within the pangenome graph

layout algorithm. Since the algorithm relies on SGD-based op-

timization, adopting PyTorch [35], a deep learning framework

optimized for gradient computation, is an attractive option for

implementing the layout algorithm on GPUs.

In this section, we introduce a PyTorch-based implementa-

tion of the algorithm and assess its performance on the MHC

pangenome graph with an NVIDIA RTX A6000 GPU. We

employ NVIDIA Nsight Systems [36] for detailed profiling.

Our analysis not only reveals the limitations of a basic

PyTorch implementation but also underscores the challenges in

achieving effective GPU acceleration of the pangenome layout.

A. Implementation and Performance Analysis

We utilize PyTorch to solve the layout optimization problem

following the neural network training procedure — Each data

instance is a node pair (ni, nj), with its ground-truth label as

dref . The layout coordinates L act as the adjustable weights

that are updated in each step based on the gradient of the stress

function. We process a batch of node pairs simultaneously to

leverage the data-level parallelism of the algorithm.

The performance of the PyTorch implementation on the

MHC pangenome is shown in Table III, where we measure the

GPU run time and compare it to the 32-thread CPU baseline,

which completes in 107 seconds. The run time decreases as the

batch size increases, up to a batch size of 1 million. Beyond

this point, there is no further linear scaling.
We also assess the layout quality to understand the impact

of larger batch sizes by visual inspection. As mentioned

in Sec. III-A, excessive asynchronous updates by too many

threads could reduce the effectiveness of these updates, re-

sulting in layout quality degradation. This is reflected in

the increasing node stress with larger batch sizes. By visual

inspection, the design with a batch size of 10M has some

layout quality degradation, and the design with a batch size

of 100M does not converge to a valid layout.

TABLE III: Performance of the PyTorch implementation

— the speedup is compared to the 32-thread CPU baseline.

Batch Size Run Time (s) Speedup Quality

10K 702.2 0.2x Good
100K 67.3 1.6x Good
1M 15.6 6.8x Good
10M 14.3 7.5x Satisfying
100M 11.8 9.1x Poor

The PyTorch implementation achieves a 6.8× speedup over

the CPU baseline on MHC. However, this approach does not

fully exploit the potential of the GPU due to the lack of tailored

optimizations for the memory-bound nature of the application

and the GPU architecture.
Fig. 7 presents the breakdown of kernel time for the

PyTorch implementation when using different batch sizes,

demonstrating that the indexing kernel consumes the most

time. Taking into account the profiling results in Sec. III-B,

it is evident that memory operations are the primary time-

consuming operations on both the CPU and GPU. Given

the algorithm’s inherent randomness leading to a random

memory access pattern, combined with this memory operation

dominance, an effective data layout is crucial to enhance

performance on both hardware platforms. However, neither the

CPU baseline nor the current PyTorch implementation have a

customized data layout.

index
34.5%

pow

mul
where

add

otherreduction

(a) Batch size = 100K.

index
36.0%

pow

mul

where

addother

(b) Batch size = 1M.

index
34.0%

pow

mul

where

addother

(c) Batch size = 10M.

Fig. 7: Kernel time breakdown of the PyTorch implemen-

tation, profiled by NVIDIA Nsight Systems — only kernels

accounting for over 2% of total GPU time are included. The

shaded index is the memory operation.

Another challenge arises from PyTorch’s tensor-based pro-

gramming model. The implementation groups multiple node

pairs into long tensors for computation and memory opera-

tions. Due to the large number of node pairs, multiple batches

are needed per iteration, resulting in numerous CUDA kernel

launches, as shown in Table IV. This leads to significant

overhead in kernel launches and unnecessary implicit synchro-

nization between kernels, which is not needed for this specific

application that permits asynchronous Hogwild! style updates.

TABLE IV: CUDA kernel launching overhead.

Batch Size 100K 1M 10M
CUDA kernels launched (#) 6,562,860 651,480 64,080
Time percentage of CUDA API 76.4% 20.2% 2.1%

Furthermore, using PyTorch, a high-level framework, makes

it challenging to implement low-level, customized optimiza-

tions tailored to the GPU architecture. The highly-optimized

kernels that PyTorch relies on come from its backend libraries.

These are fixed and not tailored for our specific workload,

which means that issues like conditional branching (lines

7, 9 in Alg. 1) and uncoalesced memory access can still

significantly impair GPU performance.

B. Challenges to Efficient GPU Offloading

By characterizing the pangenome graph layout workload

and implementing a basic PyTorch implementation, we have

identified several challenges that must be addressed in order

to fully leverage the power of GPUs.

• Numerous CUDA kernels launched by PyTorch lead to a

notable overhead due to redundant memory operations and

synchronization. This is addressed in Sec. V-A.

• The application is memory-bound on both CPUs and GPUs.

Dominant memory operations and irregular access patterns

necessitate an effective data layout to minimize memory

traffic. This is addressed in Sec. V-B1.

• The conditional branching and uncoalesced memory ac-

cess can degrade GPU performance. This is addressed in

Sec. V-B2 and Sec. V-B3.

V. OPTIMIZED GPU IMPLEMENTATION

In this section, we describe our GPU design with cus-

tomized optimizations to address the challenges highlighted

in Sec. IV-B. First, we introduce a base CUDA kernel for

pangenome graph layout to exploit the high degree of data-

level parallelism. Then, we detail three optimization tech-

niques: a cache-friendly data layout for the pangenome graph,

coalesced random states, and warp merging.

A. CUDA Kernel for Pangenome Graph Layout

Our base CUDA kernel design for pangenome graph layout

is shown in Fig. 8. Each GPU thread runs the update steps

(lines 4-16 in Alg. 1) in parallel. Within a single CUDA kernel

launch, all GPU threads collectively contribute to completing

the Nsteps steps required per iteration.

The memory-bound nature of the algorithm would lead to

frequent memory stalls. When a warp is stalled, the GPU

warp scheduler attempts to switch to another available warp

R L C S
Nsteps
Nthreads

R L C S
Nsteps
Nthreads

C
U

D
A w

arps

… …

Fig. 8: CUDA kernel execution — one update step includes

pseudo random number generation (R), node pair loading (L),

computing the updated value (C), and storing the result (S).

to hide memory latency. The abundant data-level parallelism

in our design ensures the amount of available warps, thereby

improving streaming multiprocessors (SM) utilization.

In our method, a single CUDA kernel is launched per

iteration, with inter-block synchronization occurring only after

all steps in an iteration are completed. Therefore, with the

default setting of Niters of 30, a total of 31 CUDA kernels

are launched, including one additional kernel launch for initial-

ization. This achieves implicit kernel fusion compared to our

preliminary PyTorch implementation, which greatly reduces

the overhead due to the numerous CUDA kernels launched,

as discussed in Table IV.

Here, we also build a lean data structure specifically for the

pangenome graph layout application. As a part of the com-

prehensive pangenome analysis framework ODGI, the current

SOTA odgi-layout uses the ODGI data structure. Therefore,

the data structure includes numerous fields, some of which

are not relevant to odgi-layout, resulting in a suboptimal data

structure for pangenome graph layout.

The lean data structure in our CUDA kernel retains only the

data fields used in the pangenome graph layout process. For

instance, the ODGI data structure represents the nucleotide

sequence as a string, and invoking the .size() method

returns the size; our lean data structure directly stores the

sequence length since the content of the string is not used in

the pangenome graph layout. Note that this lean data structure

can be easily transformed from the ODGI data structure,

leading to an easy integration into the ODGI framework.

Since odgi-layout and the external libraries used [21] were

developed for the multi-core CPU, the data structures are

heavily dependent on the use of dynamic containers such

as vectors. The GPU provides limited support for dynamic

data constructs, so we manually implement the necessary data

structures and functions in our CUDA kernel.

B. Kernel Optimizations

To address the memory-bound nature of the application, we

introduce three kernel optimization methods: a cache-friendly

data layout for pangenome graphs to improve cache locality,

coalesced random states to enable coalesced memory accesses,

and warp merging to reduce warp divergence.
1) Cache-friendly Data Layout: Our data structure for the

pangenome graph layout includes node data and path data.

The node data includes the sequence length of each node and

the coordinates of the start and end points of the visualization,

while the path data consists of the node ID, path ID, position,

and orientation of each node as it traverses the paths.

