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ABSTRACT 
Multiple clock cycles are needed to cross the global interconnects 
for multi-gigahertz designs in nanometer technologies. For 
synchronous design, this requires the consideration of multi-cycle 
on-chip communication at the high level. In this paper, we present 
a new architectural synthesis system integrated with global 
placement, named MCAS (Multi-Cycle Architectural Synthesis), 
on top of the recently-proposed Regular Distributed Register 
(RDR) micro-architecture [3]. The RDR architecture provides a 
regular synthesis platform for supporting multi-cycle 
communication. Novel architectural synthesis algorithms that 
integrate high-level synthesis with global placement have been 
developed in MCAS, including scheduling-driven placement and 
distributed controller generation, etc. Experimental results show 
that our methodology can achieve a clock period improvement of 
31% and a total latency improvement of 24% on average 
compared to the conventional architectural synthesis flow. 

1. INTRODUCTION  
There are two important inflection points in the development of 
nanometer process technologies. The first point is when the 
average interconnect delay exceeds the gate delay, which 
happened during mid 1990s and led to the so-called timing 
closure problem. The second point will occur when single-cycle 
full chip synchronization is no longer possible. For multi-
gigahertz designs in nanometer technologies, multiple clock 
cycles are needed to cross the chip as shown in [2]. This is not 
supported in the current design tools and methodologies, as most 
of these implicitly assume that full chip synchronization in a 
single clock cycle is feasible. 
Several design methodologies can be adopted to address the 
multi-cycle communication problem, including asynchronous 
design, global asynchronous locally synchronous (GALS) design, 
and synchronous design with multi-cycle communication. This 
paper focuses on the synchronous design, which is still by far the 
most popular design methodology. It is well understood and 
supported by the mature CAD toolset.  
There are some efforts to address the problem of multi-cycle on-
chip communication for synchronous designs. Most of them are at 
the gate level to perform retiming with placement or 
floorplanning [4][1][17][6] to alleviate the performance 
degradation caused by long interconnects. Although the benefit of 

                                                                 
 * This research is partially supported by MARCO/DARPA Gigascale 

Silicon Research Center, National Science Foundation under award 
CCR-0096383, Semiconductor Research Center under 2001-TJ-910, 
and Altera Corporation under the California MICRO program. 

applying these methods can be significant, exploring multi-cycle 
communication during logic synthesis has a big limitation, as the 
minimum clock period that can be achieved by logic optimization 
is bounded by the maximum delay-to-register (DR) ratio of the 
loops in the circuit [14][5]. Figure 1 illustrates this problem by 
showing a piece of circuitry with 4 logic cells and 2 registers in a 
loop. Assuming that cell delay is 1ns and interconnect delay is 
4ns, the DR ratio of this loop can be calculated by: 

( ) (4 4 4)_ 10
# 2

logic intDelay Delay
DR ratio ns

Registers
+ × +

= = =  

Therefore, the best possible clock period is 10ns under any 
retiming solution. To further reduce the delay to below 10ns, we 
need to consider multi-cycle communication during the 
architectural (or behavioral) synthesis stage. A major progress in 
this direction is the Regular Distributed Register (RDR) micro-
architecture proposed in [3]. The RDR micro-architecture 
provides a regular synthesis platform for supporting multi-cycle 
communication. We will review the RDR micro-architecture in 
Section 2. 
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Figure 1. Limitation in exploring multi-cycle communication 

at the logic/physical level 
In this paper, we present a new architectural synthesis system 
integrated with global placement, named MCAS (Multi-cycle 
Communication Architectural Synthesis), on top of the RDR 
architecture. The main contributions of this work are: (1) We 
proposed an efficient method called scheduling-driven placement, 
to tightly integrate scheduling with the global placement; (2) We 
developed practical solutions, such as the distributed controllers 
generation and the use of Static Single Assignment (SSA) [7], to 
handle the control flow for the RDR architecture.  
The remainder of the paper is organized as follows. Sections 2 
and 3 review the RDR micro-architecture and the overall design 
flow of MCAS system. Section 4 describes the algorithms for 
integrating scheduling with global placement. Section 5 discusses 
how to extend the algorithms to handle the control flow. 
Experimental results are shown in Section 6, followed by the 
conclusions and future work in Section 7. 



