
Formal Verification of Source-to-Source Transformations for HLS
Louis-Noël Pouchet

Colorado State University

Emily Tucker

Colorado State University

Niansong Zhang

Cornell University

Hongzheng Chen

Cornell University

Debjit Pal

University of Illinois Chicago

Gabriel Rodríguez

CITIC, Universidade da Coruña

Zhiru Zhang

Cornell University

ABSTRACT
High-level synthesis (HLS) can greatly facilitate the description of

complex hardware implementations, by raising the level of abstrac-

tion up to a classical imperative language such as C/C++, usually

augmented with vendor-specific pragmas and APIs. Despite produc-

tivity improvements, attaining high performance for the final design

remains a challenge, and higher-level tools like source-to-source

compilers have been developed to generate programs targeting HLS

toolchains. These tools may generate highly complex HLS-ready

C/C++ code, reducing the programming effort and enabling criti-

cal optimizations. However, whether these HLS-friendly programs

are produced by a human or a tool, validating their correctness or

exposing bugs otherwise remains a fundamental challenge.

In this work we target the problem of efficiently checking the

semantics equivalence between two programs written in C/C++ as

a means to ensuring the correctness of the description provided to

the HLS toolchain, by proving an optimized code version fully pre-

serves the semantics of the unoptimized one. We introduce a novel

formal verification approach that combines concrete and abstract in-

terpretation with a hybrid symbolic analysis. Notably, our approach

is mostly agnostic to how control-flow, data storage, and dataflow

are implemented in the two programs. It can prove equivalence

under complex bufferization and loop/syntax transformations, for a

rich class of programs with statically interpretable control-flow. We

present our techniques and their complete end-to-end implementa-

tion, demonstrating how our system can verify the correctness of

highly complex programs generated by source-to-source compilers

for HLS, and detect bugs that may elude co-simulation.

CCS CONCEPTS
• Software and its engineering→ Software verification.

KEYWORDS
Program equivalence, formal verification, high-level synthesis

ACM Reference Format:
Louis-Noël Pouchet, Emily Tucker, Niansong Zhang, Hongzheng Chen, Deb-

jit Pal, Gabriel Rodríguez, Zhiru Zhang. 2024. Formal Verification of Source-

to-Source Transformations for HLS. In Proceedings of the 2024 ACM/SIGDA
International Symposium on Field Programmable Gate Arrays (FPGA ’24),
March 3–5, 2024, Monterey, CA, USA. ACM, New York, NY, USA, 11 pages.

https://doi.org/10.1145/3626202.3637563

Permission to make digital or hard copies of part or all of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for third-party components of this work must be honored.

For all other uses, contact the owner/author(s).

FPGA ’24, March 3–5, 2024, Monterey, CA, USA
© 2024 Copyright held by the owner/author(s).

ACM ISBN 979-8-4007-0418-5/24/03.

https://doi.org/10.1145/3626202.3637563

1 INTRODUCTION
Over the past decade, high-level synthesis (HLS) has been increas-

ingly adopted for specialized hardware design targeting FPGAs

and ASICs [9, 10, 27]. To achieve good performance, users apply

source-to-source transformations on HLS algorithm specifications,

necessitating substantial program rewriting and intricate compo-

sitions of program transformations. Such customizations for HLS,

whether applied manually by a designer, or by (domain-specific)

compilers for HLS such as AutoSA [43], HeteroCL [25] or the AMD

Merlin compiler [47], may introduce subtle bugs that cannot be eas-

ily detected during testing or simulation. It remains a fundamental

challenge to efficiently verify the correctness of a program opti-

mized for HLS under a rich set of hardware-oriented optimizations.

Modern HLS design process typically starts from an algorithmic

description and undergoes a series of source-to-source transfor-

mations [32] before synthesis. The goal is to transform the algo-

rithmic descriptions to hardware-friendly ones that can generate

high-quality RTL. While some transformations can be expressed

by adding vendor-specific pragmas, many crucial optimizations

require substantial changes in control-flow structure, I/O approach,

on-chip buffer management, function boundaries, and exposing

concurrency. For example, to transform a matrix multiplication ker-

nel into a high-throughput systolic array (SA), one needs to build a

customized memory hierarchy, an array of vectorized processing

elements (PEs), and an I/O network [43]. Finally, one needs to tune

the design to maximize the performance while meeting the resource

constraints, and enable parallel execution of the PEs. Every source-

to-source transformation applied to the files supplied to the HLS

toolchain for eventual synthesis involves extensive rewriting. This

process is prone to errors and can be time-consuming to debug.

We target the problem of verifying the correctness of source-

to-source transformations by proving the semantics equivalence

between two programs. We leverage two properties that often man-

ifest in high-performance HLS designs: fixed kernel sizes and static

control flow. Many spatial architectures have a fixed size, e.g. SAs

[43]. Many hardware accelerated applications such as video pro-

cessing, convolutional neural networks, and large language models

typically have a static control flow. Technically we support any con-

trol flow whose branches can be unambiguously evaluated through

concrete interpretation. This set of programs is formally defined as

statically interpretable control-flow (SICF) programs in Sec. 3.

In this work we propose a novel framework to prove the seman-

tic equivalence between a pair of programs, where one program

is a substitute for the other, built after applying source-to-source

transformations for HLS. We overcome the difficulty to support a

rich set of optimizations when proving their equivalence: our equiv-
alence system is agnostic to how the code is implemented, be it in
terms of storage or loop structure, communication scheme, etc. This

https://doi.org/10.1145/3626202.3637563
https://doi.org/10.1145/3626202.3637563


FPGA ’24, March 3–5, 2024, Monterey, CA, USA Pouchet et al.

future-proof design enables support for emerging optimizations.

In particular, we can prove equivalence under any loop transfor-

mation approach, code refactoring, insertion of local/reuse buffers,

insertion of FIFOs for communication, including blocking FIFOs for

communication/synchronization using coarse-grain dataflow-style

concurrency, etc. However, we note that by design our work is

independent from any specific HLS toolchain: we verify the equiva-
lence of two C/C++ source programs that are input to a HLS toolchain.
Assuming the HLS backend used is correct, then whichever the HLS

approach implemented, necessarily the two programs would com-

pute the same output if given the same inputs, if we have verified

them equivalent. We make the following contributions:

• We present an end-to-end, fully implemented system to prove the

equivalence between a pair of functions in the C/C++ language,

under meaningful and practical restrictions.

• We combine partial concrete evaluation of specific program parts

with a symbolic analysis to make the system robust to a rich set

of code transformations, including key optimizations for HLS,

such as loop transformations, bufferization, data layout changes,

blocking/non-blocking FIFO communications, etc.

• We provide extensive experimental evaluation, demonstrating

the ability of our system to quickly verify the correctness of

advanced optimizations, including AutoSA-generated matrix-

multiply 64×64 systolic array designs over 145,000 lines of code,

the inference of a full BERT layer optimized for FPGAs, or a

variety of numerical kernels optimized with HeteroCL, in seconds

to minutes while using a single CPU core.

2 APPROACH TO VERIFICATION
We now outline our approach to proving the equivalence between

two programs, which is designed with the following considerations.

We target optimized loop-based functions, with the objective of

being mostly independent from the syntax used to implement these

functions, and reasoning instead on the semantics of the program
computations. The class of program we support, which includes

for example affine programs [28], encompasses a broad range of

applications such as linear algebra, image processing, data mining,

machine learning, physics simulation, and more [37], as well as

modern deep learning inference computations [25, 35]. Our cover-

age extends way beyond programs that are syntactically analyzable
as polyhedral programs: in Sec. 3, we define for the first time a

novel class called Statically Interpretable Control-Flow (SICF) pro-
grams, which we handle in time and space linear with the number

of operations executed in the programs.

As our approach is mostly agnostic to the syntax used, that

is how the program has been written, we cover a wide variety

of program transformations that are typically implemented for

high-performance HLS designs — arbitrary loop transformations,

arbitrary statement transformations, and arbitrary storage and data

transfer approaches (e.g., scalarization, local and multi-buffering,

data transfers using FIFOs). To the best of our knowledge, this is the

richest set of code transformations supported in a single automated

program equivalence tool.