ODGI maintains its core data structure for pangenome graph

and develops auxiliary structures for the tools built upon it. For

instance, the x and y coordinates, which are used exclusively

in odgi-layout, are organized into two arrays separate from

the primary graph data structure. The data structure of our

base CUDA kernel follows this design, resulting in a struct-

of-arrays (SoA) layout. This has a negative impact on cache

performance for the pangenome graph layout workload. To

solve this problem, we propose a cache-friendly data layout by

repacking data to match the memory access pattern of Alg. 1.

Fig. 9 compares the proposed cache-friendly data layout

with the original one in terms of access to node data during

an update step. When using the original data layout, updating

a single node requires three separate memory accesses for

three different arrays. This is illustrated in Fig. 9a. Although

neighboring node data is cached, there is a high chance of

eviction due to the random selection of node pairs.

Memory Cache

Node Length

X Coordinate

Y Coordinate

…

…

…

L0 L1 L2

sx0 ex0 sx1 ex1

L3

sy0 ey0 sy1 ey1

L4

sx2 ex2

L5

sy2 ey2

L0 L1 L2

sx0 ex0 sx1 ex1

L3

sy0 ey0 sy1 ey1

L4

sx2 ex2

L5

sy2 ey2

(a) Original data layout. Every node incurs three memory accesses;
the majority of cached data are not used due to randomness.

Memory Cache

L0 sx0 sy0 ex0 ey0Nodes … L0 L1sx0 ex0sy0 ey0L1 sx1

Node 0 Node 1

(b) Cache-friendly data layout. One memory access for one node.

Fig. 9: Cache-friendly data layout — Li is the length of

node i; sxi, syi, exi, eyi are the x and y coordinates of

the start and end points of the line segment for node i.

In contrast, we use an array-of-structs (AoS) layout for

node-related data, ensuring a cache-friendly design. Only one

memory access is necessary for each node’s data retrieval, as

shown in Fig. 9b. Since memory accesses to the start and end

point coordinates are contiguous (lines 12, 13 in Alg. 1), this

packing scheme improves spatial locality, thus removing traffic

to higher-level caches and DRAM. The same principle applies

to the path data which is not discussed in detail here.

2) Coalesced Random States: Pseudo random number gen-

erator (PRNG) is heavily used in the algorithm. The CUDA

cuRAND library [37] utilizes the xorshift PRNG [38], a type

of LFSR with low computational requirements.

To maintain layout quality, we map a set of random states to

each SM, enabling each thread within a block to have its own

random state. This ensures that threads generate uncorrelated

random numbers, eliminating potential biases. However, this

approach leads to a large number of memory accesses to the

random states with concurrent running threads, which becomes

the primary bottleneck for PRNG. As the GPU cache is

shared by multiple warps running asynchronously, one warp’s

pangenome graph data may displace another warp’s random

states in the cache, increasing the risk of eviction.

The cuRAND implementation represents each random state

by a structure consisting of six 32-bit fields. This object-

oriented design forms an AoS data layout, with each thread

having its own random state. However, this data layout results

in uncoalesced memory access to the random state, since the

same field in different threads is not in contiguous memory.

Uncoalesced memory access to any random state requires

much more frequent cache refills if some cache lines (e.g.,

cache line 3 in Fig. 10a) are evicted. This pattern amplifies

global memory accesses and causes memory stalls.

Cache

s0 s1 s2 s3 s4 s5
s0 s1 s2 s3 s4 s5
s0 s1 s2 s3 s4 s5

Warp

line 0
line 1
line 2
line 3

waiting for line 3 to be refilledneed s1

(a) Original random states.

Cache

s0 s0 s0 s0 s0 s0
s1 s1 s1 s1 s1 s1
s2 s2 s2 s2 s2 s2

Warp

line 0
line 1
line 2
line 3

no stallsneed s1

(b) Coalesced random states.

Fig. 10: Coalesced random states — in (a), a refill is required

for any evicted cache line; in (b), a refill only happens when

the warp accesses exactly the evicted cache line.

To solve this problem, we introduce a coalesced random

states method by transforming the AoS data layout into the

SoA data layout. As shown in Fig. 10b, this switch facilitates

coalesced memory accesses to random states within a warp,

storing the same field from multiple threads within the same

cache line. In this way, a cache is only refilled from global

memory when a warp requires an evicted cache line.

3) Warp Merging: The conditional branching (lines 7, 9 in

Alg. 1) is crucial for generating a high quality pangenome

graph layout. The non-cooling branch uniformly selects node

pairs to create the coarse-grained layout, while the cooling

branch selects node pairs at closer proximity with a power

law distribution to refine the layout. However, this conditional

branching structure leads to warp divergence. Since all 32

threads within a warp execute the same instruction, divergence

forces some threads to idle, degrading GPU performance.

To solve this problem, we introduce the warp merging

method. As indicated in Fig. 11, all threads within a warp

select the same branch in an update step, keeping the threads

constantly active. This method is achieved by using a control

thread within each warp to randomly select the branch. The

selection is then stored in shared memory, accessible to all

threads within the same warp.

While warp merging causes threads within a single warp

to select the same branch, resulting in reduced intra-warp ran-

domness, the presence of multiple concurrently running warps

on various SMs ensures different branches are chosen across

warps. Consequently, the overall distribution of threads taking

each branch remains consistent with the original algorithm,

thereby preserving layout quality.

in cooling branch in non-cooling branch inactive

step 2step 1

time

(a) No warp merging.

step 2step 1

time

(b) With warp merging.

Fig. 11: Warp merging — in (a), conditional branches cause

warp divergence, leading to suboptimal thread utilization; in

(b), all threads within a warp are active by selecting the same

branch in an update step.

VI. A QUANTITATIVE METRIC FOR PANGENOME LAYOUTS

In our GPU implementation, we leverage a notably higher

degree of data-level parallelism in comparison to the CPU

baseline. As detailed in Section III-A and examined through

experiments in Section IV-A, excessive parallelism may chal-

lenge the sparsity assumption underlying the Hogwild! asyn-

chronous update, potentially compromising layout quality.

Visual inspection, while useful, is subjective and not scalable

since it relies on human evaluation of the results. Conse-

quently, there is a crucial need to quantify the quality of the

GPU-generated layouts.

In this section, we incorporate the stress metric, widely used

in general graph layouts, into the pangenome graph to propose

the path stress with a GPU implementation, and then further

apply sampling to solve the scalability issue.

A. Path Stress

Prior studies [39], [40] have introduced various quantitative

metrics to evaluate the aesthetic quality of general graph

layouts, including stress, the number of edge crossings, the

uniformity of edge lengths. However, each metric focuses on

a single aspect, while some criteria contradict each other [41].

So far, there is no agreement on the most effective metric [42],

and the metric selection highly depends on which features of

the graph you want to highlight in each use case [40], [43].

Therefore, since the pangenome graph layout algorithm is

based on the popular energy-based algorithms by minimizing

stress [24], [44], [45], we incorporate stress (line 14 in

Alg. 1) with the unique path property of the pangenome graph,

forming the path stress, defined in Equation 1.

path stress =

∑
p∈P

∑
ni,nj∈p stress(ni, nj)

Ntotal node pairs

(1)

Here stress(ni, nj) is the average stress of all four com-

binations of the start and end points of node ni and nj . The

path stress is calculated by averaging the stress across all node

pairs on all paths. The key distinction between path stress and

the standard stress used for general graphs is that path stress

only considers node pairs on the same path. This aligns with

the layout algorithm, as dref only considers distances within

the same path.

We implement the path stress with a CUDA kernel to

speedup the computation by mapping a pair of nodes to

each GPU thread, and then aggregating partial results with a

reduction tree. Fig. 12 shows how path stress can differentiate

between pangenome graph layouts of varying qualities. The

layout with a lower path stress is considered more legible

and aesthetically sound, thereby more effectively revealing the

structural information of the pangenome graph.

(a) Path stress: 142.2. (b) Path stress: 22.4.

(c) Path stress: 1.3. (d) Path stress: 0.07.

Fig. 12: Layouts of HLA-DRB1 of different qualities.

B. A Scalable Metric: Sampled Path Stress

Although path stress can effectively present layout quality,

it has a quadratic computational complexity in terms of nodes.