2. REVIEW OF RDR ARCHITECTURE 
The RDR architecture divides the entire chip into an array of 
islands. The registers are distributed to each island, and the size of 
each island is chosen such that all local computation and 
communication within an island can be performed in a single 
clock cycle.  
Each island consists of the following components:  
1) Local Computational Cluster (LCC): The functional 

elements in an LCC provide the computational power of the 
circuit. They can be simple logic such as NAND gates, 
multiplexors (MUX), or datapath elements such as 
multipliers, dividers, and ALUs, etc.  

2) Register file: The dedicated local storages reside in the 
register file, which can be partitioned into k banks (where k 
is the maximum number of cycles needed to communicate 
across the chip) such that registers in bank i will hold the 
results for i cycles for communicating with another island 
that is i cycles away. 

3) Finite State Machine (FSM): Each island contains a local 
controller (i.e., an FSM) to control the behaviors of the 
computational elements and registers. 

The RDR architecture is similar to the recently-proposed 
distributed-register architecture (DRA) [9][10] in the sense that 
both architectures distribute registers close to the local 
computational units, allow multi-cycle communication, and 
enable concurrent computation and communication. However, 
unlike DRA, the RDR architecture is highly regular, which 
greatly facilitates the interconnect delay estimation. Interconnect 
delay can be easily estimated from the island indices of the source 
and the destination. Moreover, the RDR architecture has the 
advantage in that by varying the size of the basic island, one can 
easily target different clock periods and systematically explore 
the cycle time vs. latency tradeoff. 1 
More details of the RDR architecture are available in [3]. 
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Figure 2. RDR architecture 

3. OVERVIEW OF MCAS SYSTEM 
Our architectural synthesis system for multi-cycle communication 
(MCAS) is built on top of the RDR architecture. The overall 
design flow is shown in Figure 3. 
                                                                 
1 For low-frequency designs, the RDR architecture is not suitable as it 

introduces unnecessary area overhead.  

Given the target clock period and the RDR architecture 
specification (including the island structure, functional unit 
library and delay table), MCAS starts with a synthesizable C 
description. It first generates the control data flow graph (CDFG) 
from the behavioral descriptions through the intermediate 
representations of the SUIF compiler infrastructure [24] and 
Machine-SUIF [18]. 
At the front-end, MCAS performs resource allocation, followed 
by an initial functional unit binding. It uses the time-constrained 
force-directed scheduling (FDS) algorithm [15] to obtain the 
resource allocation. After the FDS-based resource allocation, it 
performs a similar algorithm in [10] to bind operation nodes to 
functional units for minimizing the number of potential data 
transfers among the components with the same types. Then an 
interconnected component graph (ICG), which is first defined in 
[10], is derived from the bound CDFG. An ICG consists of a set 
of components to which operation nodes are bound. They are 
interconnected by a set of connections which denote data transfers 
between components.  
At the core, MCAS performs the scheduling-driven placement, 
which takes the ICG as input, places the components in the island 
structure of the RDR architecture, and returns the island index of 
each component. After the scheduling-driven placement, both the 
CDFG schedule and the layout information are produced. To 
further minimize the schedule latency, it performs the placement-
driven rescheduling-and-rebinding. The algorithm is based on the 
force-directed list-scheduling framework, and integrated with 
simultaneous rebinding. 
At the backend, MCAS performs register and port binding 
followed by datapath and distributed controllers generation. The 
final outputs of MCAS include the RT-level VHDL files for logic 
synthesis, floorplan and multi-cycle path constraints for place-
and-rout. If the final design cannot meet the performance 
requirement, we can adjust the clock period and the basic island 
size by binary search and redo the synthesis. 

 

 
C D FG  

In terconnected  C om ponen t graph  

C  

Location  in form ation

Functional un it b ind ing 

Post-layou t  
reb ind ing &  schedu ling

Schedu ling -driven  p lacem ent 

C D FG  generation

R egis ter and  port b ind ing 

Floorp lan  constra in ts  
M ulti-cycle  path  constra in ts  

R esou rce  a llocation  
R esou rce constrain ts  

R
D

R
 A

rc
h.

 S
pe

c.
 