Finally we target a practical system capable of formally prov-

ing equivalence, subject to a meaningful set of restrictions, while

maintaining high throughput for proof computation — our formal

verification system offers roughly the performance of code simula-

tion, processing at approximately 0.5 million statements per second,

utilizing just a single CPU core.

We immediately set a number of restrictions on the class of

programs we support for our system to be able to prove their equiv-

alence. First, we do not prove equivalent arbitrary pairs of programs:

we specifically reason only on a pair of programs 𝑃𝐴 , 𝑃𝐵 such that
𝑃𝐵 is meant to replace 𝑃𝐴 in a larger program. That is, these two pro-

grams are necessarily called with the exact same environment [12],
for every possible execution. Second, as we require the control-

flow to be statically interpretable, a looser condition than for static

analyses where the control-flow shall be statically analyzable (e.g.,
using polyhedral structures [15]), we typically require the problem

sizes to be known at compile-time. We do not support parametric

loop nest analysis. This requirement arises also when performing

co-simulation or testing, and can be partially alleviated by proving

equivalence once for each element in a set of problem sizes.

With these objectives and restrictions in mind, we now introduce

the key principles of our approach, each developed later in this

paper. We illustrate the concepts to prove equivalent the pair of

simple programs shown in Lst. 1. For clarity we use explicitly the

AMDVitis HLS semantics for FIFOs and dataflow region declaration,

but our approach is not specific to any HLS toolchain in particular.

1 // Program 𝑃𝐴, the original program:

2 void matvec(float* restrict A, float* restrict x,

3 float* restrict y, int N) {

4 for (int i = 0; i < N; ++i) {

5 y[i] = 0;

6 for (int j = 0; j < N; ++j)

7 y[i] += A[i*N + j] * x[j]; } }

8 // Program 𝑃𝐵 , a replacement for program 𝑃𝐴:

9 typedef hls::stream <float > fifo_t;

10 void data_in(fifo_t& fifo_A , fifo_t& fifo_x ,

11 float* A, float* x, int N) {

12 for (int i = 0; i < N; ++i)

13 fifo_x.write(x[i]);

14 for (int ij = 0; ij < N * N; ++ij)

15 fifo_A.write(A[ij]); }

16 void matvec_core(fifo_t& fifo_A , fifo_t& fifo_x ,

17 float* x_buff , float* y, int N) {

18 for (int i = 0; i < N; ++i) x_buff[i] = fifo_x.read ();

19 for (int i = 0; i < N; ++i) {

20 float y_temp = 0; int j;

21 for (j = 0; j + 2 < N; j += 2) {

22 y_temp += fifo_A.read() * x_buff[j];

23 y_temp += fifo_A.read() * x_buff[j+1]; }

24 for (; j < N; j++)

25 y_temp += fifo_A.read() * x_buff[j];

26 y[i] = y_temp; } }

27 void matvec(float* restrict A, float* restrict x,

28 float* restrict y, int N) {

29 #pragma HLS dataflow // Ignored for sequential verif.

30 fifo_t fifo_A , fifo_x;

31 float x_buff [100];

32 data_in(fifo_A , fifo_x , A, x, N);

33 matvec_core(fifo_A , fifo_x , x_buff , y, N); }

34 // Caller:

35 int main() {

36 float *x, *y, *A; // data not needed for verification

37 matvec(A, x, y, 100); // calling context

38 }

Listing 1: Illustrating example: dense matrix-vector product.



Formal Verification of Source-to-Source Transformations for HLS FPGA ’24, March 3–5, 2024, Monterey, CA, USA

0

(B1) (B2) (B3) 

+

*
A[0] x[0] 

fifo_A.read() 

x_buff[0]

0

0

+

A[0] x[0] 

A[1] x[1] 

+

fifo_A.read() x_buff[1]

Statements from !! after 
simplification of 
int. expressions:
(B1) y_temp = 0;
(B2) y_temp = y_temp + fifo_A.read() * x_buff[0];
(B3) y_temp = y_temp + fifo_A.read() * x_buff[1];
(B4) y[0] = y_temp;

(B4) 

0

+

A[0] x[0] 

A[1] x[1] 

+

*
* *

*
= =y_temp y_temp y_temp = y[0] =

Figure 1: Excerpt of interpretation for y[0] with 𝑁 = 2 for 𝑃𝐵 — When interpreting a statement, first every variable referenced is

replaced by its content from the interpreter memory, if any. Integer sub-expressions are then simplified with concrete evaluation, and

the result is stored in memory: B1 assigns 0 to y_temp. Then the first j loop is interpreted, storing 0 for j, testing 2 < 2, transferring
control to the next j loop. It tests 0 < 2 and moves to interpreting its body. For B2, in the RHS y_temp is replaced by its current value, 0,

fifo_A.read() is replaced by its first written element, the symbolic (live-in) value A[0], as well as x[0] for x_buff[0]. As these values are
symbolic, the entire expression is symbolic, stored as a CDAG for y_temp. When B3 is interpreted, we replace y_temp by its CDAG from

memory, creating a new CDAG, now stored for y_temp. Once loop j terminates, B4 assigns the CDAG of y_temp to the live-out y[0].

As shown later we cover a complex range of code and data

transformations, however this example already illustrates changing

I/O, storage, statements, and loops in the program.We are not aware

of any tool that can currently prove the equivalence between these

programs within a single framework: for example, both ISA [42],

based on static analysis, and PolyCheck, based on a more general

dynamic analysis [6] would fail to prove equivalence: statements

cannot be matched between the two programs as they differ in

storage. To prove that 𝑃𝐴 is equivalent to 𝑃𝐵 for the calling context

considered (which provides the problem sizes here), our approach

operates as follows:

• We aim to build a symbolic canonical representation of the compu-

tation that is performed to produce the value of each memory cell
that is live-in/live-out for the program. In the case of well-defined

functions without side effects, the class we support, this set of

cells is captured in the function arguments. This representation

shall be independent of which statement(s) were used to produce

the computation, as well as any temporary storage implemented.

This is presented in Sec. 4.

• We prove equivalence by computing if this canonical representa-

tion is identical between both programs, for every live-in/live-out
memory cell. This is presented in Sec. 5.

• To be robust to “any” implementation of the program and its

control-flow, we rely on a partial concrete interpretation for the
program, which will concretely evaluate control-flow expressions

and simplify them as possible. When an expression cannot be

concretely evaluated, it is automatically promoted to symbolic

representation, during interpretation. If the interpreter reaches

the end of the program control, then and only then we can prove

the programs equivalent, if their per-cell computation represen-

tations are fully identical. This is presented in Sec. 3.

• We prove equivalence when using FIFOs of a given depth, non-

blocking and blocking, sequentially andwith coarse-grain dataflow-

style concurrent execution of functions that write/read the FIFOs,

as in programs generated by AutoSA. This is presented in Sec. 6.

We build a representation of the computation producing a value

stored in memory cell (e.g., y[0]) in the form of a graph, specifically

a computation directed acyclic graph (CDAG) [14, 34]. We formally

define CDAG in Sec. 4.1. Fig. 1 shows an excerpt of CDAGs built for

program 𝑃𝐵 . Every variable in the program which can be concretely
evaluated is, that is expressions such as i*N + j are replaced by their
result during interpretation, giving values 0, 1, .. which are used to

identify the memory cells being addressed. When an expression

cannot be computed, for example because it uses a live-in, unknown

value such as A[0], x[0] the expression is automatically promoted

to a symbolic representation: its CDAG. At every assignment the

current CDAG is stored, so that it can be used as replacement for the

next use of the variable. The process is repeated for every iteration

of j, and one CDAG per y[i] is eventually created.

When interpreting 𝑃𝐵 sequentially, we emulate the FIFO API

by implementing fifo.read() and fifo.write() via a simple

array fifo[] and its start/end positions in C, which is processed by

the interpreter. We discuss in Sec. 6 the details of verifying FIFOs,

sequentially or in dataflow-style mode.

Note this construction process is agnostic to how storage and

computations are implemented: creating scalars and different loop

nests simply leads here to building the sameCDAG that is eventually

stored in y[i] for both 𝑃𝐴 and 𝑃𝐵 .