This poses a significant challenge on scalability even with

the compute power of GPUs. As shown in Table V, it would

require 194 GPU hours with an NVIDIA RTX A6000 GPU to

compute the path stress of a human Chr.1 pangenome graph

layout, which is impractical. Therefore, there is a need for a

metric scalable to chromosomal pangenome graphs.

TABLE V: Run time of metrics computation.

Pangenome # of Nodes RT of Path Stress RT of Sampled Path Stress

HLA-DRB1 5.0× 103 1.6 sec 0.3 sec
MHC 2.3× 105 53.0 min 6.5 sec
Chr.1 1.1× 107 (Est.) 194.0 hour 5.5 min

We propose a more scalable metric, sampled path stress,

which estimates overall path stress by randomly sampling

a total of n pairs of visualization nodes (vi,vj), whose

corresponding nodes are on the same path. Equation 2 defines

sampled path stress, where S stands for the set of sampled

nodes. By default, we sample n = 100|p| node pairs in each

path, where |p| is the number of nodes in path p; each node

is expected to be sampled 100 times within its path.

sampled path stress =

∑
p∈P

∑
(vi,vj)∈S

stressij(vi,vj)

n
(2)

Sampled path stress, which is the mean of the sample (noted

as µ), would converge to a normal distribution based on the

central limit theorem [46], [47]. Therefore, we also compute

the 95% confidence interval to validate the sampling coverage.

This is computed by another pass through the sampled stress

terms to get the standard deviation σ, and derived from

CI95% = µ± 1.96σ/
√
n.

Applying sampling makes the metric computation linear in

complexity, allowing the metric computation for chromosomal

pangenome graphs with millions of nodes to be done in

minutes, as shown in Table V.

To check the correctness of sampled path stress, we compare

it against path stress with 1824 small-sized pangenome graph

layouts, where path stress computation is feasible. Fig. 13

demonstrates that sampled path stress closely approximates

path stress with a correlation of 0.995. We also verify that

sampled path stress remains consistent with different random

seeds for a given layout.

10−1 100 101 102

Path Stress

10−1

100

101

102

Sa
m

pl
ed

 P
at

h
St

re
ss

Correlation = 0.995

Fig. 13: Linear correlation — sampled path stress closely

approximates the entire path stress.

Thus, we adopt sampled path stress as the scalable quanti-

tative metric for evaluating layout quality.

VII. EVALUATION

A. Experiment Setup

We utilize a 32-core Intel Xeon Gold 6246R CPU@3.4GHz,

an NVIDIA RTX A6000 GPU, and an NVIDIA A100 GPU

for hardware setup, with GCC 10.2.1 for compilation.

For overall performance analysis, our GPU design is tested

on both an NVIDIA RTX A6000 with CUDA 11.7 and

an NVIDIA A100 with CUDA 12.2. The ablation study

is conducted only on the NVIDIA RTX A6000, utilizing

NVIDIA Nsight Compute [48] 2022.2 and Linux Perf [30]

as profiling tools. We perform another case study to explore

the performance-quality trade-off with the RTX A6000. The

multi-threaded CPU baseline is odgi-layout [20].

We use the human pangenome reference dataset released

by the HPRC [7], composed of 24 chromosomal pangenome

graphs, from Chr.1 to Chr.22, Chr.X, and Chr.Y. As detailed

in Table VI, these graphs contain millions of nodes and are

characterized by their notably low node degree and density.

TABLE VI: Properties of the human pangenome graphs.

Nuc. # Nodes # Edges # Paths deg Density

Min 8.8× 107 3.2× 105 307 4.4× 104 1.4 1.3× 10−7

Max 1.1× 109 1.1× 107 3, 029 5.0× 105 1.4 4.4× 10−6

Mean 3.0× 108 4.0× 106 1, 295 2.3× 105 1.4 3.5× 10−7

TABLE VII: Run time and speedup — the run time format is in h:mm:ss.

Pan. CPU A6000 Speedup A100 Speedup Pan. CPU A6000 Speedup A100 Speedup Pan. CPU A6000 Speedup A100 Speedup

Chr.1 2:32:38 0:04:59 30.6x 0:02:42 56.5x Chr.9 1:16:49 0:02:53 26.6x 0:00:55 83.8x Chr.17 1:03:45 0:02:01 31.7x 0:01:07 57.1x
Chr.2 1:17:03 0:03:33 21.7x 0:01:01 75.8x Chr.10 0:48:34 0:02:22 20.6x 0:00:44 66.2x Chr.18 0:50:29 0:01:50 27.6x 0:01:08 44.6x
Chr.3 1:28:41 0:03:27 25.7x 0:01:31 58.5x Chr.11 0:56:25 0:02:07 26.7x 0:00:37 91.5x Chr.19 0:40:23 0:01:29 27.3x 0:00:27 89.8x
Chr.4 1:47:32 0:03:40 29.3x 0:02:06 51.2x Chr.12 0:44:05 0:02:07 20.9x 0:00:49 54.0x Chr.20 0:51:34 0:01:30 34.3x 0:01:01 50.7x
Chr.5 1:41:09 0:03:19 30.5x 0:01:07 90.6x Chr.13 1:03:32 0:02:22 26.8x 0:00:53 71.9x Chr.21 0:44:18 0:01:26 30.9x 0:00:38 69.9x
Chr.6 1:13:55 0:02:49 26.3x 0:01:27 51.0x Chr.14 0:51:21 0:02:04 24.9x 0:00:46 67.0x Chr.22 0:39:59 0:01:37 24.8x 0:00:30 80.0x
Chr.7 1:16:46 0:03:00 25.6x 0:01:34 49.0x Chr.15 1:11:33 0:02:52 25.0x 0:01:16 56.5x Chr.X 1:04:06 0:01:49 35.4x 0:00:49 78.4x
Chr.8 1:17:27 0:02:57 26.3x 0:01:41 46.0x Chr.16 2:19:47 0:04:56 28.3x 0:12:58 10.8x Chr.Y 0:01:55 0:00:03 36.9x 0:00:04 28.7x

Geometric Mean 27.7x 57.3x

TABLE VIII: Layout quality comparison with sampled path stress (SPS) — SPS ratio is computed by GPUSPS/CPUSPS.

Pan. CPU CI95% A6000 CI95% SPS ratio A100 CI95% SPS ratio Pan. CPU CI95% A6000 CI95% SPS ratio A100 CI95% SPS ratio Pan. CPU CI95% A6000 CI95% SPS ratio A100 CI95% SPS ratio

Chr.1 [0.77, 1.72] [0.86, 1.28] 0.86 [0.88, 1.28] 0.87 Chr.9 [0.58, 2.93] [0.73, 1.34] 0.59 [-0.15, 3.05] 0.83 Chr.17 [0.45, 0.45] [0.60, 0.61] 1.34 [0.58, 0.58] 1.29
Chr.2 [0.31, 0.76] [0.21, 0.29] 0.47 [0.35, 0.56] 0.85 Chr.10 [0.13, 0.17] [0.14, 0.19] 1.13 [0.13, 0.17] 1.04 Chr.18 [0.49, 0.61] [0.53, 0.63] 1.05 [0.54, 0.57] 1.00
Chr.3 [0.26, 0.28] [0.29, 0.31] 1.12 [0.29, 0.30] 1.09 Chr.11 [0.12, 0.32] [0.14, 0.18] 0.72 [0.14, 0.19] 0.75 Chr.19 [0.17, 0.19] [0.22, 0.26] 1.30 [0.19, 0.21] 1.11
Chr.4 [0.28, 0.31] [0.28, 0.30] 1.00 [0.28, 0.30] 1.00 Chr.12 [0.12, 0.17] [0.13, 0.14] 0.96 [0.13, 0.16] 0.99 Chr.20 [0.19, 0.97] [0.38, 0.41] 0.68 [0.38, 0.41] 0.67
Chr.5 [0.18, 0.20] [0.22, 0.27] 1.26 [0.20, 0.23] 1.13 Chr.13 [0.38, 0.39] [0.46, 0.51] 1.26 [0.41, 0.48] 1.16 Chr.21 [0.36, 0.47] [0.41, 0.54] 1.15 [0.36, 0.72] 1.31
Chr.6 [0.30, 0.31] [0.32, 0.33] 1.05 [0.31, 0.32] 1.03 Chr.14 [0.19, 0.33] [0.20, 0.88] 2.11 [0.15, 0.61] 1.48 Chr.22 [0.37, 0.42] [0.23, 1.14] 1.73 [0.43, 0.50] 1.17
Chr.7 [0.28, 0.29] [0.29, 0.30] 1.04 [0.29, 0.33] 1.08 Chr.15 [0.85, 1.60] [1.20, 1.85] 1.24 [1.13, 1.67] 1.14 Chr.X [0.49, 0.51] [0.58, 0.61] 1.19 [0.58, 0.60] 1.17
Chr.8 [0.27, 0.27] [0.27, 0.28] 1.02 [0.27, 0.28] 1.02 Chr.16 [0.67, 0.68] [0.69, 0.71] 1.03 [0.71, 0.72] 1.05 Chr.Y [0.58, 0.89] [-0.26, 3.66] 2.31 [0.63, 0.75] 0.94