Ta
rg

et
 c

lo
ck

 p
er

io
d 

RT L V H D L files 

D atapath  &  FSM  generation  

 
Figure 3. MCAS architectural synthesis system 

4. INTEGRATION OF SCHEDULING 
WITH GLOBAL PLACEMENT 
There are two approaches for integrating high-level synthesis with 
placement (or floorplanning) to achieve timing closure at the high 
level. One is sequential and the other is simultaneous. In the 
sequential approach [10][20], placement and scheduling (or 
binding) are performed separately. [10] performed operation 



binding, placement and post-layout scheduling sequentially and 
the placement was driven by the inter-clock slack time obtained 
by an initial scheduling. [20] formulated the placement problem 
into a linear programming (LP) model to eliminate the potential 
slack time violation, and resource sharing is performed after 
placement. As pointed out in [3], the sequential approach may 
produce suboptimal solutions. In the simultaneous approach 
[21][8][16], placement and high-level synthesis are coupled 
tightly for performance optimization. The simultaneous approach 
has the advantage of efficiently generating better results. 
Unfortunately, the existing simultaneous approaches only 
minimize the interconnect delay within a single clock cycle thus 
reducing the clock period, and cannot consider multi-cycle 
communication to overcome long global interconnect delays. 
In this section, we present an efficient solution, called scheduling-
driven placement, to perform scheduling simultaneously with 
global placement for multi-cycle communication. It takes the full 
advantage of the regularity of the RDR architecture to determine 
the data path schedule and the island assignment of each 
functional unit. 

4.1 Scheduling-Driven Placement  
The main idea of scheduling-driven placement is to use 
scheduling to identify the critical connections in ICG and assign a 
high weight to them. A simulated annealing-based coarse 
placement engine minimizes the weighted wirelength to shorten 
the critical connections and thus potentially reducing the latency.  

4.1.1 Problem Formulation 
The placement problem for RDR architecture is formulated as 
follows. The inputs include (1) island structure, denoted by Ix× Iy, 
which defines the two dimensions of the island-based array; (2) 
the bound CDFG and its derivative, ICG. Given the above inputs, 
the placer places the ICG components in the given island structure 
for minimizing the number of clock cycles needed to schedule the 
bound CDFG. 

4.1.2 Scheduling-Based Timing Analysis  
Since ICG is not acyclic in general, conventional static timing 
analysis does not work. One possible solution is to apply ASAP 
(As Soon As Possible) scheduling and ALAP (As Late As 
Possible) scheduling to determine the critical edges in ICG. We 
compute the criticality of each edge e=(s,t) by edge_slack(s,t)= 
ALAP(s)-ASAP(t) where ASAP(s) is the ASAP schedule of 
operation node s and ALAP(t) is the ALAP schedule of operation 
node t. The edges with zero edge_slack are critical. Although this 
method is simple and intuitive, the edges of ICG can be overly 
constrained. Since both ASAP and ALAP ignore any resource 
constraints, the delays of their schedules may be far shorter than 
the real ones. 
In order to get a more accurate delay estimation of ICG, we 
perform a list-scheduling on the bound CDFG. Specifically, our 
scheduling algorithm picks the ready operation node with the 
largest critical path length, i.e., the longest path from the node to 
the primary outputs (POs), and schedules it to the first feasible 
control step. 
To compute the criticality of each edge in the scheduled CDFG, 
we first define the arrival time and required time of each 
operation node.  

The arrival time of node t, denoted as ARR(t), generally refers to 
the data ready time when all inputs of t are available. In this case, 
however, even though all inputs are available, t can be deferred 
due to the resource conflicts. Since our scheduling algorithm 
always schedules the node t in the earliest feasible control-step, 
we define the arrival time as )()( tcsteptARR = . The longest path 
delay of the scheduled CDFG is )}({max tARRT

POt∈
= .  

The required time of node t, denoted as REQ(t), is the time when 
node t must be scheduled. Otherwise, the timing constraint could 
not be made. We first set the required time of all primary outputs 
to be T. Required time is then propagated backwards in CDFG 
with the following equation: 

( )

( )
,

min { ( ) _ ( , ) _ ( )},
t succ s

REQ s
T s PO

REQ t edge delay s t logic delay s otherwise
∀ ∈

=

∈
 − −

 

Required time analysis also accounts for the resource conflict 
during the computation of edge_delay(s,t). It is defined as 
edge_delay(s,t)=int_delay(s,t)+conflict_delay(t) where int_delay 
denotes the interconnect delay (in terms of clock cycle number) 
between the FUs to which operations s and t are bound, and 
conflict_delay denotes the number of cycles that t is delayed due 
to the resource conflicts. The introduction of conflict_delay brings 
the consideration of resource conflicts into the required time 
analysis. 
Then we compute the slack of an edge (s,t) in CDFG by:  

_ ( , )
( ) ( ) ( , ) ( )

EDGE SLACK s t
REQ t ARR s int_delay s t logic_delay s

=
− − −

 

Given a scheduled and bound CDFG=G(V,E), we have the 
following conclusion: 

DEFINITION. An edge e is defined to be critical if the 
increment on its int_delay by σ will increase the total latency by 
σ as well, assuming that the same schedule (i.e., node ordering) is 
followed. 