If and only if the control-flow interpreter has reached the end of

the program control, we have built CDAGs for every live-in/live-out

memory cell touched by the program. We can then compute their

equivalence by checking, cell by cell, whether the CDAGs are fully

isomorphic. If so, we have proven the programs are equivalent. We

can catch errors in the loop nests, handling of FIFO (e.g. incomplete

data, deadlocks, etc.), in how statements are scheduled wrt. depen-

dences, etc. Here we prove 𝑃𝐴 and 𝑃𝐵 equivalent for 𝑁 = 100 (and

any A, x) in 0.4s.

Usually, transformations should not alter the number and relative

order of dependent operations for the isomorphism check to be

successful. However as discussed in Sec. 5, our post-normalization

of the CDAG enables the support of transformations exploiting

associativity/commutativity of operations, as well as some changes

in the set of operations computed, if a set of semantics-preserving

rewrite rules is agreed on.



FPGA ’24, March 3–5, 2024, Monterey, CA, USA Pouchet et al.

3 AST-BASED HYBRID INTERPRETER
We now present our concrete interpreter to automatically build

CDAGs for programs. We have implemented support for a large

subset of the C/C++ language, within the PAST [3, 36] library. PAST

is a generic, language-independent Abstract Syntax Tree library,

equipped with a parser from C to PAST, built using flex/bison ANSI

C grammars by Lee and Degener [4].

3.1 Architecture of the Interpreter
The interpreter operates on a PAST tree representing an input,

compilable program. Contrary to a full C interpreter, it does not

require a complete program to be provided: it supports any code

region, and functions with their definitions provided. Any value
which is not computable during interpretation will be considered
symbolic, allowing the interpreter to proceed even without the

concrete data the program operates on. The interpreter is made of:

• An AST traversal mechanism, that implements all control-flow

operations of the program, including function calls, variable dec-

larations, etc. This is presented in Sec. 3.2.

• A concrete expression evaluator, used to evaluate and simplify

expressions typically used for control-flow and array subscript

expressions. This evaluator must implement the same exact con-
crete semantics as the target hardware for which programs are

proved equivalent: identical overflow behavior, support of differ-

ent bitwidths, etc. This is presented in Sec. 3.4.

• A memory storage system, to store concrete and symbolic values

for every variable touched during interpretation, this includes

temporary/local variables.We implement a dynamically allocated

sparse tensor approach to this end, this is presented in Sec. 3.3.

• A CDAG building system, which manipulates symbolic expres-

sions building them by partial evaluation, presented in Sec. 4.

3.2 AST Traversal for Interpretation
Our interpreter traverses the program AST following C/C++ execu-

tion conventions. It terminates when there are no more instructions

to interpret, that is, it has reached the end of the control-flow of

the region analyzed. We support most classical C constructs: for,
while, do-while, if, switch, return, break as well as function

definitions and function calls. When a function is called, its def-

inition must be available in the region analyzed, and control is

simply transferred to this function. We support pass-by-value and

pass-by-reference for function calls. We require that all functions’

arguments are restrict to ensure no aliasing, as we do not per-

form any aliasing analysis and assume different named arguments

point to different memory regions.

We support variable declarations, and a very limited form of

pointer arithmetic and type casting currently, however this is only

a limitation of our current implementation, since supporting those

in full does not pose any particular technical challenges.

3.3 Interpreter Memory
The interpreter maintains a memory for the program. Every vari-

able (or memory cell for an array) accessed during the program has

associated storage, where we store (a) whether the variable is (cur-

rently) symbolic or concrete; (b) the concrete value or the symbolic

CDAG representing the expression to compute that variable; (c)

whether the variable is live-in or not (that is, it is being read before

being written); and (d) statistics useful for subsequent program

optimizations, such as the number of reads/writes to the variable.

To control memory storage size, and especially in the case of manip-

ulating arrays, we implement a dynamically allocated sparse tensor

for the memory. As we support C99multidimensional arrays, whose

size is not necessarily known at compile-time, when an array is

sparsely accessed (e.g., the only element touched during execution

is A[42][51]) storing its dense representation 0−42×0−51 would

consume unnecessary memory.

3.4 Concrete Expression Evaluation
Equipped with a traversal mechanism and memory for the inter-

preter, we can now evaluate a program. A fundamental aspect of
our system to be able to prove equivalence is the availability of a
concrete expression evaluator that implements exactly the same con-
crete semantics as the target hardware. Indeed, in a nutshell, our

interpreter will replace expressions like j = 0; j++; print(j);
by print(1);. This simplification is what makes our system robust

to any implementation of the control-flow, and is fundamental for

its execution time, but it requires a verified implementation of the

concrete evaluator. This expression evaluator shall carefully imple-

ment the exact same behavior as the target architecture, for example

as described in documentation of the HLS framework being used.

Issues of overflow, handling of various bitwidths, type promotion,

etc. must be exactly implemented as it would behave on the target

hardware for our system to conclude a proof of equivalence, as

otherwise different behavior may be observed when running on

the concrete target hardware.

In this work we implemented the concrete semantics of the C

language for integer expressions, supporting all available unary and

binary operators, including bitfield manipulation. Our PAST-based

integer expression evaluator is implemented using about 300 lines

of C, making its manual verification accessible. We are however

dependent on the compiler and test machine to correctly execute

this program bug-free; using certified compilers such as CompCert

[29] may be desired for increased confidence.

3.5 Overview Algorithm for SICF Interpretation
Algorithm 1 below outlines our approach to hybrid concrete/sym-

bolic interpretation. Our implementation behaves identically, but

is optimized for speed and minimizes the work done for each state-

ment, reusing prior computations whenever possible, and caching

per-statement analysis.

We remark the complementary nature of approaches such as

KLEE [38] which computes a set of possible execution paths to

support “symbolic” control-flow, by interpreting LLVM bytecode,

but is mostly limited to integer symbolic variables; or Alive2 [31]

which can expose fine bugs in LLVM programs. We target coverage

of the “converse” case: supporting equivalence of symbolic expres-

sions especially for floating-point operations or any well-defined

type for symbolic variables, but requiring the control-flow can be

completely computed by concrete interpretation at compile-time.

Combining both approaches is the subject of future work. It leads

to the following definition of the class of program we support:



Formal Verification of Source-to-Source Transformations for HLS FPGA ’24, March 3–5, 2024, Monterey, CA, USA

Definition 1 (Statically-Interpretable Control-Flow pro-

gram). Given a compilable (set of) function(s), possibly without some
of the input data it operates on. This program is SICF if there is enough
input data provided such that all branches can be exactly evaluated
and taken at compile-time by concrete interpretation (control-flow
can be computed), and every distinct memory cell accessed can be
uniquely mapped to a finite-size array (dataflow can be computed,
and the program terminates).

Algorithm 1: InterpretSequentialProgram
Result: Program Interpretation

Input :AST A for a program, using C semantics

Output :Set of all CDAGs for each memory cell

1 s := GetFirstInstructionInCFG(A)
2 while s do
3 s’ := clone(s)
4 for each variable v in s’ in postfix do
5 s’ := replaceWithConcreteValueIfExists(v, s’)
6 s’ := concreteEvaluationInPostfixOfOps(s’)
7 <writeLocation,Expr> := extractFromStatement(s’)
8 if Expr contains variable references then
9 if Expr used in branch or array subscript ABORT

10 Expr := BuildCDAGByReplacement(Expr)
11 storeAsSymbolicCDAG(writeLocation, Expr)
12 else
13 storeAsConcreteValue(writeLocation, Expr)
14 s := GetNextInstructionInCFG(A, s)

4 BUILDING CDAGS BY SYMBOLIC ANALYSIS
We now present our approach to CDAG construction, by means of

program interpretation. CDAGs are constructed for every expres-

sion result assigned to any variable in the program which contains

one or more symbolic elements, including local variables. However,

as detailed in Sec. 5, we limit the set of variables considered for

equivalence checking to the live-in/live-out values of the program.

This restriction serves as a sufficient condition for our purposes.

4.1 Formal Definition
A CDAG captures an expression that computes a single value [14].

Definition 2 (CDAG). A CDAG is a directed acyclic graph such
that every leaf node 𝑣𝑙𝑖 is a value (symbolic or concrete) and every
other vertex 𝑣𝑐𝑖 represents an n-ary computation producing a single
value, a function of the children of 𝑣𝑐𝑖 . An edge 𝑣𝑖 → 𝑣𝑐 𝑗 exists iff
the value produced by any vertex 𝑣𝑖 is used in the computation 𝑣𝑐 𝑗 .

