
MatRaptor: A Sparse-Sparse Matrix Multiplication
Accelerator Based on Row-Wise Product

Nitish Srivastava, Hanchen Jin, Jie Liu, David Albonesi, and Zhiru Zhang
School of ECE, Cornell University

Email: {nks45, hj424, jl3952, dha7, zhiruz}@cornell.edu

Abstract—Sparse-sparse matrix multiplication (SpGEMM) is a
computation kernel widely used in numerous application domains
such as data analytics, graph processing, and scientific comput-
ing. In this work we propose MatRaptor, a novel SpGEMM
accelerator that is high performance and highly resource efficient.
Unlike conventional methods using inner or outer product as
the meta operation for matrix multiplication, our approach
is based on row-wise product, which offers a better trade-
off in terms of data reuse and on-chip memory requirements,
and achieves higher performance for large sparse matrices. We
further propose a new hardware-friendly sparse storage format,
which allows parallel compute engines to access the sparse data in
a vectorized and streaming fashion, leading to high utilization of
memory bandwidth. We prototype and simulate our accelerator
architecture using gem5 on a diverse set of matrices. Our
experiments show that MatRaptor achieves 129.2× speedup over
single-threaded CPU, 8.8× speedup over GPU and 1.8× speedup
over the state-of-the-art SpGEMM accelerator (OuterSPACE).
MatRaptor also has 7.2× lower power consumption and 31.3×
smaller area compared to OuterSPACE.

Index Terms—sparse matrix multiplication, sparse formats,
spatial hardware

I. INTRODUCTION

Sparse-sparse matrix-matrix multiplication (SpGEMM) is a
key computational primitive in many important application do-
mains such as graph analytics, machine learning, and scientific
computation. More concretely, SpGEMM is a building block
for many graph algorithms such as graph contraction [14], re-
cursive formulations of all-pairs shortest-paths algorithms [9],
peer pressure clustering [44], cycle detection [60], Markov
clustering [50], triangle counting [5], and matching algo-
rithms [41]. It has also been widely used in scientific com-
puting such as multigrid interpolation/restriction [8], Schur
complement methods in hybrid linear solvers [57], colored
intersection searching [23], finite element simulations based
on domain decomposition [19], molecular dynamics [21], and
interior point methods [24].

SpGEMM often operates on very sparse matrices. One
example is the Amazon co-purchase network [26], which is a
graph where each product is represented as a node and the like-
lihood of two products being bought together is represented as
an edge. This network consists of 400K nodes and 3.2M edges
forming an adjacency matrix of 400K × 400K with a density
of 0.002%. With such a high sparsity, the SpGEMM compu-
tation becomes highly memory-bound and requires effective
utilization of memory bandwidth to achieve high performance.

Traditionally, SpGEMM computations have been performed
on CPUs and GPUs [12], [38], [51], both of which have low
energy efficiency as they allocate excessive hardware resources
to flexibly support various workloads. Hardware accelerators
tackle this energy efficiency problem through specialization.
However, there are three key challenges in designing an
accelerator for SpGEMM computation: (1) the inner product
and outer product algorithms, which perform well for dense
matrix multiplication, are not necessarily the ideal algorithms
for SpGEMM due to the low densities of the sparse matrices
involved in the computation; (2) the SpGEMM computation
is highly memory-bound and the traditional sparse storage
formats such as CSR, CSC and COO perform random data
accesses when used with multiple compute units in parallel,
which results in low memory bandwidth utilization; (3) the
output of SpGEMM is also a sparse matrix for which the
number of non-zeros are not known ahead of the time, and
hence contiguous data allocation for different rows/columns
that are being computed in parallel requires synchronization.

In this work, we analyze the different dataflows for
SpGEMM and compare them in terms of data reuse and on-
chip memory requirements. We argue that row-wise product
approach has the potential to outperform other approaches
for SpGEMM for very sparse matrices. We further propose
a new sparse storage format named cyclic channel sparse
row (C2SR), which enables efficient parallel accesses to the
main memory with multiple channels. Using the row-wise
product approach and the new sparse format, we describe the
design of MatRaptor, a highly efficient accelerator architecture
for SpGEMM. According to our experiments on a diverse
set of sparse matrices, MatRaptor can achieve significant
performance improvement over alternative solutions based on
CPUs, GPUs, and the state-of-the-art SpGEMM accelerator
OuterSPACE [39].

The key technical contributions of this work are as follows:

(1) We systematically analyze different dataflows of
SpGEMM by comparing and contrasting them against data
reuse and on-chip memory requirements. We show that a
row-wise product approach, which has not been explored in
the design of SpGEMM accelerators, has the potential to
outperform the existing approaches.

(2) We introduce C2SR, a new hardware-friendly sparse
storage format that allows different parallel processing engines

(PEs) to access the data in a vectorized and streaming manner
leading to high utilization of the available memory bandwidth.

(3) We design a novel SpGEMM accelerator named Ma-
tRaptor, which efficiently implements the row-wise product
approach and fully exploits the C2SR format to achieve high
performance. Our experiments using gem5 show that MatRap-
tor is 1.8× faster than OuterSPACE on average with 12.2×
higher energy efficiency. Our accelerator is also 31.3× smaller
in terms of area and consumes 7.2× less power compared to
OuterSPACE.

II. ANALYSIS OF SPGEMM DATAFLOWS

In matrix multiplication, since each of the input matrices can
be accessed in either a row-major order or column-major order,
there are four possible ways to perform matrix multiplication
— inner product (row times column), outer product (column
times row), row-wise product (row times row), and column-
wise product (column times column) as shown in Fig. 1.
In the following subsections, we will discuss each of these
four approaches in terms of the data reuse and their on-chip
memory requirements. We define data reuse as the number
of multiply-accumulate (MAC) operations performed when a
single byte of data is read/written from/to the memory. For the
sake of simplicity, we assume that: (1) each of the input and
the output matrices have dimensions of N ×N ; (2) both the
input matrices have nnz number of non-zeros; (3) the output
matrix has nnz′ number of non-zeros; and (4) the number
of non-zero elements for each row/column are the same and
equal to nnz

N for input matrices and nnz′

N for output matrix.

A. Inner Product

This is arguably the most widely-known approach for com-
puting matrix multiplication, where a dot product is performed
between a sparse row from the first matrix and a sparse
column from the second matrix as shown in Eq. (1). With this
approach, we can parallelize the computation of multiple dot
products across different PEs. Fig. 1a shows the inner product
approach for SpGEMM computation and the parallelization
strategy.

C[i, j] =

N∑
k=0

A[i, k] ∗B[k, j] (1)

This approach reads a row of sparse matrix A and column
of sparse matrix B each of which has nnz

N non-zeros, and
performs index matching and MACs. As the number of non-
zeros in the output matrix is nnz′, the probability that such
index matching produces a useful output (i.e., any of the two
indices actually matched) is nnz′

N2 . Thus the data reuse for the
inner product approach is O(nnz

′/N2

nnz/N) which is O(nnz
′

nnz .
1
N).

Since N can be very large and nnz′ is similar to nnz, the
data reuse of inner product approach is very low for large
matrices. The on-chip memory requirements for this approach
is O(nnzN). Since N can be of the order of 100K − 10M and
nnz
N is of the order of 10−100s the data reuse for inner product

approach is low; however, the on-chip memory requirements
are also low.

Thus, inner product approach has three major disadvantages
for SpGEMM:

(1) The two input matrices need to be stored in different
formats, one row major and another column major.

(2) It attempts to compute each element of the output matrix.
However, in case of SpGEMM, the output matrix is typically
also sparse, which leads to a significant amount of wasted
computation. For example, in Fig. 1 when the inner product is
performed between the last row of matrix A and last column
of matrix B, none of the indices match and the output is a
zero.

(3) It performs a dot product of two sparse vectors, which is
very inefficient since it requires index matching where a MAC
is performed only when the indices of the non-zero elements
from the two vectors match; for example in Fig. 1a the inner
product of first row of A and second column of B requires
three index matching operations but performs only one MAC.

B. Outer Product

With this approach, an outer product is performed between
a sparse column of the first matrix and a sparse row of the
second matrix to produce partial sums for the entire output
matrix as shown in Eq. (2). The outer product approach
parallelizes the computation of different outer products across
different PEs. Fig. 1b shows the outer product approach and
the parallelization strategy.

C[:, :] =

N∑
k=0

A[:, k] ∗B[k, :] (2)

This approach reads a column and a row of the sparse
input matrices A and B, each with nnz

N non-zeros and per-
forms an outer product with (nnzN)2 MAC operations. Thus
the data reuse for outer product approach is O(nnzN). The
on-chip memory requirement for outer product approach is
O(nnzN + nnz′), where the first term is the on-chip storage
required for rows/columns of input matrices and the second
term is on-chip requirement for the output matrix. Thus, using
typical ranges of nnz

N from 10-100 and for nnz′ from 100K-
10M, the outer product approach reuses the data read/written
from/to the memory 10-100 times; but it requires an on-chip
memory size of hundreds of mega-bytes.

The outer product algorithm solves two major problems
with the inner product approach by computing only non-zero
entries of the output matrix and not performing any index
matching while multiplying the inputs. However, it has three
major disadvantages:

(1) The two input matrices still need to be stored in different
formats, one column major and another row major.

(2) Multiple PEs produce the partial sums for the entire
output matrix, as shown in Fig. 1b, which requires syn-
chronization among them. This limits the scalability of the
hardware.

x

x

x

=

=

=

+

+.
.
.

.
.
. .
.

x

x

x

=

=

=

+

+.
.
.

.
.
. .
.

x

x

x

=

=

=

+

+.
.
.

.
.
. .
.

x

x

x

=

=

=

+

+.
.
.

.
.
. .
.

Parallelism

(a) Inner product (b) Outer product (c) Row-wise product (d) Column-wise product

Different parallel units
reading and writing same
location (synchronization)

4 index matching operations
but no MAC

Fig. 1: Four different ways of computing SpGEMM kernel — (a) Inner product approach; (b) Outer product approach;
(c) Row-wise product approach; and (d) Column-wise product approach. The non-zero elements in the two input matrices are
shown in blue and green colors, the non-zero elements in the output matrix are shown in orange color, and the elements of
the matrices involved in the computation are shown with dark borders.