THEOREM. ∀ e∈E, e is critical if and only if 
EDGE_SLACK(e)=0, where EDGE_SLACK(e) is computed by 
the above timing analysis technique. 
We will omit the proof of this theorem due to the page limit. Note 
that the above method works correctly with respect to a particular 
schedule instead of all possible schedules. 
Finally, the criticality of an edge (s,t) in CDFG is defined as:  

)}({max
),(1),(_
eSLACK

tsSLACKtsCRITEDGE
Ee∈∀

−=  

4.1.3 Net Weighting 
At each temperature in the SA process, the interconnect delays 
are extracted from the current layout and back-annotated to the 
edges in the bound CDFG. Then we determine the criticality of 
each edge in the ICG by the scheduling-based timing analysis. 
The criticalities of the edges in CDFG are obtained and 
transferred to the weights on the corresponding edges in ICG. We 
use the method proposed in [12] to compute the weight, i.e.,  

( ) ( ')exponentweight e criticality e= , 



where e is an edge in ICG, e’ is the corresponding edge in CDFG 
and exponent is a user-defined parameter to heavily weight 
connections that are critical. 
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Figure 4. (a) Schedule generated by list-scheduling 

 (b) Current layout at temperature i 
Figure 4 illustrates this process using a CDFG with 10 operation 
nodes bound to 2 ALUs (ALU1 and ALU2) and 2 multipliers 
(MUL1 and MUL2). We assume uniform node delay that is equal 
to the target clock period. The nodes in the same pattern are 
bound to the same functional unit. The double lines, solid lines 
and the dotted lines represent the two-cycle inter-island data 
transfer, the one-cycle inter-island data transfer and the intra-
island data transfer. Figure 4 (b) shows the current layout at 
temperature i, and Figure 4 (a) shows the schedule generated by 
the list-scheduling. After the scheduling-based timing analysis, 
we can identify that the edges (3,8), (4,7), (7,9), and (8,10) have 
the zero EDGE_SLACK, namely they are the most critical ones. 
Then we assign high weight to the connection between ALU1 and 
MUL1, and the one between ALU2 and MUL2. At the next 
temperature, the weighted wirelength minimization engine will 
try to reduce the delay of these connections. 

 1 2 

3 4 

5 6 

(a) (b) 

8 7 

9 10 

 

 

Reg. FSM

 

Reg. FSM

 

Reg. FSM
 

 

Reg. FSM
 

MUL2 
5,7 

ALU2 
2,4,9 

ALU1 
1,3,10 MUL1 

6,8

1 cycle 

1 cycle 

2 cycles2 cycles

Cycle 1 

Cycle 2 

Cycle 3 

Cycle 4 

Cycle 5 

Cycle 6 

Cycle 7 

ALU1 + ALU2

* MUL1 * MUL22-cycle interconnect delay 

intra-island interconnect delay 

1-cycle interconnect delay 

*

*

*

*

 
Figure 5. (a) Schedule generated by list-scheduling 

 (b) Current layout at temperature i+1 
Figure 5 shows the layout and schedule at temperature i+1. By 
swapping the locations of ALU1 and ALU2 to shorten the critical 
connection between ALU1 and MUL1, and the one between 
ALU2 and MUL2 as well. We can then reduce the latency by one 
cycle. 

4.1.4 SA-Based Coarse Placement Engine 
The details of the SA engine we use are described below. 

• Solution space: We define the bin structure to be the same as 
the given island structure. Components in ICG are placed at 
island centers subject to the area constraint. 

• Neighborhood structure: Two types of moves are used; (1) 
component move, which randomly selects a module and 
moves it to another island; (2) component swap, which 
randomly swaps two components in different islands.  

