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Abstract—A primary barrier to rapid hardware specialization
with FPGAs stems from weak guarantees of existing CAD
tools on achieving design closure. Current methodologies require
extensive manual efforts to configure a large set of options
across multiple stages of the toolflow, intended to achieve high
quality-of-results. Due to the size and complexity of the design
space spanned by these options, coupled with the time-consuming
evaluation of each design point, exploration for reconfigurable
computing has become remarkably challenging. To tackle this
challenge, we present a learning-assisted autotuning framework
called LAMDA, which accelerates FPGA design closure by
utilizing design-specific features extracted from early stages of the
design flow to guide the tuning process with significant runtime
savings. LAMDA automatically configures logic synthesis, tech-
nology mapping, placement, and routing to achieve design closure
efficiently. Compared with a state-of-the-art FPGA-targeted auto-
tuning system, LAMDA realizes faster timing closure on various
realistic benchmarks using Intel Quartus Pro.

I. INTRODUCTION

Limitations in technology scaling have led to a growing
interest in non-traditional system architectures incorporating
specialized hardware accelerators for improved performance
and energy efficiency. Although FPGAs have shown to be
a significant potential in hardware specialization [1], weak
guarantees of existing CAD tools on achieving design closure
out-of-the-box is a main barrier to its adaptation. To achieve
high quality-of-results (QoR), CAD tools require huge manual
effort to configure a large set of design and tool parameters.

To meet the diverse requirements of a broad range of
application domains, FPGA development environments com-
monly provide users with an extensive set of tool options.
For instance, synthesis and place-and-route (PnR) options
in Intel Quartus Pro translate to a search space of over
1.8 × 1024 design points. Fig. 1 shows 500 design points
randomly sampled from possible combinations of tool options
of Intel Quartus Pro, and the resulting critical path delays.
Results of default tool options are included for reference.
There are two important observations: (1) default timing
results are on average 15% higher than the best results of
the random samples; (2) more than 30% of the randomly
sampled configurations produce better timing than the default
configurations. This suggests that there is considerable room
for timing improvement by tuning tool options. However, ex-
ploring a large number of tool options is extremely inefficient
and cannot be effectively carried out by human effort alone. A
similar challenge exists also in high-performance computing
and software compilation, e.g., autotuners have been developed
for automatically optimizing compiler configurations [2].
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Fig. 1. Timing distribution of bfly for various tool settings and timing
constraints – x-axis represents target clock period (ns), and y-axis represents
critical path delay (ns).

Recent years have seen an increasing employment of ma-
chine learning (ML) in EDA to enable rapid design space
exploration (DSE) [3]–[7] and automatic configuration of
design or tool parameters [2], [8], [9]. However, there are two
major limitations with the existing approaches. First, current
techniques mainly focus on a single stage of the design flow
such as high-level synthesis (HLS) [4] or logic synthesis [5],
thereby missing important cross-boundary optimization oppor-
tunities. Second, existing methods often use pre-PnR or even
pre-synthesis reports for assessing the quality of a design
point [10]. While this shortens the execution times, simply
relying on crude estimates from an early design stage may
prevent DSE from reaching high-quality design points.

To address the aforementioned limitations, we propose
LAMDA, a Learning-Assisted Multi-stage Design Autotuning
framework that accelerates FPGA design closure. We develop
a multi-stage QoR inference model based on online supervised
learning, which allows LAMDA to effectively detect and
prune unpromising design points over search spaces. LAMDA
automatically configures a wide range of CAD tool options
through balancing the trade-off between computing effort and
estimation accuracy. Our main technical contributions include:
• An ML-based multi-stage autotuner, which leverages

features from early stages to estimate post-PnR QoR.
• LAMDA achieves faster design closure using online

learning—design points visited during autotuning are
used to further increase the ML model accuracy.

• LAMDA achieves 5.43× speedup compared to a state-
of-the-art FPGA-targeted autotuning system for multiple
realistic designs using Intel Quartus Pro.



• Emulation databases of five realistic designs using Intel
Quartus Pro, which enables fast autotuning evaluation.
The databases will be open sourced to facilitate further
research of autotuning algorithms and tools.