Geometric Mean 1.08 1.03

B. Overall Performance

Table VII shows the overall performance for all human

chromosomes. Our optimized GPU design achieves a 57.3×
speedup on A100, and a 27.7× speedup on RTX A6000

over the 32-thread CPU baseline odgi-layout. This reduces the

average computation time from 1-2 hours down to just a few

minutes.

We evaluate the layout quality of GPU-generated layouts

using both quantitative and qualitative methods. Quantitatively,

we measure sampled path stress, as shown in Table VIII,

where the average ratio of sampled path stress between GPU

and CPU layouts is close to 1, indicating no quality loss

in the GPU-generated layouts. Qualitatively, visual inspection

confirms that GPU-generated layouts do not have noticeable

differences compared to CPU-generated layouts, as demon-

strated in Fig. 14 for Chr.7. Additionally, we conduct 15

runs for each pangenome and confirm the consistency and

repeatability of these layouts.

(a) CPU-generated layout.

(b) GPU-generated layout.

Fig. 14: CPU and GPU-generated layouts of Chr.7 — only

the central, most complex parts are displayed, as the entire

chromosome is too long.

The 27.7× speedup achieved by our optimized GPU design

on the same NVIDIA RTX A6000 GPU is significantly higher

than the 6.8× improvement achieved by our initial PyTorch

implementation, as discussed in Sec. IV. This demonstrates

that the custom optimizations in our GPU design effectively

exploit the GPU’s computing power.

Our design can be seamlessly integrated into the ODGI [28]

framework to facilitate the adoption of our GPU implementa-

tion. To enable it, a user can simply add the --gpu argument,

making the solution effortlessly accessible.

We also perform a scalability study on human pangenome

graphs. Fig. 15 demonstrates linear scaling in both CPU and

GPU implementations. This result aligns with the expectation,

as the number of updates is proportional to the total path

length, which is the sum of the nodes in each path.

0 100 200 300 400 500 600 700
Total Path Length (in Million)

0

2000

4000

6000

8000

Ru
n

Ti
m

e
(s

ec
on

ds
)

(a) CPU.

0 100 200 300 400 500 600 700
Total Path Length (in Million)

0

50

100

150

200

250

300

Ru
n

Ti
m

e
(s

ec
on

ds
)

(b) RTX A6000 GPU.

Fig. 15: Scalability study on the size of pangenomes.

C. Ablation Study

Fig. 16 shows the incremental performance gains achieved

with each optimization. Our approach begins with a base

CUDA kernel to exploit the data-level parallelism. Building

on this, we develop an optimized CUDA kernel by introducing

three kernel optimization methods.

In the following sections, we evaluate the effects of the

individual kernel optimizations. We apply the methods to

the base CUDA kernel individually and evaluate its effects,

demonstrating improvements in both run time and key per-

formance metrics. Since we find similar improvements in all

chromosomes, we show here only the results for Chr.1.

Base CUDA

CPU Baseline

Base PyTorch
6.8xCPU w/ Cache-

friendly Data Layout
3.1x

27.7x

1.0x

14.6x

Cache-friendly
Data Layout Warp MergingCoalesced Random

States

Kernel Optimizations

Fig. 16: Speedup through successive optimizations – the

baseline is odgi-layout on CPU.

1) Cache-friendly Data Layout (CDL): Since CDL is effec-

tive across both CPU and GPU, we apply it on both the base

CUDA kernel and the CPU baseline. As shown in Table IX,

the improved spatial locality with CDL significantly reduces

Last Level Cache (LLC) loads and LLC misses on CPU, and

reduces DRAM access on GPU.

TABLE IX: Effects of cache-friendly data layout.

Method w/o CDL w/ CDL Improv.

CPU
LLC-loads (#) 3.0× 1012 9.4× 1011 3.2×

LLC-load-misses (#) 2.7× 1012 8.1× 1011 3.3×

CPU Run Time (s) 9, 158.4 2, 935.2 3.1×

GPU
DRAM access (GB) 5, 191.9 3, 974.4 1.3×

GPU Run Time (s) 569.4 393.1 1.4×

2) Coalesced Random States (CRS): Table X reports the

effects of CRS. The “L1 sectors per request” metric reflects

the level of memory request coalescence within a warp. Here,

a request denotes a single instruction requesting a memory

operation, and a sector represents an aligned 32B chunk of

memory. Each request may access one or more sectors. Hence,

fewer sectors per request indicate improved coalescence of

memory requests. The CRS method notably decreases the L1

sectors per request, thereby reducing memory accesses to L1,

L2 caches, and DRAM.

TABLE X: Effects of coalesced random states.

Method w/o CRS w/ CRS Improv.

L1 Sectors / Req (#) 26.8 9.9 2.7×

L1 Cache Access (GB) 8, 686.7 4, 787.7 1.8×

L2 Cache Access (GB) 7, 498.9 4, 339.3 1.7×

DRAM Access (GB) 5, 191.9 4, 077.8 1.3×

GPU Run Time (s) 569.4 471.7 1.2×

3) Warp Merging (WM): As seen in Table XI, using WM

significantly reduces the number of instructions executed. The

average number of active threads is increased to 27.9, which

is close to the full complement of 32 threads within a warp,

indicating a considerable reduction in warp divergence.

D. A Case Study: Explore the Performance-Quality Trade-off

with Sampled Path Stress

Sampled path stress proposed in Sec. VI-B allows us

to evaluate a chromosomal layout quantitatively in minutes,

TABLE XI: Effects of warp merging.

Method w/o WM w/ WM Improv.

Executed Instructions (# in billions) 131.3 90.1 1.5×

Avg. Active Threads Per Warp (#) 20.5 27.9 1.4×

GPU Run Time (s) 569.4 527.4 1.1×

enabling the exploration of the effects of algorithmic changes

on the layout quality of large-scale pangenomes.

While randomness is crucial for achieving high-quality lay-

outs, it limits data reuse, which adversely affects performance.

We conduct a case study by applying warp-level data reuse on

top of the optimized GPU design to explore the performance-

quality trade-off with sampled path stress.

1) Methods: We aim to increase data reuse with minimal

randomness degradation. This is accomplished by shuffling

node data within the same warp using CUDA warp-level prim-

itives, enabling direct data sharing between thread registers

within the same warp without using shared or global memory.

The data reuse scheme consists of data reuse factor (DRF)

and step reduction factor (SRF). This modified approach

increases the number of updates per step by DRF, and reduces

the number of steps by SRF. Each step involves selecting one

node pair but performing multiple updates via warp shuffling.

Through warp shuffling, we reuse the cached data to randomly

form a new node pair. This method reduces randomness of

node selection, potentially affecting the layout quality.

2) Results: Fig. 17 illustrates the study of the trade-off

between performance (represented by normalized speedup)

and quality (represented by sampled path stress) in Chr.1 and

Chr.2. Layouts with stress less than twice that of baseline

layouts are considered as “good”, less than ten times as

“satisfying”, and more than ten times as “poor”.

An increase in both DRF and SRF generally leads to an

increase in sampled path stress, indicating a loss of layout

quality. This trend is consistent for most input data. Overall,

schemes with DRF of 2 usually produce good or satisfying

layouts, while schemes with a DRF of 8 tend to produce poor

layouts in many cases. This is due to reusing data 8 times

within a warp’s 32 threads, which greatly reduces randomness

in node pair selection.