(3) For output reuse the partial sums are typically stored on-
chip. This requires a large buffer since the partial sums from
the entire output matrix are produced for each outer product.
For example, OuterSPACE [39], which employs the outer
product approach, uses 0.5MB of on-chip memory (256KB of
scratchpads within the PEs, 256KB of L0 caches and 16KB
of victim caches). Yet it still cannot hold all the partial sums
on the chip as the size of partial sums varies from 10-100MB.

C. Row-Wise Product

In the row-wise product approach (also known as Gus-
tavson’s algorithm [16]), all the non-zero elements from a
single row of matrix A are multiplied with the non-zero entries
from the corresponding rows of matrix B, where the row
index of matrix B is determined by the column index of the
non-zero value from matrix A. The results are accumulated
in the corresponding row of the output matrix as shown in
Eq. (3). Multiple rows from the output matrix can be computed
in parallel. Fig. 1c illustrates the row-wise product approach
and the parallelization strategy. Fig. 2 gives a more concrete
example which illustrates the computation of SpGEMM with
two PEs using the row-wise product approach. Here, each of
the two PEs reads entire rows of A and B matrices and writes
entire rows of the output matrix C.

C[i, :] =

N∑
k=0

A[i, k] ∗B[k, :] (3)

With this approach, we read a scalar value from matrix A
and a row of matrix B with nnz

N non-zeros and perform an
scalar-vector product with (nnzN) MAC operations. While the
data reuse is low, the on-chip memory requirement for this
approach is only O(nnzN + nnz′

N). Here the two terms represent
the on-chip storage required by the non-zeros from a row of
B and a row of the output matrix, respectively. Thus, using
typical ranges of nnz

N and nnz′

N from 10-100, the row-wise
product approach only requires an on-chip buffer size of a
few kilo-bytes. The key advantages of using row-wise product
are as follows:

a00 a02 a03

a13

a21

a31 a32

b00 b03

b12

b20 b22

b30 b31 b33

c00 c01 c02 c03

c10 c11 c13

c22

c30 c32

a00 b00 c000

a02 b20 c200

a03 b30 c300

X

X

X

=

=

=

b22 c202=

b31

b33

c301

c303

=

=

c003b03

a21 b12 c122X =

a13 b30 c310

a31 b12

X

X

=

= c132

c311b31

c313b33

a32 b20 c230X =

c232b22

c000 + c200 + c300

c003 + c303

c132 + c232

x

=

A
PE 0 PE 1

B

C

Fig. 2: Parallelization of row-wise product on two PEs
— PE0 is assigned to rows 0 and 2 of input matrix A and
computes rows 0 and 2 of output matrix C; PE1 is assigned
rows 1 and 3 of the matrix A and computes rows 1 and 3 of
the matrix C; The matrix B is shared between the two PEs.

• Consistent Formatting: Row-wise product accesses both
the input matrices and the output matrix in row-major
order that allows us to use the same format for the
inputs and outputs. Since many algorithms such as graph
contractions require a chain of matrix multiplications
having a consistent format is essential.

• Elimination of Index Matching: The core computation
in this approach is scalar-vector product; hence it com-
putes only non-zero entries of the output matrix and does
not require inefficient index matching of the inputs as in
the case of inner product approach.

• Elimination of Synchronization: This approach allows
multiple PEs to compute different rows of the sparse
output matrix and hence there is no need to synchronize
the reads and writes to the output memory.

• Low On-Chip Memory Requirements Since a single
output row is computed at a time, the required output
buffer size is in the order of O(nnz

′

N). This is contrast
with the outer product approach, which requires the entire
output matrix to be stored on chip with a buffer size
of O(nnz′). As N is typically very large (in the order
of 100K–10M), the on-chip memory savings from row-

wise product approach over outer product approach are
significant.

The row-wise product approach also has some disadvan-
tages: (1) on-chip data-reuse for for matrix B is low as com-
pared to outer product; and (2) just like the other approaches
row-wise product needs to cope with the load imbalance issue
among multiple PEs. The low on-chip data reuse has more
impact on the performance when the density of matrix B is
high. This, however, is not the case with most of the SpGEMM
algorithms where both the operand matrices are highly sparse.
The load imbalance issue can mostly be solved using a round-
robin row allocation strategy discussed in Section IV-A.

D. Column-Wise Product

In column-wise product approach, all the non-zero elements
from a single column of matrix B are multiplied with the non-
zero entries from the corresponding columns of matrix A and
the results are accumulated in the corresponding column of the
output matrix as shown in Eq. (4). Fig. 1d shows the column-
wise product approach and the parallelization strategy.

C[:, j] =

N∑
k=0

A[:, k] ∗B[k, j] (4)

This approach is similar to the row-wise product approach
and has the same data reuse and on-chip memory requirements
as in case of row-wise product approach. The rest of the paper
focuses on row-wise product approach for SpGEMM as it has
low on-chip memory requirements and does not lose much in
terms of data reuse compared to the outer product approach,
especially for very sparse large matrices.

III. SPARSE MATRIX FORMAT

By using row-wise product, we can achieve high compute
utilization and low on-chip storage requirements. In this sec-
tion, we further propose a new hardware-friendly sparse stor-
age format to achieve high utilization of the off-chip memory
bandwidth, which is essential for high-performance SpGEMM
computation. For scalability and high performance, the on/off-
chip memories are often divided into smaller memory banks
to achieve lower memory latency and higher bandwidth. We
abstractly represent such memory banks as channels in our
discussion and assume that data is interleaved in these channels
in a cyclic manner. These channels can be later mapped to
different DRAM channels and scratchpad banks.

A. Limitations of CSR Format

Fig. 3 shows the same sparse matrix A as in Fig. 2 using its
dense form (Fig. 3a) and the conventional compressed sparse
row (CSR) format (Fig. 3b). Here the CSR format consists
of (1) an array of (value, column id) pairs for the non-zero
elements in the matrix and (2) an array of row indices, where
the ith index points to the first non-zero element in the ith row
of the matrix. In Fig. 3, we illustrate how the (value, column
id) array can be mapped to a memory with two channels.
Fig. 3e shows how two PEs read the data from matrix A

and Fig. 3f shows how these PEs write the output matrix C
using the row-wise product approach depicted in Fig. 2. We
assume that the channel interleaving is 4 elements and each
PE sends 4-element wide requests (2 non-zero values and 2
column ids) to the memory. As shown in Fig. 3e and Fig. 3f,
the CSR format has several major limitations: (1) a vectorized
memory request can be split among different channels, leading
to non-vectorized memory access within each channel; (2)
multiple PEs may send the memory read requests to the same
channel resulting in memory channel conflicts; (3) a vectorized
memory read can read wasteful data which does not belong to
that PE; and (4) for writing the output matrix, each PE writing
the ith row to the memory needs to wait for all the PEs writing
rows < i to finish, which leads to synchronization issues.

B. The Proposed C2SR Format

To overcome the aforementioned limitations, we propose a
new sparse storage called channel cyclic sparse row (C2SR),
where each row is assigned a fixed channel in a cyclic manner.
Fig. 3c shows the cyclic assignment of rows to the channels
and Fig. 3d shows the corresponding C2SR format. This new
format consists of an array of (row length, row pointer) pairs
and an array of (value, column id) pairs. The (value, column
id) array stores the non-zero elements from the sparse matrix
along with their column ids. The ithentry in the (row length,
row pointer) array stores the number of non-zeros in the ith

row and the pointer to the first non-zero element from that
row in the (value, column id) array. To store a sparse matrix in
C2SR format, first each row is assigned to a fixed channel in a
cyclic manner and then for each channel all non-zero elements
are written serially to the memory locations corresponding to
that channel in the (value, column id) array. For example in
Fig. 3c, rows 0 and 2 are assigned to channel 0 and hence their
non-zero elements are stored at the locations corresponding
to channel 0 in the (value, column id) array in Fig. 3d. The
reading of matrix A and writing to output matrix C are shown
in Fig. 3e and 3f. The C2SR storage format has the following
three key properties:

• No Channel Conflicts: Each row is assigned to a unique
channel, which means that the rows mapped to different
channels do not have memory channel conflicts and can
be accessed in parallel. This is in contrast to CSR for-
mat, where different rows are not necessarily mapped to
distinct channels and result in memory channel conflicts.

• Vectorized and Streaming Memory Reads: All the
rows mapped to a channel are stored sequentially in that
channel, resulting in high spatial locality when accessing
these rows in a row major order.

• Parallel Writes to the Output Matrix: The rows of the
sparse matrix mapped to a channel can be written to that
channel without requiring any information about the rows
mapped to other channels. For example in Fig. 3f, with
C2SR format PE0 and PE1 do not wait for each other and
can write to the results to their corresponding channel in
parallel. While using CSR format, PE1 needs to wait for

a00 a02 a03

a13

a21

a31 a32

(a) Sparse Matrix A
under CSR

(b) CSR format for A

Row length

a00 a02 a03 a13 a21 a31 a32

0 2 3 3 1 1 2

0 3 4 5 7

a00 a02 a13 a31 a03 a21 a32

0 2 3 1 3 1 2

3 1 1 2

. . . .Row pointer

a00 a02 a03

a13

a21

a31 a32

value

column id

value

column id(c) Sparse Matrix A
under C2SR

(d) C2SR format for A

channel 0 channel 1

Row indices
a00 a02

0 2

a13 a21

3 1

a03 a13

3 3

a31 a32

1 2

PE0 PE1

a00 a02

0 2

a13 a31

3 1

a03 a21

3 1

a32

2

PE0 PE1

cycle 0

cycle 1

cycle 2

a21 a31

1 1

channel conflict

Non-vectorized memory
reads in both channels

Useless reads
from memory

CSR C2SRTime

(e) Comparison between CSR and C2SR

c00 c01 c02 c03

c10 c11 c13

c22

c30 c32

c00 c01 c02 c03 c10 c11

0 1 2 3 0 1

c00 c01 c10 c11 c02 c03

0 1 0 1 2 3

CSR

C2SR

PE0 PE1 PE0 PE1 PE0 PE0

PE0 PE0 PE0 PE0 PE1

(f) Output matrix being stored to the memory in CSR and C2SR formats by two PEs

cycle 0channel 0 channel 1

PE0

PE1

cycle 1 cycle 2 cycle 3 cycle 4 cycle 5

PE1

Fig. 3: Comparison of sparse storage formats — (a) shows the sparse matrix A in its dense representation; (b) shows matrix
A stored in the CSR storage format and assignment of non-zero elements to two channels using 4-element channel interleaving;
(c) shows the same sparse matrix A in dense representation where each row is mapped to a unique channel; (d) shows the
sparse matrix A in C2SR format; (e) shows the cycle by cycle execution of two PEs where PE0 and PE1 read rows 0 and 2,
and rows 1 and 3 of matrix A, respectively; and (f) shows the output matrix C being written by the two PEs in CSR and C2SR
formats.