CDAGs are a well-known representation of computations, which

have been used e.g. in proving I/O lower bounds for programs [14].

Intuitively, they can be built from a set of ordered instructions,

where the operands are named. That is, it is possible to first build

an execution trace for the program, and manipulate it to rebuild

the same CDAGs as we implement in this work. However, by finely

integrating their construction with program interpretation, we

can easily track operands and their value, and reason distinctively

between concrete and symbolic values.

CDAGs have a fundamental property: they are agnostic to stor-

age, and only represent a computation, not how it is implemented,

as illustrated in Fig. 1.

4.2 Procedure for CDAG construction
We aim to build a CDAG for a variable incrementally, by interpreting

expressions in the order they would be executed by the program.

We first clone the AST of the original expression in the program,

e.g. y[i] + A[i*N+j] * x[j], and progressively rewrite it.

• We traverse the AST of the expression in postfix, and for every

operation which has only concrete value(s) as operand we invoke

the concrete expression evaluator, and replace the associated

subtree with this concrete value. When a concrete variable is

referenced in an expression, it is first replaced by its current

concrete value from the interpreter memory.

• We then re-traverse this modified AST in postfix, now simplified

from integer computations, e.g. the tree is now y[0] + A[0] *
x[0]. For every variable left referenced in the AST, we replace

it by its known current CDAG, if any, otherwise we create a

symbolic node modeling this value, e.g. A[0] and x[0].

During this process, every symbolic variable being referenced has
been replaced by the expression which computes its value. By design,

the resulting tree can only refer to symbolic values (typically live-in

data) and numerical constants. More specifically, we have:

Theorem 1 (CDAGs after termination). Given a function 𝑓
with non-aliasing input arguments, without any side effects and using
only local variables which are dead after the function exits. If the
interpreter succeeds in reaching the end of the function control-flow,
then necessarily the CDAGs computed for its arguments will contain
as leaves only constants and symbols of the arguments themselves, or
be compositions of the CDAGs already computed for the arguments
prior to executing the function.

The proof relies on the function being side-effect free, as all local

variables have a liveness limited to the function scope and therefore

cannot generate new symbols used in CDAGs after the function

exit. CDAGs can only contain symbols reachable via the function

arguments prior to its execution.

4.3 Complexity Considerations
CDAGs built as described above by repetitive replacement of vari-

ables referenced by their known CDAG so far have the fundamental

property of being agnostic to how the computation is implemented,

including if using local storage, however this comes at an important

complexity cost: for a program that executes 𝑂 (𝑛) operations, its
CDAG will have at least 𝑂 (𝑛) nodes. Taking for example matrix

multiplication, it has 𝑂 (𝑛3) FMA operations, therefore the CDAG

will have at least 𝑂 (𝑛3) nodes to represent these operations.

There exists also a degenerate case that can make CDAGs grow

exponentially, for example when a variable is used at multiple places

in the same expression, itself being in a reduction-style computation:

s += s + s + s being repeated under a loop, leading to a final

CDAG of 𝑂 (3𝑛) in theory. In our implementation we address this

problem by ensuring the space complexity remains roughly 𝑂 (𝑛)
even in this case, using pointers and caching (shallow copies) to

represent identical subtrees.

Finally, the complexity of our implementation for CDAG con-

struction, both in time and space, is typically 𝑂 (𝑛) for a program
executing𝑂 (𝑛) operations for sequential verification. This aspect is
fundamental to the performance of verification, as shown in Sec. 7.



FPGA ’24, March 3–5, 2024, Monterey, CA, USA Pouchet et al.

5 EQUIVALENCE CHECKING
We now describe equivalence checking for sequential programs,

and report possible bugs to the user and their location otherwise.

Concurrency checking is presented in later Sec. 6. Intuitively the

process amounts to checking full isomorphism of the CDAGs pro-

duced by 𝑃𝐴 and 𝑃𝐵 for the same memory cell, this for all memory

locations that are live-in and live-out for the programs, that is,

memory locations reachable outside the function(s) checked for

equivalence. We also support a variety of rewrite-rule based nor-

malizations to increase equivalence coverage, including support of

transformations altering the order and count of operations.

5.1 Theoretical Foundation
By construction, our system can prove the equivalence of a pair of

programs, under the hypothesis that all global arrays and function

arguments do not alias. We require the ability to match data that

is live-in (that is, read first before being written) and live-out (that

is, alive after the program region terminates) between 𝑃𝐴 and 𝑃𝐵 :

this is easily achieved by encapsulating the regions to analyze in a

single entry function with well-defined arguments.

Theorem 2 (Eqivalence of Programs). Given two programs
such that the interpreter terminates by reaching the end of their
control-flow without error. They are semantically equivalent if, for
every memory cell that is live-in/live-out to the programs, the CDAGs
produced by each program for that cell are semantically equivalent.

The proof requires that 𝑃𝐵 replaces 𝑃𝐴 in a larger program, ensur-

ing the same execution context necessarily for both. It requires that

the integer expression evaluator implements exactly the concrete

semantics of the target hardware, making code replacement via

partial concrete evaluation in the program necessarily equivalent to

the code before evaluation. As the interpreter can only terminate iff

exclusively concrete values are used in the control-flow and array

subscripts, no other execution path than the one interpreted can

exist for the given input programs. CDAGs are built by successive

equivalent replacements, if the process terminates they correspond

exactly to the full computation to be performed on every memory

cell, which can only be a function of live-in data, per Th. 1, and is

therefore independent of any temporary data. If CDAGs are identi-

cal for the same memory cell for both programs, then they must

produce the same output value for this cell, they are equivalent if

this is true for every live-in/out memory cell.

However, our framework does not prove non-equivalence in

general. For example the absence of a rewrite rule in the system to

show that pow(x,2) is equivalent to x*x would prevent proving

these two expressions equivalent. While our proof of equivalence

holds for any superset of the semantics considered, exposing differ-

ences in CDAGs after normalization only indicates the programs

may not be equivalent under a subset of the semantics.

Corollary 1 (Non-Eqivalence of Programs). Given two pro-
grams such that the interpreter either fails to terminate, or such that
their CDAGs are not shown to be semantically equivalent, then these
two programs may be semantically equivalent.

To compute the isomorphism of CDAGs, we simply for each

CDAG perform a merged prefix+postfix collection of its nodes to

form a vector of size 2𝑛 for a CDAG of 𝑛 nodes, and check the strict

structural equality of the two vectors obtained.

5.2 CDAG Normalizations
Our system can natively detect equivalence when the count and

order of operations performed to produce a CDAG is identical for

both 𝑃𝐴 and 𝑃𝐵 . That is, y[i] += A[i*N+j]*x[j] is not equivalent
with y[i] += x[j]*A[i*N+j]: the CDAGs are not identical. To
handle a wider class of equivalences, we augment the system with a

post-normalization of CDAGs, if checking their isomorphism origi-

nally fails. This post-processing has a polynomial time complexity,

while so far the entire processes presented had a time complexity

linear in the number of operations executed by the programs.

Specifically, the user can declare valid semantics-preserving

rewrite rules to be applied on the CDAGs. For example, commuta-

tivity may be allowed for floating point operations: +𝑓 𝑝 (𝑎, 𝑏) ↔
+𝑓 𝑝 (𝑏, 𝑎) where 𝑎, 𝑏 are arbitrary subtrees. Then, for every rewrite

rule provided, which may include rules that change operation count

such as distributivity/factorization, we modify the CDAGs to apply

them greedily until no more change can be achieved. This does not

ensure completeness, but computes quickly enough to maintain

practicality for the framework. In contrast, techniques like equality

saturation [45] may be able to saturate the representation and bring

completeness, but at a very high computational cost that is impracti-

cal for trees of thousands/millions of nodes as we manipulate. Note

for the special case of associativity/commutativity, we implement a

much faster approach, by simply sorting every commutative node

in the CDAG and their children using a lexicographic ordering of

the subtrees, leading to a canonical CDAG representation under

associativity/commutativity.