Good Satisfying Poor

101 102

Sampled Path Stress

1.0

1.1

1.2

1.3

1.4

1.5

1.6

No
rm

al
ize

d
Sp

ee
du

p

(1, 1)

(2, 1.5)

(4, 1.5)

(2, 1.75)
(4, 2)

(8, 2)

(8, 2.5)

(a) Chr.1.

100 101

Sampled Path Stress

1.0

1.2

1.4

1.6

1.8

2.0

2.2

No
rm

al
ize

d
Sp

ee
du

p

(1, 1)

(2, 1.5)

(4, 1.5)

(2, 1.75) (4, 2)

(8, 2)

(8, 2.5)

(b) Chr.2.

Fig. 17: Design space exploration on data reuse schemes

— each datapoint represents a scheme = (DRF, SRF).

Leveraging scalable sampled path stress allows us to explore

the trade-offs between performance and layout quality. Tested

on the RTX A6000 GPU across all 24 human pangenome

graphs, we discover that it is possible to achieve an additional

1.5x speedup over the optimized GPU implementation, while

still maintaining good layout quality.

VIII. RELATED WORK

Several widely-used graph layout tools include Gephi [23],

NetworkX [49], and Graphviz [50]. Efforts have been made

to accelerate these tools on GPUs, as seen in works like [51],

[52]. However, the distinct biological meaning of nodes and

paths in pangenome graphs limit these tools’ suitability.

Numerous pangenome graph layout tools have been devel-

oped to better understand the intricate relationships and varia-

tions among genomes [3]. AGB [18] and VG view [21] employ

the rank-based layout algorithm on the Graphviz backend.

GfaViz [22] and BandageNG [19] adopt the force-directed lay-

out algorithm on the OGDF [53] backend. SGTK [54] applies

the force-directed layout algorithm on the Cytoscape.js [55]

backend. Despite their approaches, none have demonstrated

scalability to the giga-basepair level, as highlighted in a com-

prehensive review [3] of pangenome graph visualization tools.

Among the available tools, odgi-layout [20] stands to be the

only tool capable of scaling to whole-chromosome pangenome

graphs containing millions of nodes. Despite taking hours, it

far surpasses the prior leading tool, BandageNG, which fails

to produce a layout within 7 days [20].

Many efforts have focused on accelerating genomics appli-

cations, from GPU-accelerated sequence alignment [56]–[60],

metagenome assembly [61] and classification [62], to custom

hardware for read assembly [63] and read mapping [64]. Yet,

there is a noticeable gap in acceleration work for pangenome

graphs, presenting ample opportunity.

IX. CONCLUSION AND FUTURE WORK

We present a fast GPU-based pangenome graph layout

solution, achieving a 57.3× speedup on average over the cur-

rent state-of-the-art multi-threaded CPU baseline, and 18.5×
speedup over our own optimized version of the CPU solu-

tion. We leverage the compute power of GPUs with custom

optimizations to address the memory-bound and randomness

challenges. Our work enables the layout of the entire human

pangenome dataset in just a few minutes, which greatly

facilitates pangenomics research. For future work, we believe

scaling our work to a multi-GPU setup is essential to meet

the rapid increase in genome data, and extending to other

pangenome analysis applications in the face of increasing data

availability.

ACKNOWLEDGMENT

For LLM usage disclosure, ChatGPT was utilized to assist

and provide suggestions on polishing the text of this paper.

We are grateful to all the reviewers for their valuable

comments. This research is supported in part by NSF Awards

#2118709 and #2118743.

REFERENCES

[1] H. Cheng, M. Asri, J. Lucas, S. Koren, and H. Li, “Scalable telomere-
to-telomere assembly for diploid and polyploid genomes with double
graph,” arXiv preprint arXiv:2306.03399, 2023.

[2] M. Rautiainen, S. Nurk, B. P. Walenz, G. A. Logsdon, D. Porubsky,
A. Rhie, E. E. Eichler, A. M. Phillippy, and S. Koren, “Telomere-
to-telomere assembly of diploid chromosomes with verkko,” Nature

Biotechnology, pp. 1–9, 2023.
[3] J. M. Eizenga, A. M. Novak, J. A. Sibbesen, S. Heumos, A. Ghaf-

faari, G. Hickey, X. Chang, J. D. Seaman, R. Rounthwaite, J. Ebler,
M. Rautiainen, S. Garg, B. Paten, T. Marschall, J. Sirén, and E. Garrison,
“Pangenome graphs,” Annual review of genomics and human genetics,
vol. 21, pp. 139–162, 2020.

[4] B. Paten, A. M. Novak, J. M. Eizenga, and E. Garrison, “Genome graphs
and the evolution of genome inference,” Genome research, vol. 27, no. 5,
pp. 665–676, 2017.

[5] A. A. Golicz, P. E. Bayer, P. L. Bhalla, J. Batley, and D. Edwards,
“Pangenomics comes of age: from bacteria to plant and animal applica-
tions,” Trends in Genetics, vol. 36, no. 2, pp. 132–145, 2020.

[6] S. Ballouz, A. Dobin, and J. A. Gillis, “Is it time to change the reference
genome?” Genome biology, vol. 20, no. 1, pp. 1–9, 2019.

[7] W.-W. Liao, M. Asri, J. Ebler, D. Doerr, M. Haukness, G. Hickey,
S. Lu, J. K. Lucas, J. Monlong, H. J. Abel, , S. Buonaiuto, X. H.
Chang, H. Cheng, J. Chu, V. Colonna, J. M. Eizenga, X. Feng,
C. Fischer, R. S. Fulton, S. Garg, C. Groza, A. Guarracino, W. T.
Harvey, S. Heumos, K. Howe, M. Jain, T.-Y. Lu, C. Markello, F. J.
Martin, M. W. Mitchell, K. M. Munson, M. N. Mwaniki, A. M. Novak,
H. E. Olsen, T. Pesout, D. Porubsky, P. Prins, J. A. Sibbesen, J. Sirén,
C. Tomlinson, F. Villani, M. R. Vollger, L. L. Antonacci-Fulton, G. Baid,
C. A. Baker, A. Belyaeva, K. Billis, A. Carroll, P.-C. Chang, S. Cody,
D. E. Cook, R. M. Cook-Deegan, O. E. Cornejo, M. Diekhans, P. Ebert,
S. Fairley, O. Fedrigo, A. L. Felsenfeld, G. Formenti, A. Frankish,
Y. Gao, N. A. Garrison, C. G. Giron, R. E. Green, L. Haggerty,
K. Hoekzema, T. Hourlier, H. P. Ji, E. E. Kenny, B. A. Koenig,
A. Kolesnikov, J. O. Korbel, J. Kordosky, S. Koren, H. Lee, A. P. Lewis,
H. Magalhães, S. Marco-Sola, P. Marijon, A. McCartney, J. McDaniel,
J. Mountcastle, M. Nattestad, S. Nurk, N. D. Olson, A. B. Popejoy,
D. Puiu, M. Rautiainen, A. A. Regier, A. Rhie, S. Sacco, A. D. Sanders,
V. A. Schneider, B. I. Schultz, K. Shafin, M. W. Smith, H. J. Sofia, A. N.
Abou Tayoun, F. Thibaud-Nissen, F. F. Tricomi, J. Wagner, B. Walenz,
J. M. D. Wood, A. V. Zimin, G. Bourque, M. J. P. Chaisson, P. Flicek,
A. M. Phillippy, J. M. Zook, E. E. Eichler, D. Haussler, T. Wang, E. D.
Jarvis, K. H. Miga, E. Garrison, T. Marschall, I. M. Hall, H. Li, and
B. Paten, “A draft human pangenome reference,” Nature, vol. 617, no.
7960, pp. 312–324, 2023.