PE0 to finish so that it can determine the next available
memory location to write the output row.

IV. MATRAPTOR ARCHITECTURE

This section details the implementation of row-wise product
approach for SpGEMM, which benefits over other conven-
tional SpGEMM methods through: (1) consistent formatting,
(2) elimination of index matching, (3) elimination of syn-
chronization, and (4) low on-chip memory requirements. In
Section IV-A we first describe the two major operations in the
row-wise product implementation: multiplication and merge,
where for merge operation an efficient sorting technique using
queues is introduced. In Section IV-B, we provide the details
of the MatRaptor accelerator architecture.

A. Row-wise Product Implementation
An important consideration for SpGEMM acceleration is to

balance load among the PEs. Many real-world sparse matrices
follow the power-law distribution, in which some of the rows
can be completely dense while others may be almost empty.
This can result in load balancing issues in the cases when: (i)
different PEs work in lock step, meaning all the PEs finish pro-
cessing one row each before starting to process the next row;
and (ii) the rows of a sparse matrix mapped to one PE have
significantly more non-zero elements than the number of non-
zeros in the rows mapped to a different PE. MatRaptor solves

(i) by allowing all the PEs to work completely asynchronously.
Such asynchronous execution is made possible by the C2SR
format, which partitions the address space of the output matrix
between different PEs and allows the PEs to independently
produce the results of the output matrix. MatRaptor tackles
(ii) by doing a round robin allocation of rows to different PEs.
This effectively ensures that for the sparse matrices with few
high-density regions, the non-zero elements in these regions
are approximately uniformly split among different PEs.

Fig. 2 shows the parallelization of SpGEMM in row-wise
product approach using two PEs. Here, rows 0 and 2 of the
input matrix A are assigned to PE0, which is responsible for
computing rows 0 and 2 of output matrix C; rows 1 and 3 of
the input matrix A are assigned to PE1, which is responsible
for computing the corresponding rows of the output matrix C.
The input matrix B is shared between both PEs. The PEs read
the input matrices A and B stored in the memory in C2SR,
perform the SpGEMM computation, and write the non-zero
elements of the output matrix C to memory using the same
C2SR format.

The SpGEMM computation within a PE consists of two
major operations: (a) multiply operations, which correspond
to the scalar-vector multiplications shown in Fig. 2; (b) merge
operations, which involves sorting and accumulations. From
now onwards, we will use the following notations: (1) The

𝒂𝟎𝟎 𝒂𝟎𝟐 𝒂𝟎𝟑

𝒂𝟏𝟑

𝒂𝟐𝟏

𝒂𝟑𝟏 𝒂𝟑𝟐

𝒃𝟎𝟎 𝒃𝟎𝟑

𝒃𝟏𝟐

𝒃𝟐𝟎 𝒃𝟐𝟐

𝒃𝟑𝟎 𝒃𝟑𝟏 𝒃𝟑𝟑

𝒂𝟎𝟎 𝒃𝟎𝟎

𝒂𝟎𝟐 𝒃𝟐𝟎

𝒂𝟎𝟑 𝒃𝟑𝟎

X

X

X

=

=

=

𝒃𝟐𝟐 =

Queue 0

𝒃𝟑𝟏

𝒃𝟑𝟑

=

=

𝒃𝟎𝟑

Merge Operations

Queue 1 Queue 2

Multiply Operations
P

h
ase

 I
P

h
ase

 II

𝒄𝟎𝟎
𝟎𝟑𝟐 𝒄𝟎𝟏

𝟑 𝒄𝟎𝟐
𝟐 𝒄𝟎𝟑

𝟎𝟑

𝒄𝟏𝟏
𝟑 𝒄𝟏𝟑

𝟑

𝒄𝟐𝟐
𝟏

𝒄𝟑𝟎
𝟐 𝒄𝟑𝟐

𝟏𝟐

01

02

03

04

05

06

07

08

Cycles

Queue
Swapping

𝒄𝟎𝟎
𝟎

𝒄𝟎𝟑
𝟎

𝒄𝟎𝟎
𝟐

𝒄𝟎𝟐
𝟐

𝒄𝟎𝟎
𝟑

𝒄𝟎𝟏
𝟑

𝒄𝟎𝟑
𝟑

𝒄𝟎𝟎
𝟎

𝒄𝟎𝟎
𝟎 𝒄𝟎𝟑

𝟎

𝒄𝟎𝟑
𝟎𝒄𝟎𝟎

𝟎

𝒄𝟎𝟎
𝟎 𝒄𝟎𝟑

𝟎

𝒄𝟎𝟑
𝟎

𝒄𝟎𝟎
𝟐

𝒄𝟎𝟐
𝟐𝒄𝟎𝟎

𝟐

𝒄𝟎𝟎
𝟎

𝒄𝟎𝟑
𝟎

𝒄𝟎𝟑
𝟎

𝒄𝟎𝟎
𝟐

𝒄𝟎𝟎
𝟐

𝒄𝟎𝟎
𝟐

𝒄𝟎𝟎
𝟐

𝒄𝟎𝟐
𝟐

𝒄𝟎𝟐
𝟐

𝒄𝟎𝟐
𝟐

𝒄𝟎𝟐
𝟐

𝒄𝟎𝟐
𝟐𝒄𝟎𝟎

𝟐

𝒄𝟎𝟎
𝟎𝟑

𝒄𝟎𝟑
𝟎𝟑

𝒄𝟎𝟏
𝟑𝒄𝟎𝟎

𝟎𝟑

𝒄𝟎𝟎
𝟎𝟑 𝒄𝟎𝟏

𝟑

𝒄𝟎𝟎
𝟎𝟑 𝒄𝟎𝟏

𝟑 𝒄𝟎𝟑
𝟎𝟑

+

+

<

𝒄𝟎𝟎
𝟎𝟑𝟐

𝒄𝟎𝟏
𝟑

𝒄𝟎𝟐
𝟐

𝒄𝟎𝟑
𝟎𝟑

+

stream

D
R
A
M

A

B

C
09

10

11

12

𝒄𝟎𝟐
𝟐 𝒄𝟎𝟏

𝟑 𝒄𝟎𝟑
𝟎𝟑

𝒄𝟎𝟑
𝟎𝟑𝒄𝟎𝟐

𝟐

𝒄𝟎𝟑
𝟎𝟑

>

<

Fig. 4: Illustration of multiply and merge operations involved in computing the results for a single row of the output
matrix — Phase I corresponds to the cycles when the multiplications are performed and the result of the multiplication is
merged with the (data, col id) values in one of the queues; and Phase II corresponds to the cycles when the (data, col id)
values in different queues are merged together and streamed out to the DRAM.

non-zero elements from the input matrices A and B will be
represented as aik and bkj where the subscripts represent
the row index and the column index of the matrix elements,
respectively; (2) A non-zero element of the output matrix will
be represented as either ckij or ck0,k1,...kmij where ckij = aik∗bkj
and ck0,k1,...kmij = ck0ij + c

k1
ij + ...+ c

km
ij . The subscripts i and j

represent the row index and the column index of the non-zero
element in matrix C.

Multiply Operations. For the multiply operations, a PE
reads non-zero elements aik from the ith row of matrix A
assigned to it. For each aik, it then reads all the non-zero
elements {bkj1 , bkj2 , bkj3 , ...} from the kth row of matrix B
and performs a scalar-vector multiplication to produce the par-
tial sums {ckij1 , c

k
ij2
, ckij3 , ...} for the ith row of matrix C. For

example in Fig. 2, PE0 reads the non-zero element a00 and the
0th row of matrix B and performs scalar-vector multiplication
on {b00, b03} to produce the partial sums {c000, c003} for the
0th row of matrix C.

Merge Operations. The partial sum vectors for the ith row
of the output matrix C need to be merged to produce the final
results. This requires sorting all the partial sum vectors with
respect to their column indices j and then accumulating the
partial sums which have the same column index. One naı̈ve
solution is to collect all the partial sum vectors and sort them
using a sorting hardware. However, such a sorting hardware
would be inefficient as it would not make use of the property
that each of the partial sum vectors is already sorted with
respect to column indices.

A better approach to solve such a sorting problem is by
using multiple queues. In this approach, each PE has Q >
2 queues where each queue maintains the invariant that its
entries are always sorted with respect to column indices. Out
of all the queues, all queues except one act as primary queues
while the remaining one acts as a helper queue. For each row
of the output matrix, the first (Q−1) partial sum vectors are
written to one of the primary queues such that there is only
one partial sum vector per queue. After the first (Q−1) partial
sum vectors, each partial sum vector is merged with the queue
with the least number of entries and the results are written to
the helper queue. While merging, if the column indices in the
partial sum vector and the top of the queue match, the entry
is removed from both the partial sum vector and the queue
and their sum is pushed to the helper queue. If the column
indices do not match, then the one (either partial sum vector or
queue) with the smaller column index is popped and the value
is pushed to the helper queue. After the merge is complete,
the helper queue is swapped with the primary queue involved
in the merge, and the primary queue becomes the new helper
queue. This process continues until the row index of the non-
zero element from A changes.