6 VERIFICATIONWHEN USING FIFOS
We now present our approach to verifying the insertion of FIFOs to

communicate data between functions, and the associated program

restructuring, is correct. We distinguish two cases: a sequential
verification approach, where we assume FIFOs are of infinite depth;

and a dataflow-style verification approach, where we assume FIFOs

are of a finite depth, and functions manipulating FIFOs appear in a

dataflow-style region such that they execute concurrently, being

activated until waiting for data, based on FIFO readiness and use.

6.1 FIFOs in Sequential Verification
Our approach is a straightforward extension of our sequential veri-

fication approach presented earlier. We rely on the assumption that

functions producing data appear prior to functions consuming that

data in sequential execution order, a realistic assumption e.g. in

the AMD Vitis toolchain for hls::stream FIFOs. We assume here

FIFOs with infinite size, hence non-blocking writes.

We substitute the API calls in the program for reading/writing

FIFOs by our own emulating read/write implementation, replacing

them simply using (a) a self-growing array of same type as the

FIFO, and a start/end position pointer; and (b) for every write we

write the element to this array at the first available position end,
then increasing it, and for reads we do the converse with start.
This simple approach is not able to catch concurrency bugs such

as deadlocks or races, in contrast to our dataflow-style verification

below, however it allows to catch bugs in program restructuring

and how the FIFO is used, while maintaining our target complexity

of 𝑂 (𝑛) time/space for 𝑂 (𝑛) statements executed in the program.



Formal Verification of Source-to-Source Transformations for HLS FPGA ’24, March 3–5, 2024, Monterey, CA, USA

6.2 FIFOs in Dataflow-style Programs
Handling FIFOs of a fixed depth in a dataflow-like implementation

creates the need to handle a form of concurrent execution between

functions, to expose possible deadlocks and race conditions. We

limit in this work to supporting a coarse-grain dataflow-style of

concurrency, for example coarse-grain #pragma HLS dataflow
regions as supported by Vitis. Yet our work paves the way for sup-

port of more general concurrency between functions, as to address

this problem we (a) made our interpreter robust to multitasking

and interrupt-based halt/resume of function interpretation; and (b)

designed a novel approach to interpretation that involves heavy

memory snapshots and bookkeeping so that our verification holds
for any possible valid concurrent schedule that can be executed, this
while interpreting a single of these valid concurrent schedules.

Concurrent-capable interpreter. We equip our sequential inter-

preter with two important features. First, the ability to schedule

a function to execute from a list of functions that are executing

concurrently (e.g., those listed under the dataflow-style pragma).

Second, the ability to interrupt and resume a particular function,

at any point: this means we can implement waiting/interrupting a

function until a particular semaphore has reached a value, and re-

sume it when it did. We use this interrupt and semaphore approach

to represent the blocking FIFO read/write, using semaphores to

capture when a FIFO is ready to read or write.

Verification of concurrent functions. Our approach is fully imple-

mented, and available in our open-source verification tool. Due to

space constraints, we limit to passing the key intuitions regard-

ing computing the earliest schedule of a concurrent program, and

using this information to check for the absence of deadlocks and

the absence of any read/write conflicts: data being read/written by

different concurrent functions at possibly the same time in some

valid concurrent schedule, and not present proofs here.

Concurrent verification approach. By design, our approach is fully
independent of the target HLS toolchain used, we therefore imple-

ment a conservative verification: if there exists a schedule that can
deadlock or race, amongst all possible valid scheduling or HLS ap-

proaches used, then we report so. In particular, we assume every in-

struction may execute in zero cycle, and only blocking reads/writes

may trigger the necessity for some operations to happen before

some others. That is, all synchronizations between concurrent func-

tions that read/write to the same shared memory location must be

explicit in the program, by using a blocking FIFO to synchronize

these read/writes. To implement FIFOs, we use semaphores to com-

municate their readiness state between concurrent functions. FIFOs

are implemented as arrays as for the sequential case, we now aim

to ensure no deadlock nor read-write conflict.

Definition 3 (Semaphore and timestamps). A semaphore is
a counter with value 𝑣 that represents the number of elements in a
blocking FIFO with depth 𝑑 ; a blocking read is possible when 𝑣 > 0

and a blocking write is possible when 𝑣 < 𝑑 . A timestamp 𝑇 𝑓

𝑆
∈ N

is assigned to every semaphore 𝑆 used in function 𝑓 . Its value is 0 at
start, and is incremented when a blocking read/write operation on 𝑆
in 𝑓 becomes ready.

We use𝑇
𝑓

𝑆
to build a monotonically increasing timestamp𝑇𝑆,𝑓 (𝑠)

for all interpreted operations 𝑠 (in their sequential order) in 𝑓 that

depend on the readiness of 𝑆 , and perform subsequent checks for

deadlocks and read-write conflicts. We have:

Definition 4 (Minimal Timestamp and concurrency). Given
two interpreted operations 𝑠1, 𝑠2 in the full program. Given𝑇𝑚𝑓𝑖 (𝑠1) =
min𝑆 (𝑇𝑆,𝑓𝑖 (𝑠1)) the minimal timestamp of 𝑠1 in 𝑓𝑖 (resp. 𝑠2 in 𝑓𝑗 ). If
𝑇𝑚𝑓𝑖 (𝑠1) < 𝑇𝑚𝑓𝑗 (𝑠2) then necessarily under any valid execution of
the program 𝑠1 must complete its execution before 𝑠2 starts. Conversely,
if 𝑇𝑆,𝑓𝑖 (𝑠1) = 𝑇𝑆,𝑓𝑗 (𝑠2) then there is a possible concurrent schedule
executing both operations at the same time.

It is therefore sufficient to check the absence of read-write con-

flicts by considering any operation that accesses data shared be-

tween concurrent functions if they have the same timestamp:

Definition 5 (Read/write conflict). Given 𝑠1, 𝑠2 such that
they access the same shared memory location, that is data non-local
to the concurrent functions. If ∃ 𝑇𝑆,𝑓𝑖 (𝑠1) = 𝑇𝑆,𝑓𝑗 (𝑠2) and one of these
accesses is a write, then a read-write conflict can occur on a possible
concurrent schedule.

If all concurrent functions have the same timestamp for each

semaphore for every operation, they can be executed in any order

and the semaphore values will be valid, but this is not the case

otherwise. We must restore the semaphore values appropriately

before resuming a concurrent function. This bookkeeping is done

for all timestamp values associated to shared variables accesses.

It increases space consumption, but at the benefit of allowing to

interpret a single (specific) concurrent schedule while still proving

correctness for all possible valid schedules.

Executing all functions concurrently requires storing the value

history for semaphore 𝑆 from 𝑇𝑚𝑖𝑛 ...𝑇𝑚𝑎𝑥
, where 𝑇𝑚𝑖𝑛

and 𝑇𝑚𝑎𝑥

are the current minimum and maximum timestamp values for 𝑆

over all concurrent functions. Before resuming interpretation of a

function the value of each semaphore at the relevant timestamp

can be restored, and read-write conflicts can be checked across a

range of histories for a particular memory cell, allowing to emulate

fully concurrent execution sequentially. Details are available in

our implementation [36]. This backup/restore step is fundamental

for the general correctness of our approach, however it incurs a

low-polynomial complexity, slowing the verification, as shown in

Sec. 7 below.

Finally, deadlocks are detected using a simple approach: if the

interpreter has one or more currently executing functions (i.e., not

completed by reaching the end of their control-flow) that cannot

make further progress, because of a blocking operation which has

not reached a ready-state, then we report a deadlock:

Definition 6 (Deadlock). Given 𝑓1, ..., 𝑓𝑛 a set of concurrently
executing functions. If ∃ 𝑓𝑖 in a blocking state which depends on
semaphore 𝑆 and no other 𝑓𝑗 can update 𝑆 , either because they com-
pleted or because they do not modify 𝑆 , then the program deadlocks
under a possible concurrent schedule.

We remark the importance of histories on semaphore values and

restoring them before resuming a concurrent function, to consider

all possible values for a semaphore to change state, and therefore

conclude the absence of deadlocks.



FPGA ’24, March 3–5, 2024, Monterey, CA, USA Pouchet et al.

Table 1: AutoSA Systolic array verification results. Left is sequential-only verification, right uses blocking FIFOs.

Array Size LoCs #Stmts #Nodes Time Mem. #Workers #FIFOs #Stmts #Nodes Time Mem.