[8] J. C. Venter, M. D. Adams, E. W. Myers, P. W. Li, R. J. Mural, G. G.
Sutton, H. O. Smith, M. Yandell, C. A. Evans, R. A. Holt, J. D. Gocayne,
P. Amanatides, R. M. Ballew, D. H. Huson, J. R. Wortman, Q. Zhang,
C. D. Kodira, X. H. Zheng, L. Chen, M. Skupski, G. Subramanian, P. D.
Thomas, J. Zhang, G. L. G. Miklos, C. Nelson, S. Broder, A. G. Clark,
J. Nadeau, V. A. McKusick, N. Zinder, A. J. Levine, R. J. Roberts,
M. Simon, C. Slayman, M. Hunkapiller, R. Bolanos, A. Delcher,
I. Dew, D. Fasulo, M. Flanigan, L. Florea, A. Halpern, S. Hannenhalli,
S. Kravitz, S. Levy, C. Mobarry, K. Reinert, K. Remington, J. Abu-
Threideh, E. Beasley, K. Biddick, V. Bonazzi, R. Brandon, M. Cargill,
I. Chandramouliswaran, R. Charlab, K. Chaturvedi, Z. Deng, V. D.
Francesco, P. Dunn, K. Eilbeck, C. Evangelista, A. E. Gabrielian,
W. Gan, W. Ge, F. Gong, Z. Gu, P. Guan, T. J. Heiman, M. E. Higgins,
R.-R. Ji, Z. Ke, K. A. Ketchum, Z. Lai, Y. Lei, Z. Li, J. Li, Y. Liang,
X. Lin, F. Lu, G. V. Merkulov, N. Milshina, H. M. Moore, A. K. Naik,
V. A. Narayan, B. Neelam, D. Nusskern, D. B. Rusch, S. Salzberg,
W. Shao, B. Shue, J. Sun, Z. Y. Wang, A. Wang, X. Wang, J. Wang, M.-
H. Wei, R. Wides, C. Xiao, C. Yan, A. Yao, J. Ye, M. Zhan, W. Zhang,
H. Zhang, Q. Zhao, L. Zheng, F. Zhong, W. Zhong, S. C. Zhu, S. Zhao,
D. Gilbert, S. Baumhueter, G. Spier, C. Carter, A. Cravchik, T. Woodage,
F. Ali, H. An, A. Awe, D. Baldwin, H. Baden, M. Barnstead, I. Barrow,
K. Beeson, D. Busam, A. Carver, A. Center, M. L. Cheng, L. Curry,
S. Danaher, L. Davenport, R. Desilets, S. Dietz, K. Dodson, L. Doup,
S. Ferriera, N. Garg, A. Gluecksmann, B. Hart, J. Haynes, C. Haynes,
C. Heiner, S. Hladun, D. Hostin, J. Houck, T. Howland, C. Ibegwam,
J. Johnson, F. Kalush, L. Kline, S. Koduru, A. Love, F. Mann, D. May,
S. McCawley, T. McIntosh, I. McMullen, M. Moy, L. Moy, B. Murphy,
K. Nelson, C. Pfannkoch, E. Pratts, V. Puri, H. Qureshi, M. Reardon,

R. Rodriguez, Y.-H. Rogers, D. Romblad, B. Ruhfel, R. Scott, C. Sitter,
M. Smallwood, E. Stewart, R. Strong, E. Suh, R. Thomas, N. N. Tint,
S. Tse, C. Vech, G. Wang, J. Wetter, S. Williams, M. Williams, S. Wind-
sor, E. Winn-Deen, K. Wolfe, J. Zaveri, K. Zaveri, J. F. Abril, R. Guigó,
M. J. Campbell, K. V. Sjolander, B. Karlak, A. Kejariwal, H. Mi,
B. Lazareva, T. Hatton, A. Narechania, K. Diemer, A. Muruganujan,
N. Guo, S. Sato, V. Bafna, S. Istrail, R. Lippert, R. Schwartz, B. Walenz,
S. Yooseph, D. Allen, A. Basu, J. Baxendale, L. Blick, M. Caminha,
J. Carnes-Stine, P. Caulk, Y.-H. Chiang, M. Coyne, C. Dahlke, A. D.
Mays, M. Dombroski, M. Donnelly, D. Ely, S. Esparham, C. Fosler,
H. Gire, S. Glanowski, K. Glasser, A. Glodek, M. Gorokhov, K. Graham,
B. Gropman, M. Harris, J. Heil, S. Henderson, J. Hoover, D. Jennings,
C. Jordan, J. Jordan, J. Kasha, L. Kagan, C. Kraft, A. Levitsky,
M. Lewis, X. Liu, J. Lopez, D. Ma, W. Majoros, J. McDaniel, S. Murphy,
M. Newman, T. Nguyen, N. Nguyen, M. Nodell, S. Pan, J. Peck,
M. Peterson, W. Rowe, R. Sanders, J. Scott, M. Simpson, T. Smith,
A. Sprague, T. Stockwell, R. Turner, E. Venter, M. Wang, M. Wen,
D. Wu, M. Wu, A. Xia, A. Zandieh, and X. Zhu, “The sequence of the
human genome,” science, vol. 291, no. 5507, pp. 1304–1351, 2001.

[9] T. Wang, L. Antonacci-Fulton, K. Howe, H. A. Lawson, J. K. Lucas,
A. M. Phillippy, A. B. Popejoy, M. Asri, C. Carson, M. J. Chaisson,
, X. Chang, R. Cook-Deegan, A. L. Felsenfeld, R. S. Fulton, E. P.
Garrison, N. A. Garrison, T. A. Graves-Lindsay, H. Ji, E. E. Kenny,
B. A. Koenig, D. Li, T. Marschall, J. F. McMichael, A. M. Novak,
D. Purushotham, V. A. Schneider, B. I. Schultz, M. W. Smith, H. J.
Sofia, T. Weissman, P. Flicek, H. Li, K. H. Miga, B. Paten, E. D. Jarvis,
I. M. Hall, E. E. Eichler, D. Haussler, and the Human Pangenome Ref-
erence Consortium, “The human pangenome project: a global resource
to map genomic diversity,” Nature, vol. 604, no. 7906, pp. 437–446,
2022.

[10] M. Eisenstein, “Every base everywhere all at once: Pangenomics comes
of age,” Nature, vol. 616, no. 7957, pp. 618–620, 2023.

[11] C. Groza, C. Schwendinger-Schreck, W. A. Cheung, E. G. Farrow,
I. Thiffault, J. Lake, W. B. Rizzo, G. Evrony, T. Curran, G. Bourque,
and T. Pastinen, “Pangenome graphs improve the analysis of rare genetic
diseases,” medRxiv, pp. 2023–05, 2023.

[12] Z. Yang, A. Guarracino, P. J. Biggs, M. A. Black, N. Ismail, J. R. Wold,
T. R. Merriman, P. Prins, E. Garrison, and J. de Ligt, “Pangenome graphs
in infectious disease: a comprehensive genetic variation analysis of
neisseria meningitidis leveraging oxford nanopore long reads,” Frontiers

in Genetics, vol. 14, 2023.
[13] A. Guarracino, S. Buonaiuto, L. G. de Lima, T. Potapova, A. Rhie,

S. Koren, B. Rubinstein, C. Fischer, H. J. Abel, L. L. Antonacci-Fulton,
M. Asri, G. Baid, C. A. Baker, A. Belyaeva, K. Billis, G. Bourque,
A. Carroll, M. J. P. Chaisson, P.-C. Chang, X. H. Chang, H. Cheng,
J. Chu, S. Cody, D. E. Cook, R. M. Cook-Deegan, O. E. Cornejo,
M. Diekhans, D. Doerr, P. Ebert, J. Ebler, E. E. Eichler, J. M. Eizenga,
S. Fairley, O. Fedrigo, A. L. Felsenfeld, X. Feng, P. Flicek, G. Formenti,
A. Frankish, R. S. Fulton, Y. Gao, S. Garg, N. A. Garrison, C. G.
Giron, R. E. Green, C. Groza, L. Haggerty, I. Hall, W. T. Harvey,
M. Haukness, D. Haussler, S. Heumos, G. Hickey, K. Hoekzema,
T. Hourlier, K. Howe, M. Jain, E. D. Jarvis, H. P. Ji, E. E. Kenny,
B. A. Koenig, A. Kolesnikov, J. O. Korbel, J. Kordosky, H. Lee, A. P.
Lewis, H. Li, W.-W. Liao, S. Lu, T.-Y. Lu, J. K. Lucas, H. Magalhães,
S. Marco-Sola, P. Marijon, C. Markello, T. Marschall, F. J. Martin,
A. McCartney, J. McDaniel, K. H. Miga, M. W. Mitchell, J. Monlong,
J. Mountcastle, K. M. Munson, M. N. Mwaniki, M. Nattestad, A. M.
Novak, S. Nurk, H. E. Olsen, N. D. Olson, B. Paten, T. Pesout, A. B.
Popejoy, D. Porubsky, P. Prins, D. Puiu, M. Rautiainen, A. A. Regier,
S. Sacco, A. D. Sanders, V. A. Schneider, B. I. Schultz, K. Shafin,
J. A. Sibbesen, J. Sirén, M. W. Smith, H. J. Sofia, A. N. A. Tayoun,
F. Thibaud-Nissen, C. Tomlinson, F. F. Tricomi, F. Villani, M. R.
Vollger, J. Wagner, B. Walenz, T. Wang, J. M. D. Wood, A. V.
Zimin, J. M. Zook, J. L. Gerton, A. M. Phillippy, V. Colonna, and
E. Garrison, “Recombination between heterologous human acrocentric
chromosomes,” Nature, vol. 617, no. 7960, pp. 335–343, May 2023.
[Online]. Available: https://doi.org/10.1038/s41586-023-05976-y

[14] S. Hübner, “Are we there yet? driving the road to evolutionary graph-
pangenomics,” Current Opinion in Plant Biology, vol. 66, p. 102195,
2022.