II. BACKGROUND

Mainstream FPGA compilation flow takes untimed
C++/OpenCL or an RTL design as input and generates
a device-specific bitstream. This process involves several
distinct and modular steps including HLS, logic synthesis,
technology mapping, packing, placement, and routing. Each
step provides designers a set of configuration switches that
select between different heuristics or influence the behavior
of a heuristic. These switches need to be calibrated with
significant manual effort and expert knowledge to achieve
desired QoRs. Due to the lack of predictability and time-
consuming FPGA design flow, there is an urgent need to
lower the design cost by minimizing human supervision and
significantly reducing the time required to obtain accurate
QoR estimation.

Autotuning has been used for optimization in FPGA-
targeted CAD toolflow by automatically configuring the pa-
rameters and tool options to optimize certain objective func-
tions. InTime [8], [11], [12] explores supervised learning
techniques to accelerate FPGA timing closure. It automatically
selects tools options for a given design by exploring the design
space using a timing estimator. DATuner [13] utilizes the
multi-armed bandit technique to automatically tune the options
for a complete FPGA compilation flow.

Note that these are single-stage autotuning frameworks,
meaning that they are based on QoR estimation conducted on
features of a single stage. Single-stage autotuning with QoR
estimation conducted at a late design stage is time-consuming
because each iteration runs through PnR. On the other hand,
using early-stage features for assessing the quality of a design
point during autotuning shortens runtime. However, simply
relying on crude estimates from an early stage may prevent the
CAD tool from applying the appropriate set of optimizations,
resulting in sub-optimal trade-offs. Lo et al. proposed a multi-
fidelity approach for tuning HLS parameters, incorporating
features across HLS, synthesis, and implementation stages
[14]. This paper demonstrates how multi-stage approach can
significantly reduce tuning runtime, and early-stage features
(e.g., synthesis features) are particularly informative.

To understand the trade-off between computing effort and
estimation accuracy, we show the potential speedups while
using features collected from different stages in Fig. 2. Taking
the runtime of the single-stage autotuning as the baseline,
5× speedup can be achieved by estimating post-routing re-
sults based on the features collected before routing, and
10× speedup can be achieved with features collected before
placement. Using features of earlier stages could provide
significantly more speedups (e.g., 175× using pre-packing
features). However, it is likely to introduce negative effects
for design closure because early stage features have limited
correlations with post-PnR results. To balance this trade-off,
we propose a ML-based multi-stage autotuning framework.
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Fig. 2. Potential speedups by
leveraging QoR inference at
different stages
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Fig. 3. Overview of LAMDA

III. APPROACH

The overall autotuning flow of LAMDA is illustrated in
Fig. 3. It takes an HDL description as input and automatically
configures the tool options across logic synthesis, technology
mapping, packing, and PnR stages, where search space is
defined by extensive tool options. Table I lists a subset of
tunable tool options of Intel Quartus Pro. LAMDA leverages
a highly accurate ML model to effectively prune the design
space, thus accelerating FPGA design closure. The rest of this
section describes key components of LAMDA in more detail.

Multi-stage QoR inference: We develop a multi-stage in-
ference model that estimates post-PnR results based on tool
features (configurations of the tool options) and design-specific
features. Using multi-stage design-specific features is one of
the main contributions compared to InTime and DATuner. As
discussed in Section II, collecting early stage features is fast,
but could lack QoR estimation accuracy. Collecting features
from later stages is more informative, yet time-consuming.
Therefore, fast and low-cost design stages in Fig. 3 need to
be carefully selected to balance accuracy-runtime trade-off.
To this end, we analyze the effects of features in Table II,
from which one can draw three conclusions. First, design-
specific features help estimate QoR more accurately compared
to using tool options only (i.e. pre-synthesis). Second, ac-
curacy increases as features from later stages are included
in the feature set, bringing about an accuracy-runtime trade-
off. Third, although tool estimates are less accurate under
tight constraints, design-specific features still help improve
estimation accuracy compared to using tool options only. To
balance the aforesaid trade-off, LAMDA assigns technology
mapping and packing as the fast and low-cost design stages.
Table III shows design-specific features for these stages.