• Cost function: We use the same cost function as proposed in 
[12]. The delay cost of an edge in ICG is the product of the 
edge delay and its weight, defined as the following: 
delay_cost(e)=delay(e)×weight(e). To obtain delay(e), where 
e is the connection between component cs and ct, we exploit 
the regularity of the RDR architecture by computing the 
delay of e as a function only of the island indices of cs and ct. 
Intra-island interconnect delays are assumed to be zero. To 
allow an efficient assessment of the inter-island interconnect 
delays, we compute a delay lookup table indexed by s and t. 
DELAY_COST is the sum of all the delay costs of all the 
edges in the ICG. WIRE_COST is the sum of all the 
bounding box lengths of the connections. The overall cost is 
a weighted sum of WIRE_COST and DELAY_COST 
defined as 

previous

current

previous

current

COSTWIRE
COSTWIRE

COSTDELAY
COSTDELAYt

_
_)1(

_
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where α is a user-defined parameter to trade off the 
wirelength and delay. 

5. EXTENSIONS FOR CONTROL FLOW  
In this section, we present the extensions of our MCAS system to 
handle the control flow. Section 5.1 introduces our two-level 
CDFG representation. Section 5.2 discusses our approach to 
resolve the multiple definitions problem. Section 5.3 reviews the 
basic distributed control approach [3] for pure DFG, and shows 
distributed control generation algorithm for CDFG with multi-
cycle control signal interactions. 

5.1 CDFG Representation 
A two-level CDFG representation is used in MCAS. The first-
level CDFG is a Control Flow Graph (CFG). Each node 
corresponds to a basic block. The edges represent the control 
dependencies between the basic blocks. Each basic block contains, 
at most, one operation producing the control signal. If there are 
two successors, the labels on the control edges indicate which 
branch is the fall-through path and which one is the taken path. At 
the second level, each basic block has an internal data flow graph 
(DFG) representation, which contains a set of operation nodes and 
edges that represent data dependencies among operation nodes. 
Figure 6 gives an example of a two-level CDFG. 
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Figure 6. Two-level control data flow graph 

Based on this representation, we can individually apply the 
synthesis algorithms in MCAS to each basic block. Note that the 



introduction of the control flow may lead to the multi-cycle 
control signals that go over a global interconnect. This is because 
the producer and the consumer of this signal may be placed in 
different islands. To account for the multi-cycle control signal 
during placement, we can extend the ICG by adding in control 
edges which correspond to the control dependencies in the CDFG. 

5.2 Solving Multiple Definitions Problem by 
Static Single Assignment  

A variable may have multiple definitions (assignments) on 
different execution paths in a CDFG. This can be naturally 
handled by the conventional centralized register file architecture, 
which allocates exactly one register for each variable. In the RDR 
architecture, however, we have to allocate several distinct 
registers for a single variable when the operations that define this 
variable are placed in different islands.  
Allocating multiple registers for a single variable will cause 
problems for controlling, which is illustrated in Figure 7. For the 
sake of simplicity, we only list an assignment statement in every 
basic block. In Figure 7 (a), variable a has two definitions in basic 
block 2 (operation E2) and 3 (operation E3). Suppose that 
operations E2 and E3 are bound to two functional units located in 
different islands, two local registers within the corresponding 
islands should be allocated for variable a. During the execution of 
this program, at the use point of variable a (i.e., c←a+b in basic 
block 4), the controller must decide which register is storing the 
correct value according to the execution path. Unfortunately, it is 
prohibitive for an FSM-based controller to record all the traces, 
which would lead to state explosion.  
To address this problem, we apply Static Single Assignment 
(SSA) [7] transformation to the CDFG. SSA was originally 
developed to ease the dataflow analysis and optimization for 
microprocessor architectures. In the SSA form, each variable is 
only defined once and any redefinition is renamed to be a new 
variable. A φ node is inserted at the joint point of multiple 
definitions for the same variable. It takes a set of possible names 
and outputs the correct one depending on the path of execution. 
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Figure 7. Variable definition problem and SSA solution 

(a) Original CDFG; (b) CDFG in SSA format 
Figure 7 (b) shows the CDFG in SSA format, where variable a is 
renamed to a1, a2, and a3. A φ operation joins the definitions 
before the use of variable a. We use multiplexors (MUX) to 
implement the φ operations. After the assignment of a1 or a2, the 
value will also be transmitted into the register for a3 (denoted as 
Ra3). Therefore, Ra3 is ready before the execution of basic block 4. 
At the use point, the controller can directly use the value in this 
register regardless of the execution path being taken, thereby 
avoiding the state explosion problem.  