[15] J. M. Eizenga, A. M. Novak, E. Kobayashi, F. Villani, C. Cisar,
S. Heumos, G. Hickey, V. Colonna, B. Paten, and E. Garrison, “Efficient
dynamic variation graphs,” Bioinformatics, vol. 36, no. 21, pp. 5139–
5144, 2020.

[16] T. Shiina, K. Hosomichi, H. Inoko, and J. K. Kulski, “The hla genomic
loci map: expression, interaction, diversity and disease,” Journal of

human genetics, vol. 54, no. 1, pp. 15–39, 2009.

[17] D. J. Langton, S. C. Bourke, B. A. Lie, G. Reiff, S. Natu, R. Darlay,
J. Burn, and C. Echevarria, “The influence of hla genotype on the
severity of covid-19 infection,” Hla, vol. 98, no. 1, pp. 14–22, 2021.

[18] A. Mikheenko and M. Kolmogorov, “Assembly graph browser: interac-
tive visualization of assembly graphs,” Bioinformatics, vol. 35, no. 18,
pp. 3476–3478, 2019.

[19] R. R. Wick, M. B. Schultz, J. Zobel, and K. E. Holt, “Bandage:
interactive visualization of de novo genome assemblies,” Bioinformatics,
vol. 31, no. 20, pp. 3350–3352, 2015.

[20] S. Heumos, A. Guarracino, J.-N. M. Schmelzle, J. Li, Z. Zhang,
J. Hagmann, S. Nahnsen, P. Prins, and E. Garrison, “Pangenome graph
layout by Path-Guided Stochastic Gradient Descent,” Bioinformatics,
vol. 40, no. 7, p. btae363, 07 2024. [Online]. Available: https:
//doi.org/10.1093/bioinformatics/btae363

[21] E. Garrison, J. Sirén, A. M. Novak, G. Hickey, J. M. Eizenga, E. T. Daw-
son, W. Jones, S. Garg, C. Markello, M. F. Lin, B. Paten, and R. Durbin,
“Variation graph toolkit improves read mapping by representing genetic
variation in the reference,” Nature biotechnology, vol. 36, no. 9, pp.
875–879, 2018.

[22] G. Gonnella, N. Niehus, and S. Kurtz, “Gfaviz: flexible and interactive
visualization of gfa sequence graphs,” Bioinformatics, vol. 35, no. 16,
pp. 2853–2855, 2019.

[23] M. Bastian, S. Heymann, and M. Jacomy, “Gephi: an open source
software for exploring and manipulating networks,” in Proceedings of

the international AAAI conference on web and social media, vol. 3,
no. 1, 2009, pp. 361–362.

[24] J. X. Zheng, S. Pawar, and D. F. Goodman, “Graph drawing by stochastic
gradient descent,” IEEE transactions on visualization and computer

graphics, vol. 25, no. 9, pp. 2738–2748, 2018.

[25] T. M. Fruchterman and E. M. Reingold, “Graph drawing by force-
directed placement,” Software: Practice and experience, vol. 21, no. 11,
pp. 1129–1164, 1991.

[26] M. Jacomy, T. Venturini, S. Heymann, and M. Bastian, “Forceatlas2,
a continuous graph layout algorithm for handy network visualization
designed for the gephi software,” PloS one, vol. 9, no. 6, p. e98679,
2014.

[27] Y. Hu, “Efficient, high-quality force-directed graph drawing,” Mathe-

matica journal, vol. 10, no. 1, pp. 37–71, 2005.

[28] A. Guarracino, S. Heumos, S. Nahnsen, P. Prins, and E. Garrison, “Odgi:
understanding pangenome graphs,” Bioinformatics, vol. 38, no. 13, pp.
3319–3326, 2022.

[29] E. Garrison, A. Guarracino, S. Heumos, F. Villani, Z. Bao, L. Tattini,
J. Hagmann, S. Vorbrugg, S. Marco-Sola, C. Kubica, D. G. Ashbrook,
K. Thorell, R. L. Rusholme-Pilcher, G. Liti, E. Rudbeck, S. Nahnsen,
Z. Yang, M. N. Moses, F. L. Nobrega, Y. Wu, H. Chen, J. de Ligt,
P. H. Sudmant, N. Soranzo, V. Colonna, R. W. Williams, and P. Prins,
“Building pangenome graphs,” bioRxiv, pp. 2023–04, 2023.

[30] L. Community, “Perf: Linux profiling with performance counters,” https:
//github.com/torvalds/linux/tree/master/tools/perf, accessed: 2023-09-17.

[31] Intel, “Intel vtune profiler,” https://www.intel.com/content/www/us/en/
developer/tools/oneapi/vtune-profiler.html, accessed: 2023-09-17.

[32] B. Recht, C. Re, S. Wright, and F. Niu, “Hogwild!: A lock-free ap-
proach to parallelizing stochastic gradient descent,” Advances in neural

information processing systems, vol. 24, 2011.

[33] A. Yasin, “A top-down method for performance analysis and counters
architecture,” in 2014 IEEE International Symposium on Performance

Analysis of Systems and Software (ISPASS). IEEE, 2014, pp. 35–44.

[34] D. Blackman and S. Vigna, “Scrambled linear pseudorandom number
generators,” ACM Transactions on Mathematical Software (TOMS),
vol. 47, no. 4, pp. 1–32, 2021.

[35] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury,
G. Chanan, T. Killeen, Z. Lin, N. Gimelshein, L. Antiga,
A. Desmaison, A. Kopf, E. Yang, Z. DeVito, M. Raison,
A. Tejani, S. Chilamkurthy, B. Steiner, L. Fang, J. Bai, and
S. Chintala, “Pytorch: An imperative style, high-performance deep
learning library,” in Advances in Neural Information Processing

Systems, H. Wallach, H. Larochelle, A. Beygelzimer, F. d'Alché-Buc,
E. Fox, and R. Garnett, Eds., vol. 32. Curran Associates, Inc.,
2019. [Online]. Available: https://proceedings.neurips.cc/paper files/
paper/2019/file/bdbca288fee7f92f2bfa9f7012727740-Paper.pdf

https://doi.org/10.1038/s41586-023-05976-y
https://doi.org/10.1093/bioinformatics/btae363
https://doi.org/10.1093/bioinformatics/btae363
https://github.com/torvalds/linux/tree/master/tools/perf
https://github.com/torvalds/linux/tree/master/tools/perf
https://www.intel.com/content/www/us/en/developer/tools/oneapi/vtune-profiler.html
https://www.intel.com/content/www/us/en/developer/tools/oneapi/vtune-profiler.html
https://proceedings.neurips.cc/paper_files/paper/2019/file/bdbca288fee7f92f2bfa9f7012727740-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2019/file/bdbca288fee7f92f2bfa9f7012727740-Paper.pdf

[36] NVIDIA, “Nvidia nsight systems,” https://developer.nvidia.com/
nsight-systems, accessed: 2023-09-17.

[37] ——, “Nvidia curand library,” https://developer.nvidia.com/curand, ac-
cessed: 2023-09-17.