Fig. 4 shows the merge part of the computation with three
queues. Initially, the first two queues are the primary ones and
the last is a helper, and the partial sum vectors {c000, c003} and
{c200, c202} are inserted into queues 0 and 1. Then the partial
sum vector {c300, c301, c303} is merged with queue 0 as it has the
least number of entries and the results are written to the helper
queue. When the row index of the non-zero element from A

changes, then the entries in all the queues need to be merged
and written back to the main memory. To merge the data in
all the queues, the queue with the smallest column index is
popped and the data is streamed to the main memory. In the
case when multiple queues have the same minimum column
index at the top of the queue, all such queues are popped and
the sum of popped elements is streamed to the main memory,
as shown in Fig. 4. After the last non-zero element from the
first row of matrix A is processed, queue 0 and queue 1 are
merged and the results are streamed to the DRAM.

B. Architectural Details of MatRaptor

Fig. 5a shows the micro-architecture of MatRaptor. It con-
sists of Sparse Matrix A Loaders (SpAL), Sparse Matrix B
Loaders (SpBL), and the compute PEs. SpALs, SpBLs, and
the PEs implement a one-dimensional systolic array with N
rows. The rows of the input matrix A are assigned to the rows
of the systolic array in a round-robin fashion.

Each SpAL reads the non-zero elements aik from a row of
matrix A and sends it along with its row and column indices
to SpBL. SpBL uses the column index k received from SpAL
to fetch the non-zero elements from kth row of matrix B (i.e.,
bkj), and sends aik, bkj , i and j to the main compute PEs. The
PE performs multiplication and merge computations where
it multiplies aik and bkj and merges the results and writes
them to the main memory. A crossbar connects the SpALs,
SpBLs and PEs to the main memory. Since each SpAL and
PE is connected to only one HBM channel, the crossbar is
not a full crossbar and its design is much simplified. The
following subsections describe each component of MatRaptor
micro-architecture in more detail.

Sparse Matrix A Loader. SpAL is configured with the
number of rows N in the sparse matrix A and the pointer to
the beginning of the arrays containing the (row length, row
pointer) pairs in the C2SR storage of matrix A. SpAL first
sends a memory read request to fetch the (row length, row
pointer) pair for a row of matrix A. Then it sends multiple
memory read requests using the row pointer to fetch the
(value, column id) pairs in that row. To achieve high memory
bandwidth, SpAL sends wide memory read requests for (value,
column id) pairs such that size of the memory request is the
same as the channel interleaving size and thus implements
vectorized memory reads. SpAL also implements outstanding
requests and responses queue to avoid stalling for the memory
responses and thus is able send and receive memory requests
and responses in a pipelined manner. Once a (value, column
id) pair is read from the memory, SpAL sends the values along
with its row and column indices, namely, (aik, i, k) to SpBL.

Sparse Matrix B Loader. SpBL receives (aik, i, k) values
from SpAL and sends a memory read request for the (row
length, row pointer) pair in kth row of matrix B. It then
uses the row pointer to send multiple memory read requests
for the (value, column id) pairs in kth row of the B matrix.
Similar to SpAL, SpBL also loads the (value, column id) pairs
in vectorized streaming manner and maintains outstanding

requests and responses queue. When a (value, column id) pair
is read from the memory, SpBL sends the values aik, bkj , i
and j to the PE.

Processing Element. Each PE receives (aik, bkj , i, j) values
from SpBL and performs the multiply and merge operations.
Fig. 5b shows the design of a single PE. It consists of
a multiplier to calculate the product of aik and bkj and
produce the partial sum ckij . It also consists of two sets of
Q queues, where each queue contains (data, col id) pairs.
The reason behind having two set of queues is that the merge
operations in Fig. 4 can be divided into two phases: Phase I,
when the multiplications are performed and the result of the
multiplication is merged with the (data, col id) values in one
of the queues; and (b) Phase II, when all the partial sums for
a single output row have been written to one of the queues
and the (data, col id) values in different queues are merged
together and streamed out to the DRAM.

Since Phase II stalls the multiply operations, this can lead
to poor utilization of the multipliers. With two sets of queues,
when Phase I is completed, the multipliers can start computing
the results for the next output row in a different set of queues
while the results from the current queues are merged and
written to the DRAM. With this kind of double buffering,
Phase I and Phase II can be performed in parallel, which
results in higher compute utilization.

All the queues within a set are connected to a multiplexer,
which is used to select the queue with least number of entries.
The queues within a set are also connected to an adder tree and
minimum column index selection logic. The minimum column
index logic outputs a Q-bit signal where each bit represents
whether the corresponding queue has the minimum column
index. The output of minimum column index logic is then sent
to the controller which configures the adder tree to accumulate
the data values from the selected queues. The controller also
pops an element from each of these queues. Fig. 5b shows the
PE when the set of the queues on the left are involved in Phase
I computation and the set of queues on the right are involved
in Phase II of the computation. The inactive components from
both the sets are shown with gray color and dotted lines.

If the number of rows of the systolic array is an integer
multiple of the number of channels, then each row of the
systolic array will read/write the elements of matrix A/C
from/to a unique channel; however, multiple rows of the
systolic array can access the data from the same channel. If
the number of channels is an integer multiple of the number
of rows of the systolic array, then no two rows of the systolic
array will share a channel while a single row of systolic array
will be assigned more than one channel. For the cases when
the number of rows in the systolic array and the number
of channels are the same, each row of the systolic array is
assigned one channel.

V. EXPERIMENTAL SETUP

To evaluate the performance of MatRaptor, we model our
architecture consisting of SpALs, SpBLs, PEs, and HBM using
the gem5 simulator [7]. We implement the systolic array with

𝐏𝐄𝟏

𝐏𝐄𝟎

𝐏𝐄𝐍

...

HBM

[𝒂𝒊𝒌, 𝒊, 𝒌] [𝒂𝒊𝒌, 𝒊, 𝒃𝒌𝒋, 𝒋]

+

. . .

. . .

Adder
TreeMin col id

.

Comparator Controller

(a) (b)

𝐒𝐩𝐀𝐋𝟎

...

𝐒𝐩𝐀𝐋𝟏

𝐒𝐩𝐀𝐋𝐍

𝐒𝐩𝐁𝐋𝟎

...

𝐒𝐩𝐁𝐋𝟏

𝐒𝐩𝐁𝐋𝐍

x
𝑎𝑖𝑘

𝑏𝑘𝑗

𝑗

data
signals

control
signals

. . .

. . .

Min col id

.
Adder
Tree

Phase I Phase II

Q Q

𝑐𝑘𝑖𝑗

Queue0 QueueQ-1 QueueQ-1

𝑑𝑎𝑡𝑎

𝑐𝑜𝑙 𝑖𝑑

𝑑𝑎𝑡𝑎𝑐𝑜𝑙 𝑖𝑑

(𝑑𝑎𝑡𝑎, 𝑐𝑜𝑙 𝑖𝑑)

Stream to DRAM

𝑑𝑎𝑡𝑎 + 𝑐𝑘𝑖𝑗

EN

𝒅𝒂𝒕𝒂 𝒄𝒐𝒍 𝒊𝒅
…
…
…
…
…

…
…
…
…

…
𝒅𝒂𝒕𝒂 𝒄𝒐𝒍 𝒊𝒅
…
…
…
…
…

…
…
…
…

… 𝒅𝒂𝒕𝒂 𝒄𝒐𝒍 𝒊𝒅
…
…
…
…
…

…
…
…
…

…
𝒅𝒂𝒕𝒂 𝒄𝒐𝒍 𝒊𝒅
…
…
…
…
…

…
…
…
…

…

Queue0

Fig. 5: MatRaptor architecture — (a) shows the MatRaptor microarchitecture consisting of Sparse A Loaders (SpALs),
Sparse B Loaders (SpBLs), Processing Elements (PEs), system crossbar and high-bandwidth memory (HBM); (b) shows the
microarchitecture of a single PE consisting of multipliers, adders, comparator and queues on the left performing phase I of the
multiply and merge operations, and the queues on the right, adder tree and minimum column index logic performing phase II
of the merge operations.

eight rows to match the number of channels in the HBM. Each
PE consists of ten queues which are implemented as SRAMs
and where each queue is 4KB in size. We implemented the
memory request and response queues with 64 entries. We used
the gem5 memory model for HBM, which supports up to eight
128-bit physical channels, runs at 1GHz clock frequency and
provides a peak memory bandwidth of 128 GB/s.

We attach MatRaptor to a host CPU as a co-processor where
both the CPU and MatRaptor share the same off-chip memory.
For the host CPU we use the RISCV minor CPU model in
gem5. We add support for a custom instruction mtx (move to
accelerator) to send messages from host CPU to MatRaptor in
the RISCV gcc compiler and gem5 CPU model. The host CPU
first sends the pointers of the sparse storage arrays for matrices
A and B, and the pointers to an empty storage location for C
to the accelerator and then starts the accelerator by writing 1
in x0 configuration register and waits for the accelerator to
finish.

A. Measurements

We implemented the PEs and crossbar using PyMTL [32],
and performed RTL simulations to validate our gem5 model.
We then translated them to Verilog, synthesized them using
the Synopsys Design Compiler for synthesis and Cadence
Innovus for place-and-route, targeting a TSMC 28nm library.
We modeled the latency, area and power of the queues in
the merge logic and outstanding request and response queues
using CACTI 7.0 [35]. For SpALs and SpBLs, since the area
and power are dominated by outstanding memory requests and
response queues, we use the area and power numbers for these
queues from CACTI and add 10% overhead for the control

logic. Table I shows the area and power breakdown of different
components of the design. For HBM we use the energy
numbers from [45]. Overall the area of our accelerator is
2.2mm2, which is 31.3× smaller than the area of OuterSPACE
(70.2mm2 after technology scaling). The main reason behind
this is our PEs and on-chip memory are much simpler than
the PEs, scratchpads and caches in OuterSPACE.