5.3 Distributed Control Generation  
5.3.1 Distributed Control for DFG 
The RDR architecture requires distributed control for each island. 
Every local control signal transmission should be made within 
one clock cycle. Figure 8 illustrates a basic distributed control 
scheme for the RDR architecture. Each island contains an FSM, 
which generates control signals for the datapath components in 
the same island. The control signals include function selections 
for functional units, MUX selections, and clock enables for 
registers and memories, etc. 
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Figure 8. A basic distributed control scheme for the RDR 

architecture 
For a pure DFG, each controller is essentially a linear sequence of 
control steps. The control step transitions are triggered by the 
system clock, regardless of the status of the datapath (i.e., there is 
no signal from the datapath to the controller). The distributed 
controllers in different island are independent. They have the 
identical control step transition diagrams but different output 
signals.  

5.3.2 Distributed Control for CDFG 
5.3.2.1 Preliminaries and Motivation 
A traditional approach to generate a control unit for an 
unbounded-latency CDFG is discussed in [13]. A state is 
generated for each basic block in the CDFG. It consists of a 
sequence of control steps, and controls the execution of the 
corresponding basic block. Branch signals generated by the 
current state activate the next state, according to the status signal 
generated from the datapath.  

A Mealy-type FSM M is a six-tuple (S, X, δ, s0, O, λ), where 
� S is a finite set of states 
� X is the input alphabet (signal) 

� δ : S × X→ S is the next state transition function 

� s0 ∈ S is the initial state 
� O is the output alphabet (signal) 

� λ : S × X → O is the output function 
For the RDR architecture, we need to decompose the FSM into a 
set of distributed FSMs. Assuming the RDR architecture is 
defined as I = {I1, …, In}, where Ii represents an island, we 
should generate a local FSM MIi

 for island Ii, where 

MIi
 = (SIi

, XIi
, δIi

, s0Ii 
, OIi

, λIi
). 



In addition, we have the constraint that every output signal o ∈ 
OIi

 should drive a local resource inside island Ii. 

One feasible way is to duplicate the FSM into every island and 
maintain their synchronization. However, this method is not 
efficient in terms of both area and delay. When one FSM makes a 
state transition on a trigger event, all other FSMs should wait for 
this event to be synchronized. Since the trigger event may take 
multi-cycles to reach the FSMs in other islands, the 
synchronization delay should be the delay from the location 
generating the trigger signal to the furthest island, i.e., for state 
transition δ (sj, x) = sk, 

Delay (δ) = MAX1 ≤ i ≤ n {Delay (I(x), Ii )}  (1), 

where signal x is generated in island I(x). 

5.3.2.2 Our Approach 
We take a partial state duplication approach to generate 
distributed controllers. We duplicate states to an island only when 
they are required by this island. Precisely, suppose sj is a state for 
basic block j of a CDFG. If in island Ii, there is no resource 
allocated for basic block j, then sj is not duplicated into Ii. After 
the duplication phase, we create state transitions to combine these 
duplicated states together to form a local FSM. 

  for each Ii ∈ I do 
SIi

 := ∅   /* where SIi
 is the state set of MIi */ 

for each sj ∈ S do 
if λ (sj, x) = ol, x∈ X, ol drives a resource in Ii  

Generate state sji  
SIi

 = SIi
 ∪ sji 

end if 
Local_FSM_Gen (Ii)  
/* Local_FSM_Gen (Ii) generates a local FSM MIi

 for Ii:

MIi
 = (SIi

, XIi
, δIi

, s0Ii 
, OIi

, λIi
), where 

XIi
 = X ∪ {reset}; 

δIi
 (sji, reset) = s0Ii

, ∀ sji ∈ SIi
; 

δIi
 (s0Ii

, x) = Ski, if ∃ j, δ (sj, x) = sk; 

δIi
 (sji, x) = ski, if δ (sj, x) = sk; 

λIi
 (sji, x) = ol, if λ (sj, x) = ol;*/ 

 
Figure 9. Distributed FSMs generation algorithm 

Our distributed control generation algorithm is described in 
Figure 9. The input is an FSM M generated by the traditional 
approach. For the local FSM MIi

 of island Ii, we first generate 

required states whose outputs drive the logics in this island. The 
physical locations of the resources are determined by the 
scheduling-driven placement. In the algorithm, sji denotes a state 
of MIi

 and is a duplicated state of state sj of M. We then generate 

the state transitions and output functions according to FSM M. 
Note that we also generate a new initial state and reset signal for 
every distributed FSM. 
By this method, we avoid unnecessary state duplications, generate 
smaller distributed FSMs, and potentially reduce the interaction 
delay between distributed FSMs, thereby achieving more efficient 
area and delay cost for controllers. The delay for state transition δ 
(sj, x) = sk is  