Online learning: Many of the existing autotuning and DSE
approaches explore supervised learning and train an ML model
using static dataset, also called offline dataset. Simply relying
on offline training is not realistic for FPGA design autotuning
problems due to the lack of labelled data and the cost of
collecting end-to-end data. To balance the data collection
efforts and the estimation accuracy, we propose to use online
learning to train the multi-stage ML model. The idea is to first
perform offline training using a small number of static data
points. ML model is periodically updated with newly collected
data points throughout the autotuning process.



TABLE I
A SUBSET OF TUNABLE INTEL QUARTUS PRO TOOL OPTIONS

Stage Options Values

Logic
Synthesis,

Technology
Mapping,
Packing

auto_dsp_recognition,
timing_driven_synthesis

{On, Off}
disable_register_merging,

mux_restructure
{Auto, On, Off}

optimization_technique {Area, Speed, Balanced}
synthesis_effort {Auto, Fast}

Placement
&

Routing

fitter_effort {Standard Fit, Auto Fit}
final_place_optimization,
routability_optimization

{Always, Never,
Automatically}

register_packing_effort {High, Low, Medium}
allow_register_retiming,

auto_delay_chains
{On, Off}

route_timing_optimization
Normal, Maximum,

Minimum

TABLE II
EFFECT OF FEATURES ON TIMING ESTIMATION – RMSE ON BFLY FOR
DIFFERENT FEATURE SETS, AND TIGHT (5.0 NS) & MODERATE (6.8 NS)

CONSTRAINTS; FOR A TRAINING SET OF SIZE 100.

Features Target (ns)
5.0 6.8

Pre-synthesis 0.72 0.46
Pre-place 0.63 0.35
Pre-route 0.60 0.29

TABLE III
DESIGN-SPECIFIC FEATURES OF INTEL QUARTUS PRO

Design Stage Type Features

Technology Mapping
and Packing

Resource #ALM, #LUT, #registers, #DSP,
#I/O pins, #fan-out, etc.

Timing WS, TNS

Emulation database: We exhaustively collect all design
points of a given design space defined by a set of tool options
and a specific design. Evaluation process of autotuning then
can be emulated by performing a look up on the exhaustive
database, which significantly reduces the evaluation runtime
for autotuning FPGA design closure. These databases are
referred to as emulation databases. This enables researchers to
quickly evaluate various autotuning approaches and tune the
parameters of ML models. The specific emulation databases
used in this work are described in Section IV.

Implementation: Let n be the number of tool settings pro-
posed at ith iteration. ML regressor is used to estimate QoR of
these n proposals based on tool features and design-specific
features from early stages. Top m proposals (m < n) with
the best estimated QoR are selected. A random subset of
these m proposals is generated with a rate R (0 < R ≤ 1)
such that R · m proposals are validated through end-to-end
FPGA toolflow. If any of these design points meets objective,
autotuning process terminates. Otherwise, they are used for
online learning, and autotuner proceeds with i+1th iteration.

In order to choose a suitable ML routine, we compared
XGBoost [15] with InTime’s ML routines, which perform
binary classification of design points with respect to TNS [11].
For evaluation, we used InTime’s publicly available datasets.
The results in Table IV show that XGBoost performs better
than InTime for six designs. For the remaining three designs,
XGBoost and InTime perform similarly. As a consequence,
LAMDA employs XGBoost for QoR estimation.

TABLE IV
INTIME AND XGBOOST COMPARISON – ACCURACY AND F1 SCORES FOR

INTIME’S ML ROUTINES VS. XGBOOST ON INTIME’S DATASETS.

Accuracy F1 Score
InTime XGB InTime XGB

aes-128 0.82 0.86 0.82 0.86
dec-viterbi 0.71 0.73 0.74 0.73
mkSwitch 0.78 0.88 0.78 0.88

vga-enh-top 0.65 0.77 0.73 0.77
xge-mac 0.60 0.74 0.62 0.74
eight-bit 0.69 0.78 0.71 0.78