TABLE I: Area and power breakdown of MatRaptor.

Component Area (mm2) % Power (mW) %

PE 1.981 87.77 % 1050.57 78.11 %
– Logic 0.080 3.54 % 43.08 3.20 %
– Sorting Queues 1.901 84.22 % 1007.49 74.90 %

SpAL 0.129 5.71 % 144.15 10.71 %

SpBL 0.129 5.71 % 144.15 10.71 %

Crossbars 0.016 0.7 % 6.067 0.45 %

Total 2.257 100 % 1344.95 100 %

B. Baselines

We compare our design against three baselines: CPU, GPU,
and OuterSPACE [39].

CPU: We use Intel Math Kernel Library (MKL) to evaluate
our benchmarks on both single thread and multiple threads (12
threads) of Intel Xeon E5-2699 v4 server-class CPU, which
is manufactured using 14nm technology node, runs at 2.20
GHz and has 32 KB L1 cache per core, 256 KB shared
L2 and 55 MB of shared L3 caches. We kept the number
of CPU threads in the multi-threaded version the same as
the one used in OuterSPACE [39] for their CPU baseline.

The CPU uses DDR4 with 4 DRAM channels and supports
a peak memory bandwidth of 76.8 GB/s. Since, SpGEMM
is primarily memory-bound and the Intel CPU supports a
peak memory bandwidth of only 76.8 GB/s while HBM
used for MatRaptor has a peak bandwidth of 128 GB/s, we
also scale the performance and energy efficiency of the CPU
accordingly to 128 GB/s for comparison purposes. For energy
estimation of CPU and DRAM, we use the energy numbers
from McPAT [28] and [6].
GPU: We use cuSPARSE [38] to evaluate the benchmarks on
an NVIDIA Titan Xp GPU, which is manufactured using a
16nm technology node; it uses GDDR5x DRAM with a peak
bandwidth of 547.6 GB/s and has a peak 32-bit performance
of 12.15 TFLOP/s. We use CUDA 9.1 to program the GPU.
Similar to the CPU, we scale the performance and energy
numbers of the GPU to 128 GB/s of peak memory bandwidth
and use both scaled and unscaled versions for comparisons. We
use nvidia-smi to measure the power consumption while
running SpGEMM benchmarks on the GPU and estimate the
power consumption of GDDR5x using [3].
Accelerator: We also compare our work against OuterSPACE,
the state-of-the-art SpGEMM accelerator, which uses the outer
product approach. We obtained the performance numbers
for all benchmarks from the authors of OuterSPACE and
used those numbers for comparison. For energy comparisons,
we used the power numbers from [39] which are in 32nm
technology node and scale them to 28nm.

TABLE II: Matrices from SuiteSparse [11] with their di-
mensions, number of non-zeros (nnz), density and problem
domain.

Matrix Dim nnz nnz
N

Density

web-Google (wg) 916K × 916K 5.1M 5.6 6.1e-6
mario002 (m2) 390K × 390K 2.1M 5.4 1.3e-5
amazon0312 (az) 401K × 401K 3.2M 8.0 1.9e-5
m133-b3 (mb) 200K × 200K 801K 4.0 2.0e-5
scircuit (sc) 171K × 171K 959K 5.6 3.2e-5
p2pGnutella31 (pg) 63K × 63K 148K 2.4 3.7e-5
offshore (of) 260K × 260K 4.2M 16.3 6.2e-5
cage12 (cg) 130K × 130K 2.0M 15.6 1.1e-4
2cubes-sphere (cs) 101K × 101K 1.6M 16.2 1.5e-4
filter3D (f3) 106K × 106K 2.7M 25.4 2.4e-4
ca-CondMat (cc) 23K × 23K 187K 8.1 3.5e-4
wikiVote (wv) 8.3K × 8.3K 104K 12.5 1.5e-3
poisson3Da (p3) 14K × 14K 353K 26.1 1.8e-3
facebook (fb) 4K × 4K 176K 43.7 1.1e-2

C. Technology Node Scaling

We scale the energy numbers for all these baselines to
28nm technology node. The dynamic power can be estimated
as αfCV 2

dd, where α is the switching activity, f is the
clock frequency, C is the total capacitance and Vdd is the
supply voltage. As α remains the same between technology
nodes, capacitance C scales proportional to the square of
Contacted Gate Poly Pitch (CPP) and Vdd is different for
different technology nodes, we use the ratio of the square

of CPP as a scaling factor for C and the ratio of Vdd to
scale the power and energy numbers. We obtain the CPP and
Vdd values for different technology nodes from their technical
specifications [52]–[55].

D. Datasets

For benchmarks, we used the same matrices as in Out-
erSPACE [39] which are taken from SuiteSparse [11] as shown
in Table II. Since OuterSPACE evaluates the performance
of SpGEMM by multiplying a sparse matrix with itself (C
= A×A), we used the same approach for our evaluation to
perform a fair comparison. However, since many of the real-
world applications such as graph contractions involve the
sparse matrix multiplication of two different matrices, we did
a performance evaluation by using different combinations of
A and B matrices from Table II. We selected the top-left
10K × 10K submatrices from all the matrices in Table II
so that the two matrices have same size but different sparsity
structure representative of the real matrices. This technique has
been adopted from a prior work on characterizing SpGEMM
performance on GPUs [25].

VI. EVALUATION

A. Bandwidth Utilization

To compare the bandwidth utilization of CSR and C2SR
we simulated 2, 4 and 8 PEs reading a sparse matrix from the
memory in a streaming fashion. For CSR, we assumed that
each PE reads 8-byte data elements from the memory to avoid
sending vectorized memory requests which map to different
channels and cause memory alignment problem. For C2SR,
each PE sends a 64-byte wide streaming memory requests.
For all the simulations we assumed the number of PEs to be
the same as the number of DRAM channels. Fig. 6 shows the
achieved bandwidth with CSR and C2SR formats. As it can
be seen from the figure, the achieved bandwidth from C2SR
format is higher than the achieved bandwidth from CSR and
is also close to the theoretical peak memory bandwidth.

3.4 7.2 15.222.6
44.4

89.6

32

64

128

0

50

100

150

2 4 8

B
an

d
w

id
th

 (
G

B
/s

)

Number of channels / PEs

CSR C2SR Peak

Fig. 6: Achieved memory bandwidth with CSR and C2SR
— here the PE count equals the number of channels.

B. Roofline Evaluation

Fig. 7 shows the throughput of SpGEMM under the
roofline [56] of MatRaptor. The horizontal line towards the

10−2 10−1 100 101

Operation intensity (OPs/byte)

100

101

102

P
er

fo
rm

an
ce

 (
G

O
P

/s
)

wiki-Vote

m133-b3

amazon0312

mario002

cage12

poisson3Da

ca-CondMat

web-Google

2cubes_sphere,
offshore

scircuit

p2p-Gnutella31

filter3D

10−1 100 101

Operation intensity (OPs/element)

facebook

Fig. 7: Performance of SpGEMM under the roofline of Ma-
tRaptor for A×A – Throughput(T) = Operation Intensity(OI)
× Bandwidth(B). Thus, log(T) = log(OI) + log(B), which is the
equation of a line, y = mx + c with y = log(T), x = log(OI), m =
1 and c = log(B). Thus, the y-axis in the roofline is throughput
in log domain (log(T)), x-axis is operation intensity in log
domain (log(OI)), the slope of the slanted line is 1 (m=1) and
the intercept of the slanted line (value at OI = 1) is the off-
chip memory bandwidth in GB/s i.e. 128). The horizontal line
on the right is of the form y = log(Tmax) where Tmax is the
maximum attainable throughput i.e. 32 GOP/s in our case.

right of the plot shows the peak attainable performance from
the design when the operation intensity is high (kernel is
compute bound) and the inclined line (with slope 1) towards
the left shows the peak attainable performance when the
operation intensity is low (kernel is memory bound). The
gap between the roofline and the achieved performance of
a kernel indicates the inefficiencies within the hardware and
the algorithm. Our design consists of 8 PEs, each with one
MAC unit and hence our design has 8 × 2 = 16 multipliers
and adders. Since we simulate our design for a 2GHz clock
frequency the peak attainable throughput is 16×2 = 32 GOP/s.
For peak memory bandwidth, we use the peak bandwidth of
HBM which is 128 GB/s.

Fig. 7 shows the achieved throughput for SpGEMM for A ×
A computation for all the matrices in Table II. It can be seen
from the roofline, the throughput for each of the benchmark is
close to the peak performance and all the benchmarks lie in the
memory bound region. The gap between the peak performance
and the attained performance is due to the memory accesses
to the matrix B. As in row-wise product approach only matrix
A and the output matrix C are partitioned among different PEs
while the matrix B is shared between different PEs, this results
in memory channels conflicts and lowers the achieved memory
bandwidth.

C. Performance Evaluation

Fig. 8a shows the performance comparison of CPU
(single-/multi-threaded and without/with bandwidth normal-
ization), GPU (without/with bandwidth normalization), Out-

erSPACE [39] and MatRaptor over the single-threaded CPU
baseline for A × A SpGEMM computation. As it can be seen
from the figure MatRaptor outperforms CPU and GPU for all
the benchmarks. Compared to OuterSPACE the performance
of MatRaptor is better for all the benchmarks except Wiki-
Vote, for which the performance of the two are very similar.
The main reason behind this is that Wiki-Vote has smaller size
compared to other matrices and the on-chip memory for the
output matrix in OuterSPACE is sufficient to store the partial
sums, which results in similar performance of OuterSPACE
and MatRaptor. In terms of geometric mean speedup, Ma-
tRaptor achieves 129.2×, 77.5×, 12.9×, 7.9×, 8.8×, 37.6
and 1.8× speedup over single-threaded CPU without and
with bandwidth normalization, multi-threaded CPU without
and with bandwidth normalization, GPU without and with
bandwidth normalization, and OuterSPACE, respectively.