2×2 1.1k 1.7k 44 0.01s 4MB 22 31 3.3k 44 0.01s 5MB

4×4 1.6k 7.5k 304 0.01s 5MB 56 91 17k 304 0.02s 7.5MB

8×8 3.5k 41k 2.2k 0.05s 11MB 172 307 109k 2.2k 0.11s 21MB

16×16 10.5k 268k 17k 0.32s 46MB 596 1k 787k 17k 1.05s 132MB

32×32 37.6k 1.9M 134k 2.76s 447MB 2.2k 4k 6.2M 134k 27.9s 1.6GB

64×64 144.6k 14M 1.06M 24.1s 5.9GB 8.5k 16k 54M 1.06M 16m 34GB

Example and Discussions. Our approach provides a conservative

analysis of read-write conflict and deadlocks: if there exists a possi-

ble schedule under which these occur, we report so. We illustrate

with a simple example:

1 float x; // shared

2 fifo_t f;

3 void foo(int a) { a += 1; x += 1; f.write (42); }

4 void bar(int a) { a *= 3; f.read (); x *= 3; }

Suppose we execute foo and bar concurrently. To ensure that reads
and writes to the shared variable x do not execute at the same time,

under any possible schedule, inserting a blocking FIFO write/read

is sufficient to synchronize them. Specifically, operations of foo
are assigned a timestamp, 0, for all. Similarly for bar, up to the

blocking read. When the read changes status (data is available to

read after interpreting f.write(42)), the timestamp for the next

operations in bar is incremented to 1. When checking whether a

read/write conflict exists, we have the tuples 𝑓 𝑜𝑜 :: (0, 𝑥, 𝑟𝑒𝑎𝑑) and
𝑏𝑎𝑟 :: (1, 𝑥,𝑤𝑟𝑖𝑡𝑒) being distinct, so no conflict is reported here

(1 ≠ 0). Note the final CDAG for x is (𝑥 + 1) ∗ 3 here.
But suppose the f.write and f.read are absent.We assume zero

latency for operations: the accesses to x would occur at the same

virtual timestamp: 0, for both foo and bar, and we would report a

read/write conflict on x: 𝑓 𝑜𝑜 :: (0, 𝑥, 𝑟𝑒𝑎𝑑) and 𝑏𝑎𝑟 :: (0, 𝑥,𝑤𝑟𝑖𝑡𝑒)
have identical prefix and a read-write sequence. However when

synthesizing this program with a particular HLS toolchain, oper-

ations have non-zero latencies, and accesses to x may happen at

different cycles even without the blocking FIFO. It is enough to have

a latency of 1 cycle for + and 10 for * (assuming data accesses are

achieved in 1 cycle) for this program to execute foo before accesses
to x in bar are executed, leading to a deterministic execution.

Now suppose only f.write is absent. Interpreting foo runs to
completion, however bar is actively waiting (blocking read) on f.
As it cannot further change state, we report a deadlock as per Def. 6.

Our approach is a conservative analysis for concurrency cor-

rectness, which can incur false negatives: we may report conflicts

that could be addressed by actual timing in the final design. We

never generate false positives: if we report the absence of deadlocks

and read/write conflicts, then under any possible valid concurrent

schedule or HLS approach, the programs cannot have any conflict.

7 EXPERIMENTAL RESULTS
All experiments are performed on Intel Alder Lake Core i9 12900K,

with 128GB of RAM, 30MB cache and running at 5.2GHz single-core

frequency. All verification experiments use a single CPU core. We

use AMD Vitis HLS v2022.1 to simulate and synthesize designs.

7.1 Verifying A Systolic Array Compiler
Systolic array compilers generate high-performance systolic de-

signs from high-level functional descriptions [11, 26, 40, 43]. How-

ever, formally verifying the generated designs remains a challenge

due to the complex transformations during compilation and the

dataflow parallel nature of systolic architectures. We generate sys-

tolic arrays of different sizes for matrix multiply kernels with Au-

toSA [43], and verify the generated HLS program against the input

high-level functional description in C, which is a 5-line matrix-

multiply kernel. Tab. 1 lists the verification results. On the left, we

present sequential-only verification, and when considering fixed-

depth FIFOs using coarse-grain dataflow on the right. The number

of Lines of Code (LoC) in the input program, number of statements

interpreted (Stmts), number of nodes in the final CDAGs for the live-

in/out variables checked for equivalence (Nodes), time to complete

interpretation of this file, and maximal memory used during the

process. We note the significant time and memory cost of perform-

ing deadlock/race detection for any valid concurrent schedule, the

number of concurrent Workers and number of FIFOs is displayed.

Note the time to interpret the original 5-line matrix-multiply kernel,

and verify the equivalence of CDAGs, is negligible here. It amounts

to 2.5s for 64×64, less than 1s for all others. We have also manually

inserted bugs in the code, to validate that our tool can successfully

catch them. No bug was found in the codes produced by AutoSA.

7.2 Verifying Customizations in HeteroCL
HeteroCL is a domain-specific compiler with decoupled customiza-

tions for hardware accelerator designs [16, 25, 46].

PolyBench/HCL: We implement and customize the PolyBench

polyhedral benchmark suite [37] with HeteroCL, and verify the

customized kernels. PolyBench consists of 30 kernels covering

data mining, linear algebra kernels and solvers, and stencil ker-

nels. We customize the kernels with optimizations listed in Tab. 3.

We choose the medium kernel sizes for verification to demon-

strate real-world problem sizes. The number of statements of the

medium-size benchmarks ranges from 239K (jacobi_1d) to 1.6 bil-

lion (floyd_warshall), the median number of statements is 22M

(heat_3d). Verification time ranges from 1.1 second to 2.1 hours,

with a median run time of 192s. The memory footprint ranges from

0.1 MB to 172 GB, with a median memory footprint of 3.5 GB.

BERT: Transformer on FPGA Accelerator: Transformer de-

livers state-of-the-art performance for various tasks in NLP and

vision [41]. The building block of transformer models is matrix-

multiplication, which provides abundant opportunities for hard-

ware acceleration [22]. We build an FPGA accelerator for the BERT-

base model [13] with 12 attention heads, an input feature dimension



Formal Verification of Source-to-Source Transformations for HLS FPGA ’24, March 3–5, 2024, Monterey, CA, USA

Table 2: Results of verifying HLS optimization specifications — PASS indicates the optimized HLS program is bug-free, and the

optimized program is verified to be semantically equivalent to the original program.✓indicates the optimized HLS program is not semantically

equivalent to the original program, and our tool correctly reports the semantic differences.

Kernel Case Optimizations Bug Detect #Node Run time (s)

two-conv

T.1 line buffer no bug PASS 10.9K 0.03

T.2 stream access pattern violation ✓ 10.9K 0.02

T.3 line buffer + stream no bug PASS 10.9K 0.04

binary-conv

B.1 reorder (nchw → nhwc) no bug PASS 16K 0.2

B.2 line buffer + window buffer no bug PASS 16K 0.2

B.3 line buffer + window buffer + reorder loop order dependency violation ✓ 16K 0.2

B.4 layout (nchw → nhwc) difference in input memory layout ✓ 16K 0.2

of 768, and a hidden dimension of 3072 in the feed-forward net-

work. The BERT accelerator is implemented with HeteroCL, and

customized with optimizations listed in Tab. 3. We deploy the ac-

celerator on an AMD U280 FPGA with three Super-Logic Regions

(SLRs). To meet the timing requirement at the routing stage, we add

an additional customization to establish new function boundaries

to group kernels and assign them to each SLR. The BERT accelera-

tor verification executes 1.37B statements and checks 693M CDAG

nodes, taking 27 minutes, and has a memory footprint of 56.9 GB.

Table 3: HLS optimizations considered in evaluation.

Optimization Description

reorder Loop reordering

tile Loop tiling

stream Use FIFO streaming between two HLS kernels

line/window buffer Insert reuse buffers to cache rows/columns of input matrix

write buffer Insert write buffers to cache partial results

double buffer Create ping-pong buffers and alternating read/write logic

unify Unify multiple functions for resource sharing

layout Transform memory layout

7.3 Verifying Intel HLS Examples
Sincewe verify transformations beforeHLS, our verificationmethod

is not limited to any specific HLS tools or vendors. We verify the

example HLS designs from Intel HLS [18] against their C reference

program in the testbench. The Intel HLS sample designs consist of

five kernels: counter, image downsample, interpolation and decima-

tion filters, Gram-Schmidt QR factorization, and YUV-to-RGB color

space conversion. The customizations of the HLS kernels include

loop reordering, unrolling, and customized storage implementation.