[38] G. Marsaglia, “Xorshift rngs,” Journal of Statistical Software, vol. 8,
no. 14, p. 1–6, 2003. [Online]. Available: https://www.jstatsoft.org/
index.php/jss/article/view/v008i14

[39] H. Purchase, “Which aesthetic has the greatest effect on human under-
standing?” in International Symposium on Graph Drawing. Springer,
1997, pp. 248–261.

[40] H. Gibson, J. Faith, and P. Vickers, “A survey of two-dimensional
graph layout techniques for information visualisation,” Information

visualization, vol. 12, no. 3-4, pp. 324–357, 2013.
[41] H. Haleem, Y. Wang, A. Puri, S. Wadhwa, and H. Qu, “Evaluating the

readability of force directed graph layouts: A deep learning approach,”
IEEE computer graphics and applications, vol. 39, no. 4, pp. 40–53,
2019.

[42] T. Dwyer, B. Lee, D. Fisher, K. I. Quinn, P. Isenberg, G. Robertson,
and C. North, “A comparison of user-generated and automatic graph
layouts,” IEEE transactions on visualization and computer graphics,
vol. 15, no. 6, pp. 961–968, 2009.

[43] J. Blythe, C. McGrath, and D. Krackhardt, “The effect of graph layout
on inference from social network data,” in International symposium on

graph drawing. Springer, 1995, pp. 40–51.
[44] T. Kamada, S. Kawai et al., “An algorithm for drawing general undi-

rected graphs,” Information processing letters, vol. 31, no. 1, pp. 7–15,
1989.

[45] E. R. Gansner, Y. Koren, and S. North, “Graph drawing by stress
majorization,” in Graph Drawing: 12th International Symposium, GD

2004, New York, NY, USA, September 29-October 2, 2004, Revised

Selected Papers 12. Springer, 2005, pp. 239–250.
[46] L. Le Cam, “The central limit theorem around 1935,” Statistical science,

pp. 78–91, 1986.
[47] S. G. Kwak and J. H. Kim, “Central limit theorem: the cornerstone of

modern statistics,” Korean journal of anesthesiology, vol. 70, no. 2, p.
144, 2017.

[48] NVIDIA, “Nvidia nsight compute,” https://developer.nvidia.com/
nsight-compute, accessed: 2023-09-17.

[49] A. Hagberg, P. Swart, and D. S Chult, “Exploring network struc-
ture, dynamics, and function using networkx,” Los Alamos National
Lab.(LANL), Los Alamos, NM (United States), Tech. Rep., 2008.

[50] J. Ellson, E. Gansner, L. Koutsofios, S. C. North, and G. Woodhull,
“Graphviz—open source graph drawing tools,” in Graph Drawing: 9th

International Symposium, GD 2001 Vienna, Austria, September 23–26,

2001 Revised Papers 9. Springer, 2002, pp. 483–484.
[51] G. G. Brinkmann, K. F. Rietveld, and F. W. Takes, “Exploiting gpus for

fast force-directed visualization of large-scale networks,” in 2017 46th

International Conference on Parallel Processing (ICPP). IEEE, 2017,
pp. 382–391.

[52] A. Fender, B. Rees, and J. Eaton, “Rapids cugraph,” in Massive Graph

Analytics. Chapman and Hall/CRC, 2022, pp. 483–493.
[53] M. Chimani, C. Gutwenger, M. Jünger, G. W. Klau, K. Klein, and

P. Mutzel, “The open graph drawing framework (ogdf).” Handbook of

graph drawing and visualization, vol. 2011, pp. 543–569, 2013.
[54] O. Kunyavskaya and A. D. Prjibelski, “Sgtk: a toolkit for visualization

and assessment of scaffold graphs,” Bioinformatics, vol. 35, no. 13, pp.
2303–2305, 2019.

[55] M. Franz, C. T. Lopes, G. Huck, Y. Dong, O. Sumer, and G. D. Bader,
“Cytoscape. js: a graph theory library for visualisation and analysis,”
Bioinformatics, vol. 32, no. 2, pp. 309–311, 2016.

[56] E. F. de Oliveira Sandes, G. Miranda, X. Martorell, E. Ayguade,
G. Teodoro, and A. C. M. Melo, “Cudalign 4.0: Incremental speculative
traceback for exact chromosome-wide alignment in gpu clusters,” IEEE

Transactions on Parallel and Distributed Systems, vol. 27, no. 10, pp.
2838–2850, 2016.

[57] S. D. Goenka, Y. Turakhia, B. Paten, and M. Horowitz, “Segalign:
A scalable gpu-based whole genome aligner,” in SC20: International

Conference for High Performance Computing, Networking, Storage and

Analysis. IEEE, 2020, pp. 1–13.
[58] K. Zhao and X. Chu, “G-blastn: accelerating nucleotide alignment by

graphics processors,” Bioinformatics, vol. 30, no. 10, pp. 1384–1391,
2014.

[59] A. Zeni, G. Guidi, M. Ellis, N. Ding, M. D. Santambrogio, S. Hofmeyr,
A. Buluç, L. Oliker, and K. Yelick, “Logan: High-performance gpu-

based x-drop long-read alignment,” in 2020 IEEE International Parallel

and Distributed Processing Symposium (IPDPS). IEEE, 2020, pp. 462–
471.

[60] A. Müller, B. Schmidt, R. Membarth, R. Leißa, and S. Hack, “Any-
seq/gpu: a novel approach for faster sequence alignment on gpus,” in
Proceedings of the 36th ACM International Conference on Supercom-

puting, 2022, pp. 1–11.
[61] M. G. Awan, S. Hofmeyr, R. Egan, N. Ding, A. Buluc, J. Deslippe,

L. Oliker, and K. Yelick, “Accelerating large scale de novo metagenome
assembly using gpus,” in Proceedings of the International Conference

for High Performance Computing, Networking, Storage and Analysis,
2021, pp. 1–11.

[62] R. Kobus, A. Müller, D. Jünger, C. Hundt, and B. Schmidt, “Metacache-
gpu: ultra-fast metagenomic classification,” in Proceedings of the 50th

International Conference on Parallel Processing, 2021, pp. 1–11.
[63] L. Guo, J. Lau, Z. Ruan, P. Wei, and J. Cong, “Hardware acceleration of

long read pairwise overlapping in genome sequencing: A race between
fpga and gpu,” in 2019 IEEE 27th Annual International Symposium on

Field-Programmable Custom Computing Machines (FCCM). IEEE,
2019, pp. 127–135.

[64] D. S. Cali, K. Kanellopoulos, J. Lindegger, Z. Bingöl, G. S. Kalsi,
Z. Zuo, C. Firtina, M. B. Cavlak, J. Kim, N. M. Ghiasi et al., “Segram:
A universal hardware accelerator for genomic sequence-to-graph and
sequence-to-sequence mapping,” in Proceedings of the 49th Annual

International Symposium on Computer Architecture, 2022, pp. 638–655.

https://developer.nvidia.com/nsight-systems
https://developer.nvidia.com/nsight-systems
https://developer.nvidia.com/curand
https://www.jstatsoft.org/index.php/jss/article/view/v008i14
https://www.jstatsoft.org/index.php/jss/article/view/v008i14
https://developer.nvidia.com/nsight-compute
https://developer.nvidia.com/nsight-compute

	Introduction
	Background
	Variation Graph
	Pangenome Graph Layout
	Path-Guided SGD Algorithm

	Workload Characterization
	Data-level Parallelism
	Memory-Bound
	Randomness & Layout Quality

	Pangenome Graph Layout in PyTorch
	Implementation and Performance Analysis
	Challenges to Efficient GPU Offloading

	Optimized GPU Implementation
	CUDA Kernel for Pangenome Graph Layout
	Kernel Optimizations
	Cache-friendly Data Layout
	Coalesced Random States
	Warp Merging

	A Quantitative Metric for Pangenome Layouts
	Path Stress
	A Scalable Metric: Sampled Path Stress

	Evaluation
	Experiment Setup
	Overall Performance
	Ablation Study
	Cache-friendly Data Layout (CDL)
	Coalesced Random States (CRS)
	Warp Merging (WM)

	A Case Study: Explore the Performance-Quality Trade-off with Sampled Path Stress
	Methods
	Results

	Related Work
	Conclusion and Future Work
	References