Fig. 9 provides a breakdown that shows (1) the number
of cycles when the multipliers in the PEs are active, and (2)
the stall cycles due to merge and memory access. For almost
all the benchmarks there are stalls due to merge, which is
expected as the merging takes more time than multiplications.
We also measured the ratio of cycles spent in phases I and
II. This ratio varied in the range of [2, 15], as most of the
merge logic is in phase I. But since in some cases, phase II
takes as long as 50% of the time spent in phase I, we opt
to pipeline these two phases using a double buffer. Fig. 10a
shows the speedup of MatRaptor over GPU with bandwidth
normalization for A × B SpGEMM computation. It can be seen
from these figures that for GPU the performance of MatRaptor
is better in all the cases. Overall MatRaptor achieves 26.8×
speedup over GPU with bandwidth normalization for A × B
computation.

D. Energy

Fig. 8b shows the energy comparison of CPU (single-/multi-
threaded and without/with bandwidth normalization), GPU
(without/with bandwidth normalization), OuterSPACE [39]
and MatRaptor for A × A SpGEMM computation. In terms of
geometric mean energy benefit, MatRaptor achieves 482.5×,
289.6×, 581.5×, 348.9×, 574.8×, 2458.9× and 12.2× energy
benefit over single-threaded CPU without and with band-
width normalization, multi-threaded CPU without and with
bandwidth normalization, GPU without and with bandwidth
normalization, and OuterSPACE, respectively. Fig. 10b shows
the energy benefit of MatRaptor over GPU with bandwidth
normalization for A × B SpGEMM computation, where Ma-
tRaptor achieves 1756.5× improvement in energy.

E. Load Imbalance

To measure the load imbalance due to the power-law distri-
bution of the sparse matrices as discussed in Section IV-A, we
determine the total number of non-zeros of matrix A assigned
to each PE by C2SR format and plot the ratio of maximum and
minimum number of non-zeros in these PEs. The minimum
value of such ratio is 1, which means no load imbalance and a
higher ratio means a higher load imbalance. Fig. 11 shows the

wv cc fb f3 p3 pg mb cs cg m2 az of sc wg mean
Benchmarks

10 1

100

101

102

103

Sp
ee

du
p

ov
er

 C
PU

CPU-1T CPU-1T-BW CPU-12T CPU-12T-BW GPU GPU-BW OuterSPACE MatRaptor

(a) Speedup

wv cc fb f3 p3 pg mb cs cg m2 az of sc wg mean
Benchmarks

10 2

10 1

100

101

102

103

104

E
ne

rg
y

B
en

ef
it

ov
er

 C
PU

CPU-1T CPU-1T-BW CPU-12T CPU-12T-BW GPU GPU-BW OuterSPACE MatRaptor

(b) Energy benefit

Fig. 8: Speedup and energy comparison for A×A — CPU-1T = single-thread CPU; CPU-1T-BW = single-thread CPU with
bandwidth normalization; CPU-12T = CPU with 12 threads; CPU-1T-BW = CPU with 12 threads and bandwidth normalization;
GPU; GPU-BW = GPU with bandwidth normalization; OuterSPACE and MatRaptor. All the speedup and energy benefit
numbers are relative to the CPU-1T baseline. The mean is the geometric mean of the speedups and energy benefits for
different benchmarks.

wv cc fb f3 p3 pg mb cs cg m2 az of sc wg
Benchmarks

0.0

0.2

0.4

0.6

0.8

1.0

C
yc

le
 B

re
ak

do
w

n

MAC Merge Stalls Memory Stalls

Fig. 9: Performance breakdown – plotted as a fraction of
total cycles when multipliers are busy and the cycle breakdown
when they are stalled due to merge and memory accesses.

load imbalance; except for wv and fb the load imbalance for
all the benchmarks is less than 5%. For wv and fb the load
imbalance is higher because these matrices are small and thus
a round-robin row assignment to PEs is not very effective.

cc fb f3 p3 pg cs cg m2 az of sc

Matrix B

cc
fb
f3
p3
pg
cs
cg

m2
az
of
sc

M
at

ri
x

A

10

20

30

40

50

60

70

80

90

(a) Speedup

cc fb f3 p3 pg cs cg m2 az of sc

Matrix B

cc
fb
f3
p3
pg
cs
cg

m2
az
of
sc

M
at

ri
x

A

1000

2000

3000

4000

5000

6000

(b) Energy benefit

Fig. 10: Speedup and energy benefit of MatRaptor over
GPU-CuSPARSE for A×B — A and B are top-left 10K×10K
tiles of different matrices from the dataset. All the performance
and energy results are normalized to 128 GB/s off-chip mem-
ory bandwidth and 28nm technology node.

VII. DISCUSSION

Format Conversion – The current implementation assumes
that the number of virtual channels used to create C2SR
matches the number of physical channels in the DRAM,
which results in highly efficient SpGEMM processing. To

wv cc fb f3 p3 pg mb cs cg m2 az of sc wg mean
Benchmarks

1.00

1.05

1.10

1.15

1.20

1.25
Lo

ad
 im

ba
la

nc
e

Fig. 11: Load Imbalance — measured as the ratio of the
maximum and minimum number of non-zeros of matrix A
assigned to the PEs.

make the sparse format portable across different platforms,
the sparse matrix can be stored in CSR format and converted
to C2SR (or vice versa) by a target-specific software library
or dedicated logic in the accelerator. The complexity of
such conversion is O(nnz) which is much lower than that
of SpGEMM O(nnz*nnz/N). More importantly, the cost of
format conversion gets amortized due to: (1) In SpGEMM,
the rows of matrix B are read multiple times while for the
format conversion they are read only once; (2) For algorithms
like local graph clustering, the same sparse matrix is reused
multiple times; (3) Many other algorithms such as graph
contractions perform a chain of matrix multiplications and
thus the output matrix becomes the input of another SpGEMM
without requiring additional format conversion.

To evaluate the performance overhead of CSR to C2SR
conversion and vice versa, we designed a simple hardware
unit that reads the sparse matrix in CSR format and stores it
back to memory in C2SR. According to our results, the format
conversion takes on average 12% of the SpGEMM execution
time on MatRaptor.

Buffer Overflow – Since the sorting queues are used to store
the partial sums for an output row and the size of the queues
is limited, the partial sums may not always fit in the queues.
Whenever such a condition arises for an output row, the
hardware raises an exception and the SpGEMM computation
will fall back to the CPU. This ensures the correctness of
MatRaptor irrespective of the size and density of the input
matrices.

We can further optimize the performance by having the CPU
only handle the rows that cause the overflow. In this scheme,
whenever a PE encounters an output row i that will not fit in
the queues, MatRaptor simply leaves an “empty” row of size∑
kε{A[i,k]6=0} nnz(B[k, :]) in the output matrix and continues

to compute the next row. This expression represents the sum
of the row lengths of matrix B whose row indices are the same
as the column indices k of the non-zero elements in A[i. :].
This serves as an upper bound on the number of non-zeros in
C[i, :]. Since SpBL is responsible for loading these rows of
matrix B, a simple accumulator that sums up the “row length”

values in C2SR will be sufficient. When the accelerator has
finished computation, it will send to the CPU the indices of
the incomplete output rows (if there are any). The CPU will
then finish the rest of the computation.

Note that there might be some empty space for padding at
the end of the output row computed by the CPU; but this slight
storage overhead will not affect the compute or bandwidth
requirement, even if the output matrix C is used right away
in a subsequent computation. Since the C2SR format encodes
the row length of each row, the padding will not be read from
memory.

VIII. RELATED WORK

Sparse Storage Formats. Many sparse storage formats
have been proposed in the literature. CSR (Compressed Sparse
Row), CSC (Compressed Sparse Column) and COO (Co-
ordinate) are the most commonly used sparse storage formats
for CPUs. Liu et al. [30] proposed a sparse tensor storage
format F-COO, which is similar to the co-ordinate format
and used it for GPUs. CSF [46] and Hi-COO [27] are other
sparse tensor storage formats that are based on CSR and
COO, respectively. Unlike C2SR these formats do not support
efficient parallel accesses to multiple memory channels and
thus achieve low bandwidth utilization. For machine learning
hardware, researchers have proposed multiple variants of CSR
and CSC formats. For example, Cambricon-X [61] proposed
a modification of CSR format where the non-zeros are are
compressed and stored in contiguous memory and index
vectors are used to decode the row and column indices.
EIE [18] uses a variant of CSC storage format where instead
of storing the row indices they store the number of zeros
before a non-zero element. Since these works focus on deep
learning, especially CNNs, their sparse storage format is
specialized for low sparsity (high density) and is not suitable
for SpGEMM computation where the matrices have high
sparsity. For SpGEMM involving matrices with high sparsity,
OuterSPACE [39] uses a variant of CSR and CSC formats
called CR and CC. However, to solve the issues related to
channel conflicts and memory misalignment, it uses caches
instead to directly accessing the DRAM from the hardware
and thus spends 18× more area for on-chip memory compare
to MatRaptor. Fowers et al. [13] and Tensaurus [47] proposed
sparse storage formats called compressed interleaved sparse
row (CISR) and compressed interleaved sparse slice (CISS)
which also maps different PEs to different DRAM channels
for sparse tensor kernels. In contrast to C2SR, these formats
can only be used for a static input matrix and not for the output
as the coordinates of all non-zero elements must be known a
priori.

CPU/GPU Acceleration. Akbudak et al. [1] proposed
hypergraph and bipartite graph models for 1D row-wise parti-
tioning of matrix A in SpGEMM to evenly partition the work
across threads. Saule et al. [43] investigated the performance
of the Xeon Phi coprocessor for SpMV computation. Sulatycke
et al. [49] proposed a sequential cache-efficient algorithm

and illustrated high performance than existing algorithms for
sparse matrix multiplication for CPUs. Nagasaka et al. [36]
mitigates multiple bottlenecks with memory management and
thread scheduling for SpGEMM kernel on Intel Xeon Phi.
The works involving GPU acceleration of SpGEMM compu-
tation include [10], [15], [31], [34], [37]. Kiran et al. [34]
explore the load-balancing problem that only considers the
band matrices. Weifeng and Brian [31] apply the techniques
such as GPU merge path algorithm and memory pre-allocation
to improve the performance and the storage issue. Felix et
al. [15] reduce the overhead of memory access by merging
several sparse rows using the main kernel. Steven et al. [10]
decompose the SpGEMM operations and leverage bandwidth
saving operations like layered graph model. They also perform
the SpGEMM in a row-wise product method to balance the
workload and improve the performance. Nagasaka et al. [37]
proposed a fast SpGEMM algorithm that has small memory
footprints and achieves high performance.