For example, the interpolation and decimation filter kernels use

a temporary partial delay line to break loop-carried dependency.

We verify all five cases in under 2 minutes. The example with the

largest problem size is QR factorization, which takes 63.6 seconds

to verify, and has a memory footprint of 1.4GB.

7.4 Verifying Compositions of Optimizations
Some optimizations do not change the program semantics alone, but

may cause bugs when composed with other optimizations. Some

optimizations only preserve semantics when composed with oth-

ers. We select two representative kernels to apply specifications

of HLS optimizations: two-conv for two back-to-back 2D convolu-

tion kernels, binary-conv for a binary convolution kernel on 4D

input tensors. The input size of the two-conv kernel is 8×8, and
both convolution kernels are 3×3. The binary-conv input size is
(𝑁,𝐶,𝐻,𝑊 ) = (1, 3, 8, 8) and the convolution kernel dimension is

(𝑂𝐶, 𝐼𝐶, 𝐾, 𝐾) = (2, 3, 3, 3). Tab. 2 shows the verification results on

optimizations, including the number of CDAG nodes and running

time. We discuss each specification with cases listed in the table.

FIFO stream and line buffers. The original two-conv program has

an array to store the intermediate result. The second convolution

kernel reads the intermediate array in a sliding window. Case T.1

adds a line buffer to the second convolution kernel to increase data

reuse and serialize the data access. Case T.2 simply replaces the

intermediate array with a streaming FIFO. Without a line buffer

in the second kernel to serialize its data access, this optimization

causes an access pattern violation. Case T.3 implements the correct

composition of both optimizations.

Loop reorder and reuse buffers. Some HLS optimizations make

certain assumptions about the program, and further optimizations

that break the assumptions can cause bugs. For example, reuse

buffer insertion assumes a certain loop order to load correct data. In

case B.1, we verify that loop reordering from channel-first (NCHW)

to channel-last (NHWC) does not change program semantics. In

case B.2, we first insert a reuse buffer at height (H) loop to create a

line buffer, then insert another reuse buffer at width (W) loop to

create a window buffer, and we verify that inserting reuse buffers

does not cause bugs either. However, when we apply reordering

after reuse buffer insertion, the output channel (C) loop is moved

inside the width (W) loop, causing line buffer load repeated input

rows. As shown in Tab. 2 case B.3, our tool detects this issue caused

by optimization dependency violation.

Layout transformations. We transform the memory layout of

the input multi-dimensional array from channel-first (NCHW) to

channel-last (NHWC) in case B.4. Memory layout transformation

benefits access locality, but changes the program semantics. Our

tool correctly reports the difference in case B.4.

7.5 Detecting Simulation Mismatches
C simulation can miss critical issues such as over-bound array

access, which leads to hard-to-debug issues and may only be dis-

covered during RTL co-simulation. This case study demonstrates

how our tool efficiently finds memory partition bugs that C simu-

lation does not uncover. Lst. 2 shows such an example: applying

array partitioning on a loop kernel with over-bound array access.

Since C/C++ stores arrays in contiguousmemory, the over-bound

array access A[i][3] overflows to the next row A[i+1][0]. Such
over-bound access does not happen in the synthesized RTL design.

Our tool symbolically evaluates the array index expression. For

array partitioning, it creates separate arrays for each subarray,

and treats the original array as a live-in variable. Therefore, it



FPGA ’24, March 3–5, 2024, Monterey, CA, USA Pouchet et al.

captures the discrepancy in array indices before and after the array

partitioning.

1 int A[4][3] , B[3][3] , C[3][3];

2 #pragma array_partition var=A dim=1 complete

3 for (int i = 0; i < 3; i++) {

4 for (int j = 0; j < 3; j++) {

5 C[i][j] = 0;

6 for (int k = 0; k < 3; k++) {

7 C[i][j] += A[i][k+1] * B[k][j];

8 } } }

Listing 2: Partitioning array with over-bound access.

Our tool takes 0.05s to verify and raise the semantic difference,

C simulation takes 21s, while RTL co-simulation takes 1 minute.

it uncovers subtle bugs that C simulation does not raise, while

offering faster debugging and shorter turnaround time.

7.6 Verification Time and Scalability
We typically verify functions such as GEMM at a rate of about 0.5

million statements per second, amounting to about 0.8MFlop/s, for

problem sizes of 500
3
and less. The process of proving 2 CDAGs

equivalent is typically a negligible factor in the total time, and time

is dominated by the number of instructions to interpret. Limits

are dominated by memory usage: the CDAGs grow in space con-

sumption linearly with the number of operations, with 𝑂 (500𝑀)
FLOPs in reductions using 50GB. Future work includes run-time

compression of CDAGs for increased scalability.

Note however as illustrated in Sec. 7.1, for concurrent verification

there are significantly more instructions to execute due to the check-

semaphore/update-semaphore operations that need to be executed,

and more importantly, significantly larger space being consumed

due to the bookkeeping of memory snapshots whenworkers change

status. 64x64 shows limits in memory usage.

8 RELATEDWORK
Our framework can prove the equivalence of C-style programs un-

der a wide set of code transformations, albeit limited to the class of

Statically Interpretable Control-Flow. We are not aware of any tool

which can support the same set of programs and/or transformations,

but numerous prior works address a similar problem. PolyCheck is

a system to prove equivalence of an affine program and its trans-

formed variant via dynamic analysis [6] and supports “arbitrary”

iteration reordering transformations. It is however fundamentally

limited by the need to find a matching between statements in both

programs, preventing it from supporting statement transformations,

as well as data/storage transformations. In contrast, our framework

does not require the programs to be affine, and supports a vastly

richer class of transformations. ISA [1, 42] supports parametric

loop bounds, and proves equivalence between a pair of programs.

However it remains highly limited in transformation coverage [6],

preventing its deployment for complex HLS optimizations. Other

approaches have been developed, e.g. [20, 39] however they are

typically limited in applicability, that is the space of program trans-

formations supported. In general, numerous approaches to prove

the equivalence of expressions, in restricted contexts, have been

developed, including using equality saturation [44, 45], however

the computational complexity of such approaches prevents ma-

nipulating complex programs with a rich transformation coverage.

Deep learning methods have also been proposed to handle equiva-

lence under a rewrite rule system, but the approach only handles

programs of a few hundred nodes, without loops [24].

An approach complementary to ours is KLEE [2, 38]. It also uses

a form of interpretation, to build a set of feasible execution paths

for a program, discovering invariants and proving equivalence of

complex programs, including pointer-based data structures. Com-

plex techniques have been built to discover equivalence between

programs including to verify processors, e.g., [5, 23]. Preliminary

extensions for floating point support have also been developed [30],

however they do not scale to the problem sizes nor program com-

plexity we manipulate. KLEE implements a different symbolic inter-

pretation approach, ours is specialized for equivalence of programs

with a single concretely interpretable CFG path and concretely

interpretable array subscripts, in order to trade-off generality for

speed. We limit coverage to fixed problem sizes (which are highly

relevant in HLS-based designs), but can operate at order(s) of mag-

nitude faster speed than KLEE due to our linear complexity for

CDAGs construction and equivalence checking, as well as operat-

ing on C semantics. It therefore very significantly widens the class

of programs supported for equivalence checking in feasible time.

Other approaches to check the correctness of a program transfor-

mation include translation validation [33], including for specialized

languages like Halide [8], and HLS [7, 21]. Vericert is a verified

HLS framework [17], akin to CompCert [29]. We target source-to-

source equivalence, outside of a compiler framework, making our

tool agnostic to the optimization framework used, and supporting

user-implemented code transformations. Testing is also a classical

approach, typically checking the output data produced by two pro-

grams is identical, but no proof is guaranteed. Finally, co-simulation

is often performed before final deployment to ensure a design’s cor-

rectness [19], but as shown in Sec. 7 this execution-based approach

may miss bugs that our framework can detect.