Delay (δ) = MAX1 ≤ i ≤ n {Delay (I(x), Ii) | ski∈ SIi
}  (2), 

where signal x is generated in island I(x), and ski is Ii’s local 
duplication of sk. On average, this delay will be less than the 
delay of equation (1). 
Figure 10 illustrates the distributed controller generation. In this 
example, we assume a two-island RDR architecture, denoted by 
islands L and R. Suppose after the scheduling-driven placement, 
island L contains the computation logics for basic blocks 2, 4, and 
island R contains computation logics for basic blocks 1, 3, 4. We 
decompose the original FSM into two FSMs as shown in Figure 
10 (c). Interactions between these FSMs, represented as dotted 
lines, are required to maintain the synchronization. For example, 
the event signal that trigger the transition from state 2 to state 4 in 
island L, may be held for multi-cycles. It guarantees that the inter-
island communication can reach island R, and trigger the 
transition from the initial state to state 4 in island R.  
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Figure 10. Distributed control generation for CDFG  

based on the RDR architecture 

6. EXPERIMENTAL RESULTS 
6.1 MCAS vs. Conventional Flow 
We implemented our MCAS system in C++/UNIX environments 
and compared it with the conventional architectural synthesis 
flow. The conventional flow is based on the centralized register 
file architecture. It performs the binding and list-scheduling 
algorithm sequentially without considering the layout. Both 
MCAS and the conventional flow share the same backend to 
generate datapath and controllers2.  
To obtain the final performance results, Altera’s Quartus II 
version 2.2 [22] is used to implement the datapath part into a real 
FPGA device, Stratix™ EP1S40F1508C5. All of the pipelined 
multipliers are implemented into the dedicated DSP blocks in the 
Stratix™ device. We set the target clock frequency at 200 MHz 
and use the default compilation options. We use the LogicLock™ 
feature to restrict every instance into its corresponding island, and 
set multi-cycle path constraints for multi-cycle communication 
paths.  
A set of real-life benchmarks is used in our experiments. Eight of 
them are pure DFG designs from [19], including several different 
                                                                 
2 Due to the lack of interfaces between different input and output formats, 

we are not able to provide the comparisons with the existing 
performance-driven synthesis techniques, such as [9][10]. 



DCT algorithms, such as PR, WANG, LEE, and DIR, and several 
DSP programs such as MCM, HONDA, CHEM, and U5ML12. 
Three other benchmarks containing the control flow come from 
MediaBench [11] and FFT package[23]. All the benchmarks are 
data intensive applications. 
The island size of the targeting RDR architecture is determined 
by the equation discussed in [3], and the consideration of the 
regularity of the targeting device, which contains 7×2 DSP 
blocks. We applied a 7×4 RDR architecture in the experiments. 
Table 1 shows the experimental results for these designs, 
including scheduling and binding results, and performance and 
area results reported by QuartusII. The second column lists the 
node numbers of the DFG examples. ALU and MULT are the 
corresponding functional unit usage after the initial binding. For 
both the conventional flow and MCAS flow, we list register usage 
(Reg#, by register binding), logic element cost (LE, by 
QuartusII), control step (CS, by scheduling), clock period (CP, by 
QuartusII), and total latency (Lat, the product of CS and CP).  
On average, MCAS flow introduces more cycles (11%) for the 
communication between registers. However, since MCAS 
separates the communications from the computations and applies 
multi-cycle path constraints for communications, the individual 
paths in the final layout are reduced, resulting in much smaller 
clock periods (more than a 30% reduction). Compared with the 
conventional flow, MCAS reduces the total latencies of the 
designs by 24% on average. 
Although both flows use the same functional unit allocation 
solution, MCAS uses 18% more LEs and 24% more registers than 
the conventional flow in order to support the RDR architecture. 
Such area overhead is non-trivial especially for some heavy-
capacity FPGA designs. One can adjust the target clock period (or 
island size) to explore the area/performance trade-off.  