Custom Accelerators. For sparse-dense and sparse-sparse
matrix-matrix and matrix-vector accelerators, prior works in-
volving FPGA implementations include [33], ESE [17], [65]
and [13]. Lu et al. [33] proposed a CNN accelerator with
sparse weights. ESE [17] proposed an FPGA-accelerator for
SpMV in LSTMs. Prasanna et al. [65] and Fowers et al. [13]
proposed SpMV accelerators for very sparse matrices. Lin
et al. [29] proposed an FPGA-based architecture for sparse
matrix-matrix multiplication. T2S-Tensor [48] proposed a
language and compilation framework to generate high per-
formance hardware for dense tensor computations such as
GEMM. Rong et al. [42] extended this language to add support
for SpMV.

Several prior efforts involved ASIC implementations. Exam-
ples include Cambricon-S [63], Cnvlutin [2], SCNN [40], [4],
OuterSPACE [39] and ExTensor [20]. Cambricon-S [63] im-
plements hardware accelerator for SpGEMM in CNNs where
both weight matrices and neurons are sparse. SCNN [40]
proposes a SpGEMM accelerator for CNNs which can also
exploit the sparsity in both weights and neurons. Anders et
al. [4] proposed accelerator designs for SpGEMM. EIE [18]
proposes SpMSpV (sparse matrix sparse vector multiplication)
accelerator for fully connected layers in CNN and show
significant performance gains over CPU and GPU. However,
all these works focused on deep learning application where the
density is really high. TPU [22] implemented a 2-d systolic
array for GEMM. Tensaurus [47] proposed a hardware accel-
erator for sparse-dense tensor computations such as SpMV and
SpMM.

OuterSPACE [39], ExTensor [20] and SpArch [62] are few
recent works that propose hardware accelerators for SpGEMM
computation on very sparse matrices. However, OuterSPACE
applies the outer product approach and ExTensor applies the
inner product approach for SpGEMM, the inefficiencies of
which have been discussed in Section II. SpArch attempts to
improve the outer product approach by matrix-condensing and
Huffman trees. However, this results in a complicated design

that has more area and power, and lower performance/watt,
compared to our approach based on row-wise product. Their
simulation infrastructure is also different from OuterSPACE
and ours where they use custom models for HBM instead of
open-source gem5 HBM memory model. In this work, we do
not perform detailed performance comparison with SpArch
because of difference in our HBM models.

Yavits and Ginosar [59] and [58] explored content address-
able memory (CAM) and RAM-based compute for SpMSpV
and SpGEMM. One of the major limitations of the CAM-
based approach is that the output elements are not produced
in a sorted order of their indices and thus require extra sorting
hardware. We conjecture that although the CAM itself might
be more efficient, CAM along with the sorting hardware will
be more expensive in terms of both area and energy compared
to MatRaptor. Zhu et al. [64] introduced a 3D-stacked logic-
in-memory system by placing logic layers between DRAM
dies to accelerate a 3D-DRAM system for sparse data access
and built a custom CAM architecture to speed-up the index-
alignment process of column-wise product approach.

IX. CONCLUSION

In this work, we propose a novel row-wise product based
accelerator (MatRaptor) for SpGEMM which achieves high
performance and energy-efficiency over CPU, GPU and state-
of-the-art SpGEMM accelerator OuterSPACE. It also has 7.2×
lower power consumption and 31.3× smaller area compared to
OuterSPACE. To achieve this, we introduce a new hardware-
friendly sparse storage format named C2SR, which improves
the memory bandwidth utilization by enabling vectorized
and streaming memory accesses. We also implement a novel
sorting hardware to merge the partial sums in the SpGEMM
computation. We prototype and simulate our MatRaptor using
gem5 on a diverse set of matrices.

ACKNOWLEDGEMENT

This research was funded in part by CRISP, one of six cen-
ters in JUMP, a Semiconductor Research Corporation (SRC)
program sponsored by DARPA, under NSF Awards #1453378,
#1909661, and by AFRL and DARPA under agreement num-
ber FA8650-18-2-7863. The U.S. Government is authorized to
reproduce and distribute reprints for Governmental purposes
notwithstanding any copyright notation thereon. The views
and conclusions contained herein are those of the authors
and should not be interpreted as necessarily representing the
official policies or endorsements, either expressed or implied,
of AFRL and DARPA or the U.S. Government.

REFERENCES

[1] K. Akbudak and C. Aykanat, “Exploiting locality in sparse matrix-
matrix multiplication on many-core architectures,” Trans. on Parallel
and Distributed Systems, 2017.

[2] J. Albericio, P. Judd, T. Hetherington, T. Aamodt, N. E. Jerger, and
A. Moshovos, “Cnvlutin: Ineffectual-neuron-free deep neural network
computing,” ACM SIGARCH Computer Architecture News, 2016.

[3] AnandTech. https://www.anandtech.com/show/9883/gddr5x-standard-
jedec-new-gpu-memory-14-gbps.

[4] M. Anders, H. Kaul, S. Mathew, V. Suresh, S. Satpathy, A. Agarwal,
S. Hsu, and R. Krishnamurthy, “2.9 TOPS/W Reconfigurable Dense/S-
parse Matrix-Multiply Accelerator with Unified INT8/INTI6/FP16 Dat-
apath in 14NM Tri-Gate CMOS,” 2018.

[5] A. Azad, A. Buluç, and J. Gilbert, “Parallel triangle counting and
enumeration using matrix algebra,” Workshop in Int’l Symp. on Parallel
and Distributed Processing, 2015.

[6] R. Balasubramonian. (2014) Lecture on memory wall. https://my.eng.
utah.edu/∼cs7810/pres/14-7810-02.pdf.

[7] N. Binkert, B. Beckmann, G. Black, S. K. Reinhardt, A. Saidi, A. Basu,
J. Hestness, D. R. Hower, T. Krishna, S. Sardashti et al., “The gem5
simulator,” ACM SIGARCH Computer Architecture News, 2011.

[8] W. L. Briggs, S. F. McCormick et al., “A multigrid tutorial,” 2000.
[9] P. D’alberto and A. Nicolau, “R-Kleene: A high-performance divide-

and-conquer algorithm for the all-pair shortest path for densely con-
nected networks,” Algorithmica, 2007.

[10] S. Dalton, L. Olson, and N. Bell, “Optimizing sparse matrix—matrix
multiplication for the gpu,” Trans. on Mathematical Software (TOMS),
2015.

[11] T. A. Davis and Y. Hu, “The University of Florida sparse matrix
collection,” Trans. on Mathematical Software (TOMS), 2011.

[12] I. S. Duff, M. A. Heroux, and R. Pozo, “An overview of the sparse basic
linear algebra subprograms: The new standard from the BLAS technical
forum,” Trans. on Mathematical Software (TOMS), 2002.

[13] J. Fowers, K. Ovtcharov, K. Strauss, E. S. Chung, and G. Stitt,
“A high memory bandwidth fpga accelerator for sparse matrix-vector
multiplication,” IEEE Symp. on Field Programmable Custom Computing
Machines (FCCM), 2014.

[14] J. R. Gilbert, S. Reinhardt, and V. B. Shah, “A unified framework
for numerical and combinatorial computing,” Computing in Science &
Engineering, 2008.

[15] F. Gremse, A. Hofter, L. O. Schwen, F. Kiessling, and U. Naumann,
“GPU-accelerated sparse matrix-matrix multiplication by iterative row
merging,” SIAM Journal on Scientific Computing, 2015.

[16] F. G. Gustavson, “Two fast algorithms for sparse matrices: Multiplication
and permuted transposition,” Trans. on Mathematical Software (TOMS),
1978.

[17] S. Han, J. Kang, H. Mao, Y. Hu, X. Li, Y. Li, D. Xie, H. Luo, S. Yao,
Y. Wang et al., “Ese: Efficient speech recognition engine with sparse
lstm on fpga,” Int’l Symp. on Field-Programmable Gate Arrays (FPGA),
2017.

[18] S. Han, X. Liu, H. Mao, J. Pu, A. Pedram, M. A. Horowitz, and
W. J. Dally, “EIE: efficient inference engine on compressed deep neural
network,” Int’l Symp. on Computer Architecture (ISCA), 2016.

[19] V. Hapla, D. Horák, and M. Merta, “Use of direct solvers in TFETI
massively parallel implementation,” Int’l Workshop on Applied Parallel
Computing, 2012.

[20] K. Hegde, H. Asghari-Moghaddam, M. Pellauer, N. Crago, A. Jaleel,
E. Solomonik, J. Emer, and C. W. Fletcher, “ExTensor: An Accelerator
for Sparse Tensor Algebra,” Int’l Symp. on Microarchitecture (MICRO),
2019.

[21] S. Itoh, P. Ordejón, and R. M. Martin, “Order-N tight-binding molecular
dynamics on parallel computers,” Computer physics communications,
1995.