flow 0.56 0.77 0.63 0.77
SOC 0.78 0.79 0.79 0.79
VIP 0.82 0.82 0.82 0.82

IV. EVALUATION

We evaluate LAMDA by targeting timing closure of five
realistic benchmarks listed in Table V, using Intel Quartus
17.1.0 Pro Edition targeting Arria 10. To demonstrate the
effectiveness of multi-stage and online learning separately, we
compare four ML-based autotuning modes, namely online-
multi (i.e. LAMDA), online-single, offline-multi, and offline-
single. Here, single represents estimating timing based on
only tool options; multi represents leveraging design-specific
features from early stages; online represents online learning;
and offline represents offline learning. We implemented online-
single to quantify one of the main differences between InTime
and LAMDA, which is leveraging early design stages. We also
compare with DATuner [13], a state-of-the-art open-source
FPGA autotuner. Experimental results are obtained using a
machine with a 10-core Intel Xeon operating at 2.5 GHz.

LAMDA is built based on OpenTuner [2], while we apply
multi-stage learning to guide the autotuning process. Specifi-
cally, XGBoost regressor is used to estimate timing from tool
and design-specific features. At the first iteration of autotuning,
XGBoost regressor is trained on the offline dataset. Given an
optimization objective, LAMDA picks a set of unseen config-
urations proposed by OpenTuner. Design-specific features are
collected from technology mapping and packing stages after
running the toolflow up to packing. Proposed configurations
are ranked with respect to ML inference results. Top-ranking
configurations are evaluated through the complete FPGA
toolflow to obtain the actual QoRs, whereas the remaining
configurations are pruned away. Data obtained from evaluation
are used to update OpenTuner’s search engine and the ML
model iteratively. Autotuning process terminates when one of
the newly proposed configurations meets timing, or timeout is
reached. Collecting design-specific features and the evaluation
process are parallelized to speed up the autotuning process.

TABLE V
BENCHMARKS TARGETING ARRIA 10 – POST-PNR UTILIZATION WITH

DEFAULT TOOL OPTIONS; TARGET INDICATES TIMING CONSTRAINT.

#ALUT #FF #DSP Target (ns)

bfly 6348 1868 4 6.8
dscg 6246 1679 4 7.0
fir 5753 1648 4 8.1
mm3 4001 1023 3 8.0
ode 4118 1104 2 8.1
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Fig. 4. Timing closure of bfly, dscg, fir, mm3, and ode using DATuner,
offline-single, offline-multi, online-single, and LAMDA – (a)-(e) Best timing
results achieved over time. (f) Mean of all timing results visited over time.

Data collection: We construct emulation databases of five
designs listed in Table V by choosing ten different tool options
that cover logic synthesis, technology mapping, packing, and
PnR. Each database includes 5184 data points. Experimental
results in the next section are obtained by emulating the
autotuning process through looking up these databases.

Timing closure: Fig. 4 demonstrates that LAMDA outper-
forms DATuner with a factor of 5.43× and offline-single with
a factor of 4.38×, averaged over four benchmarks; while for
the fifth benchmark (bfly), other autotuners cannot achieve
LAMDA’s QoR. LAMDA and online-single perform better
than DATuner due to learning-assisted pruning. Since offline
training set size is not sufficient to accurately estimate timing,
offline-multi and offline-single prune the design space based on
inaccurate QoR estimations, resulting in worse performance
compared to LAMDA and online-single, respectively. This
suggests that online learning increases autotuning efficiency.
LAMDA performs better than online-single, indicating that
design-specific features help guide the autotuning process
effectively. Fig. 4f plots the average QoR visited by each auto-
tuner over time. There are two observations echoing aforemen-
tioned conclusions: Effectiveness of multi-stage learning—
average QoR of LAMDA is always higher than online-single;
Effectiveness of online learning—average QoR of LAMDA
and online-single increase over time, and converge to a higher
value than offline-multi and offline-single, respectively.

V. CONCLUSIONS

This paper presents LAMDA, a novel learning-assisted
FPGA autotuning framework, that leverages online learning
from a multi-stage perspective. LAMDA learns the timing
behavior of a design from tool options (applied across all
design stages) as well as the design-specific features (col-
lected from fast and low-cost design stages). By means of
its accurate timing estimator, LAMDA successfully handles
cross-stage optimizations, leading to a high efficiency. The
paper introduces emulation databases of 5 designs to help
researchers quickly evaluate autotuning approaches. The emu-
lation databases will be released as open source contribution.
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