6.2 MCAS vs. Synopsys Behavioral Compiler 
We further validate the advantage of MCAS by comparing it with 
a state-of-the-art commercially available behavioral synthesis tool, 
Behavioral Compiler (BC) from Synopsys. The experimental 
flows are illustrated in Figure 11. Since the MCAS system 
currently only supports C input and BC accepts VHDL format, 
we should first transform the C descriptions into behavioral 
VHDL manually. Due to the difficulty of the transformation and 
the capability of BC, we selected four representative benchmarks, 
PR, WANG, MCM, and HONDA, from the benchmark set used 
in Section 6.1. The rest benchmarks either contain syntax difficult 
to transform from C to VHDL (such as array access), or are too 
large for BC to run through. For example, we cannot obtain the 
schedule results from BC for DIR, CHEM, and U5ML12 etc. due 
to the long run time.  
For the high-level VHDL or C descriptions respectively, BC and 
MCAS obtain RTL VHDLs using DesignWare components. We 
then use the FPGA Compiler to map the RTL VHDL to Altera’s 
Stratix device. Again, QuarutsII is used to get the final placement 
and routing results. 
The Synopsys package we used, including BC, FPGA Compiler, 
and DesignWare Developer, is Version 2000.11 for sparcOS5. 
We set the default options for BC and high mapping effort for 
FPGA Compiler for the experiments. 

Table 2 lists the comparison results. The two flows achieve the 
similar resource cost and scheduled clock cycles. However, 
MCAS flow obtains a 21% improvement in clock period and a 
29% improvement in total latency. 
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Figure 11. Behavioral Compiler vs. MCAS flows 

7. CONCLUSIONS AND FUTURE WORK 
We presented an architectural synthesis system MCAS for multi-
cycle communication based on the RDR micro-architecture. An 
efficient solution for integrating scheduling into the global 
placement is proposed. We also described the generation of 
distributed controllers for the RDR architecture. Experimental 
results reported by the commercial place-and-rout tools show that 
effective synthesis methodology can be developed on top of the 
RDR architecture, and the improvement by applying this 
methodology is significant. 
We are currently working on the synthesis of the control-intensive 
application to the RDR architecture. Specifically, we are 
developing global scheduling and resource-sharing techniques to 
exploit inter basic block parallelism in our two-level CDFG. In 
addition, we have observed that the steering logic (e.g., MUX) 
has a big impact on both performance and area in the final layout. 
We will consider the minimization of the MUX input count for 
area optimization and layout-driven MUX decomposition for 
delay optimization. 
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Table 1. Comparison of the conventional flow vs. MCAS on CDFG examples, including  

scheduling and binding results, performance and area usage results from Quartus II  

Design Function Unit 
Binding 

Conventional Flow MCAS 

Name Node# ALU# MULT# Reg# LE CS CP (ns) Lat (ns) Reg# LE CS CP (ns) Lat (ns)
pr 46 6 2 34 1274 27 7.97 215.19 35 1589 29 5.63 163.27 

wang 52 5 8 35 1920 14 8.00 112.00 46 1770 20 4.94 98.80 
lee 53 8 4 36 1199 21 8.03 168.63 41 1544 26 5.10 132.60 

mcm 98 6 3 35 2540 34 10.28 349.52 50 3184 38 6.63 251.94 
honda 101 6 8 42 1948 23 8.80 202.40 56 2717 25 5.93 148.25 

dir 152 7 4 61 3436 50 10.36 518.05 66 3836 51 7.79 397.29 
chem 351 13 11 69 7072 50 10.59 529.60 101 8993 52 7.45 387.14 

u5ml12 551 18 13 89 10788 68 11.25 764.93 131 14182 70 7.75 542.71 
matmul 63 4 9 70 1547 18 8.59 154.59 88 1841 20 6.06 121.16 
cftmdl 199 10 7 152 5537 85 13.46 1143.86 161 5121 87 10.19 886.40 
cft1st 255 10 8 235 7803 78 13.84 1079.73 247 7886 84 9.63 809.33 

Ave Ratio - - - 1.00 1.00 1.00 1.00 1.00 1.24 1.18 1.11 0.69 0.76 
 

Table 2. Comparison of Behavioral Compiler vs. MCAS 
Design Flow ALU# MULT# Reg# LE CS CP (ns) Lat (ns) 

Synopsys BC 5 8 28 2945 25 11.07 276.82 pr 
MCAS 6 2 35 2575 29 8.99 260.77 

Synopsys BC 7 8 36 3605 29 11.96 346.85 wang 
MCAS 5 8 46 4194 20 9.01 180.28 

Synopsys BC 23 7 142 6253 43 12.55 539.86 mcm 
MCAS 6 3 50 4350 38 9.76 370.99 

Synopsys BC 8 14 44 6128 29 11.75 340.62 honda 
MCAS 6 8 56 6294 25 9.42 235.60 

Ave Ratio - - - - 0.94 0.90 0.79 0.71 
 