[22] N. P. Jouppi, C. Young, N. Patil, D. Patterson, G. Agrawal, R. Bajwa,
S. Bates, S. Bhatia, N. Boden, A. Borchers, R. Boyle, P.-l. Cantin,
C. Chao, C. Clark, J. Coriell, M. Daley, M. Dau, J. Dean, B. Gelb,
T. V. Ghaemmaghami, R. Gottipati, W. Gulland, R. Hagmann, C. R.
Ho, D. Hogberg, J. Hu, R. Hundt, D. Hurt, J. Ibarz, A. Jaffey,
A. Jaworski, A. Kaplan, H. Khaitan, D. Killebrew, A. Koch, N. Kumar,
S. Lacy, J. Laudon, J. Law, D. Le, C. Leary, Z. Liu, K. Lucke,
A. Lundin, G. MacKean, A. Maggiore, M. Mahony, K. Miller, R. Na-
garajan, R. Narayanaswami, R. Ni, K. Nix, T. Norrie, M. Omernick,
N. Penukonda, A. Phelps, J. Ross, M. Ross, A. Salek, E. Samadiani,
C. Severn, G. Sizikov, M. Snelham, J. Souter, D. Steinberg, A. Swing,
M. Tan, G. Thorson, B. Tian, H. Toma, E. Tuttle, V. Vasudevan,
R. Walter, W. Wang, E. Wilcox, and D. H. Yoon, “In-datacenter perfor-
mance analysis of a tensor processing unit,” Int’l Symp. on Computer
Architecture (ISCA), 2017.

[23] H. Kaplan, M. Sharir, and E. Verbin, “Colored intersection searching via
sparse rectangular matrix multiplication,” Int’l Symp. on Computational
Geometry, 2006.

[24] G. Karypis, A. Gupta, and V. Kumar, “A parallel formulation of interior
point algorithms,” Int’l Conf. on Supercomputing, 1994.

[25] S. E. Kurt, V. Thumma, C. Hong, A. Sukumaran-Rajam, and P. Sadayap-
pan, “Characterization of data movement requirements for sparse matrix
computations on gpus,” Int’l Conf. on High Performance Computing
(HiPC), 2017.

[26] J. Leskovec, L. A. Adamic, and B. A. Huberman, “The Dynamics of
Viral Marketing,” Trans. on the Web (TWEB), 2007.

[27] J. Li, J. Sun, and R. Vuduc, “HiCOO: Hierarchical storage of sparse
tensors,” Int’l Conf. for High Performance Computing, Networking,
Storage and Analysis, 2018.

[28] S. Li, J. H. Ahn, R. D. Strong, J. B. Brockman, D. M. Tullsen, and
N. P. Jouppi, “McPAT: an integrated power, area, and timing modeling
framework for multicore and manycore architectures,” Int’l Symp. on
Microarchitecture (MICRO), 2009.

[29] C. Y. Lin, N. Wong, and H. K.-H. So, “Design space exploration for
sparse matrix-matrix multiplication on FPGAs,” International Journal
of Circuit Theory and Applications, 2013.

[30] B. Liu, C. Wen, A. D. Sarwate, and M. M. Dehnavi, “A unified
optimization approach for sparse tensor operations on gpus,” Int’l Conf.
on Cluster Computing (CLUSTER), 2017.

[31] W. Liu and B. Vinter, “An efficient GPU general sparse matrix-
matrix multiplication for irregular data,” Int’l Parallel and Distributed
Processing Symposium, 2014.

[32] D. Lockhart, G. Zibrat, and C. Batten, “PyMTL: A unified framework
for vertically integrated computer architecture research,” Int’l Symp. on
Microarchitecture (MICRO), 2014.

[33] L. Lu, J. Xie, R. Huang, J. Zhang, W. Lin, and Y. Liang, “An Effi-
cient Hardware Accelerator for Sparse Convolutional Neural Networks
on FPGAs,” IEEE Symp. on Field Programmable Custom Computing
Machines (FCCM), 2019.

[34] K. Matam, S. R. K. B. Indarapu, and K. Kothapalli, “Sparse matrix-
matrix multiplication on modern architectures,” Int’l Conf. on High
Performance Computing, 2012.

[35] N. Muralimanohar, R. Balasubramonian, and N. P. Jouppi, “CACTI 6.0:
A tool to model large caches,” HP laboratories, 2009.

[36] Y. Nagasaka, S. Matsuoka, A. Azad, and A. Buluç, “High-performance
sparse matrix-matrix products on Intel KNL and multicore architec-
tures,” Int’l Conf. on Parallel Processing Companion, 2018.

[37] Y. Nagasaka, A. Nukada, and S. Matsuoka, “High-performance and
memory-saving sparse general matrix-matrix multiplication for nvidia
pascal gpu,” Int’l Conf. on Parallel Processing (ICPP), 2017.

[38] M. Naumov, L. Chien, P. Vandermersch, and U. Kapasi, “Cusparse
library,” GPU Technology Conference, 2010.

[39] S. Pal, J. Beaumont, D.-H. Park, A. Amarnath, S. Feng, C. Chakrabarti,
H.-S. Kim, D. Blaauw, T. Mudge, and R. Dreslinski, “OuterSPACE:
An outer product based sparse matrix multiplication accelerator,” Int’l
Symp. on High-Performance Computer Architecture (HPCA), 2018.

[40] A. Parashar, M. Rhu, A. Mukkara, A. Puglielli, R. Venkatesan,
B. Khailany, J. Emer, S. W. Keckler, and W. J. Dally, “Scnn: An
accelerator for compressed-sparse convolutional neural networks,” Int’l
Symp. on Computer Architecture (ISCA), 2017.

[41] M. O. Rabin and V. V. Vazirani, “Maximum matchings in general graphs
through randomization,” Journal of Algorithms, 1989.

[42] H. Rong, “Expressing Sparse Matrix Computations for Productive Per-
formance on Spatial Architectures,” arXiv preprint arXiv:1810.07517,
2018.

[43] E. Saule, K. Kaya, and Ü. V. Çatalyürek, “Performance evaluation of
sparse matrix multiplication kernels on intel xeon phi,” Int’l Conf. on
Parallel Processing and Applied Mathematics, 2013.

[44] V. B. Shah, “An interactive system for combinatorial scientific com-
puting with an emphasis on programmer productivity,” University of
California, Santa Barbara, 2007.

[45] A. Shilov. (2016) Jedec publishes hbm2 specification. http://www.
anandtech.com/show/9969/jedec-publisheshbm2-specification.

[46] S. Smith, N. Ravindran, N. D. Sidiropoulos, and G. Karypis, “SPLATT:
Efficient and parallel sparse tensor-matrix multiplication,” Int’l Symp.
on Parallel and Distributed Processing, 2015.

[47] N. Srivastava, H. Jin, S. Smith, H. Rong, D. Albonesi, and Z. Zhang,
“Tensaurus: A Versatile Accelerator for Mixed Sparse-Dense Tensor
Computations,” Int’l Symp. on High-Performance Computer Architecture
(HPCA), 2020.

[48] N. Srivastava, H. Rong, P. Barua, G. Feng, H. Cao, Z. Zhang, D. Al-
bonesi, V. Sarkar, W. Chen, P. Petersen, G. Lowney, A. H. Herr,
C. Hughes, T. Mattson, and P. Dubey, “T2S-Tensor: Productively Gen-
erating High-Performance Spatial Hardware for Dense Tensor Com-

putations,” IEEE Symp. on Field Programmable Custom Computing
Machines (FCCM), 2019.

[49] P. D. Sulatycke and K. Ghose, “Caching-efficient multithreaded fast
multiplication of sparse matrices,” Proceedings of the First Merged In-
ternational Parallel Processing Symposium and Symposium on Parallel
and Distributed Processing, 1998.

[50] S. M. Van Dongen, “Graph clustering by flow simulation,” 2000.
[51] E. Wang, Q. Zhang, B. Shen, G. Zhang, X. Lu, Q. Wu, and Y. Wang,

“Intel math kernel library,” High-Performance Computing on the Intel®
Xeon Phi™, 2014.

[52] WikiChip, “14 nm lithography process,” https://en.wikichip.org/wiki/14
nm lithography process.

[53] WikiChip, “16 nm lithography process,” https://en.wikichip.org/wiki/16
nm lithography process.

[54] WikiChip, “28 nm lithography process,” https://en.wikichip.org/wiki/28
nm lithography process.

[55] WikiChip, “32 nm lithography process,” https://en.wikichip.org/wiki/32
nm lithography process.

[56] S. Williams, A. Waterman, and D. Patterson, “Roofline: An Insightful
Visual Performance Model for Multicore Architectures,” Commun. ACM,
2009.

[57] I. Yamazaki and X. S. Li, “On techniques to improve robustness and
scalability of a parallel hybrid linear solver,” Int’l Conf. on High
Performance Computing for Computational Science, 2010.

[58] L. Yavits and R. Ginosar, “Accelerator for sparse machine learning,”
IEEE Computer Architecture Letters, 2017.

[59] L. Yavits and R. Ginosar, “Sparse matrix multiplication on CAM based
accelerator,” arXiv preprint arXiv:1705.09937, 2017.

[60] R. Yuster and U. Zwick, “Detecting short directed cycles using rectan-
gular matrix multiplication and dynamic programming,” SIAM Symp. on
Discrete Algorithms, 2004.

[61] S. Zhang, Z. Du, L. Zhang, H. Lan, S. Liu, L. Li, Q. Guo, T. Chen,
and Y. Chen, “Cambricon-x: An accelerator for sparse neural networks,”
Int’l Symp. on Microarchitecture (MICRO), 2016.

[62] Z. Zhang, H. Wang, S. Han, and W. J. Dally, “SpArch: Efficient
Architecture for Sparse Matrix Multiplication,” Int’l Symp. on High-
Performance Computer Architecture (HPCA), 2020.

[63] X. Zhou, Z. Du, Q. Guo, S. Liu, C. Liu, C. Wang, X. Zhou, L. Li,
T. Chen, and Y. Chen, “Cambricon-S: Addressing Irregularity in Sparse
Neural Networks through A Cooperative Software/Hardware Approach,”
Int’l Symp. on Microarchitecture (MICRO), 2018.

[64] Q. Zhu, T. Graf, H. E. Sumbul, L. Pileggi, and F. Franchetti, “Accel-
erating sparse matrix-matrix multiplication with 3D-stacked logic-in-
memory hardware,” Int’l Conf. on High Performance Extreme Comput-
ing (HPEC), 2013.

[65] L. Zhuo and V. K. Prasanna, “Sparse matrix-vector multiplication on
FPGAs,” Int’l Symp. on Field-Programmable Gate Arrays (FPGA),
2005.