9 CONCLUSION
Proving the equivalence between two different implementations

of the same program provides a verification of correctness of the

optimizations for HLS implemented by either humans or tools. Fo-

cusing on source-to-source transformations for HLS and imposing

sensible restrictions on the programs supported, we have developed

a framework that can prove that the result of applying numerous

fundamental optimizations, such as data buffering, FIFO-based com-

munications and arbitrary loop transformations, preserves the exact

semantics of the original program. Our framework can also verify

the correctness of advanced transformations, such as those imple-

mented by an automatic systolic array generator. However, this

comes at the cost of restricting the class of programs supported

to statically-interpretable control-flow programs, which typically

requires known problem sizes at verification time.

ACKNOWLEDGEMENTS – This work was supported in part by an Intel

ISRA award; U.S. NSF awards #1750399 and #2019306; ACE, one of seven

centers in JUMP 2.0, an SRC program sponsored by DARPA; and Grant

PID2022-136435NB-I00, funded by MCIN/AEI/10.13039/501100011033 and

by "ERDF A way of making Europe", EU. We are particularly thankful to Jin

Yang, Jeremy Casas, and Zhenkun Yang from Intel for their support and guid-

ance on the ISRA project. We also thank Lana Josipović and the anonymous

reviewers for their feedback on earlier versions of this manuscript.



Formal Verification of Source-to-Source Transformations for HLS FPGA ’24, March 3–5, 2024, Monterey, CA, USA

REFERENCES
[1] 2022. ISA 0.13. http://repo.or.cz/w/isa.git

[2] 2023. The KLEE Symbolic Execution Engine. https://klee.github.io

[3] 2023. PoCC, the Polyhedral Compiler Collection 1.6. https://pocc.sourceforge.net

[4] 2023. Programming in C. https://www.quut.com/c/

[5] Sahar Badihi, Faridah Akinotcho, Yi Li, and Julia Rubin. 2020. ARDiff: scaling pro-

gram equivalence checking via iterative abstraction and refinement of common

code. In 28th ACM Joint Meeting on European Software Engineering Conference
and Symposium on the Foundations of Software Engineering.

[6] Wenlei Bao, Sriram Krishnamoorthy, Louis-Noël Pouchet, Fabrice Rastello, and P.

Sadayappan. 2016. PolyCheck: Dynamic Verification of Iteration Space Transfor-

mations on Affine Programs. In Proceedings of the 43rd Annual ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages.

[7] Ramanuj Chouksey and Chandan Karfa. 2020. Verification of Scheduling of

Conditional Behaviors in High-Level Synthesis. IEEE Transactions on Very Large
Scale Integration (VLSI) Systems (2020).

[8] Basile Clément and Albert Cohen. 2022. End-to-end translation validation for the

halide language. In OOPSLA 2022-Conference on Object-Oriented Programming
Systems, Languages, and Applications.

[9] Jason Cong, Jason Lau, Gai Liu, Stephen Neuendorffer, Peichen Pan, Kees Vissers,

and Zhiru Zhang. 2022. FPGAHLS today: successes, challenges, and opportunities.

ACM Transactions on Reconfigurable Technology and Systems (TRETS) (2022).
[10] Jason Cong, Bin Liu, Stephen Neuendorffer, Juanjo Noguera, Kees Vissers, and

Zhiru Zhang. 2011. High-level synthesis for FPGAs: From prototyping to de-

ployment. IEEE Transactions on Computer-Aided Design of Integrated Circuits and
Systems (2011).

[11] Jason Cong and Jie Wang. 2018. PolySA: Polyhedral-based systolic array auto-

compilation. In IEEE/ACM International Conference on Computer-Aided Design.
[12] Patrick Cousot. 2012. Formal Verification by Abstract Interpretation. In Proceed-

ings of the 4th international conference on NASA Formal Methods.
[13] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2018. Bert:

Pre-training of deep bidirectional transformers for language understanding. arXiv
preprint arXiv:1810.04805 (2018).

[14] Venmugil Elango, Fabrice Rastello, Louis-Noël Pouchet, Jagannathan Ramanujam,

and Ponnuswamy Sadayappan. 2015. On characterizing the data access com-

plexity of programs. In Proceedings of the 42nd Annual ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages.

[15] P. Feautrier. 1992. Some efficient solutions to the affine scheduling problem, part

II: multidimensional time. International Journal of Parallel Programming (1992).

[16] Cornell Zhang Group. 2023. HeteroCL: A Multi-Paradigm Programming Infras-

tructure for Software-Defined Reconfigurable Computing. https://github.com/

cornell-zhang/heterocl/releases/tag/v0.5

[17] Yann Herklotz, James D. Pollard, Nadesh Ramanathan, and John Wickerson. 2021.

Formal Verification of High-Level Synthesis. Proc. ACM Program. Lang. (2021).
[18] Intel. 2023. High Level Synthesis (HLS) Design Examples and Tutori-

als. https://www.intel.com/content/www/us/en/docs/programmable/683053/19-

1/high-level-synthesis-hls-design-examples.html

[19] Nursultan Kabylkas, Tommy Thorn, Shreesha Srinath, Polychronis Xekalakis,

and Jose Renau. 2021. Effective processor verification with logic fuzzer enhanced

co-simulation. In 54th IEEE/ACM International Symposium on Microarchitecture.
[20] Chandan Karfa, Kunal Banerjee, Dipankar Sarkar, and Chittaranjan Mandal. 2013.

Verification of loop and arithmetic transformations of array-intensive behaviors.

IEEE Trans. on Computer-Aided Design of Integrated Circuits and Systems (2013).
[21] C. Karfa, C. Mandal, D. Sarkar, S.R. Pentakota, and C. Reade. 2006. A formal

verification method of scheduling in high-level synthesis. In 7th International
Symposium on Quality Electronic Design (ISQED’06).

[22] Sehoon Kim, Coleman Hooper, Thanakul Wattanawong, Minwoo Kang, Ruohan

Yan, Hasan Genc, Grace Dinh, Qijing Huang, Kurt Keutzer, Michael W Mahoney,

et al. 2023. Full stack optimization of transformer inference: a survey. arXiv
preprint arXiv:2302.14017 (2023).

[23] Lucas Klemmer and Daniel Große. 2021. EPEX: processor verification by equiva-

lent program execution. In Proceedings of the Great Lakes Symposium on VLSI.
[24] Steve Kommrusch, Martin Monperrus, and Louis-Noël Pouchet. 2023. Self-

Supervised Learning to Prove Equivalence Between Straight-Line Programs

via Rewrite Rules. IEEE Transactions on Software Engineering (2023).

[25] Yi-Hsiang Lai, Yuze Chi, Yuwei Hu, Jie Wang, Cody Hao Yu, Yuan Zhou, Jason

Cong, and Zhiru Zhang. 2019. HeteroCL: A multi-paradigm programming in-

frastructure for software-defined reconfigurable computing. In Proceedings of the
2019 ACM/SIGDA International Symposium on Field-Programmable Gate Arrays.

[26] Yi-Hsiang Lai, Hongbo Rong, Size Zheng, Weihao Zhang, Xiuping Cui, Yunshan

Jia, Jie Wang, Brendan Sullivan, Zhiru Zhang, Yun Liang, et al. 2020. Susy: A

programming model for productive construction of high-performance systolic

arrays on fpgas. In 39th International Conference on Computer-Aided Design.
[27] Yi-Hsiang Lai, Ecenur Ustun, Shaojie Xiang, Zhenman Fang, Hongbo Rong, and

Zhiru Zhang. 2021. Programming and Synthesis for Software-Defined FPGA

Acceleration: Status and Future Prospects. ACM Trans. Reconfigurable Technol.
Syst. 14, 4, Article 17 (sep 2021), 39 pages. https://doi.org/10.1145/3469660

[28] Chris Lattner, Mehdi Amini, Uday Bondhugula, Albert Cohen, Andy Davis,

Jacques Pienaar, River Riddle, Tatiana Shpeisman, Nicolas Vasilache, and Olek-

sandr Zinenko. 2021. MLIR: Scaling compiler infrastructure for domain specific

computation. In IEEE/ACM International Symposium on Code Generation and
Optimization.

[29] Xavier Leroy. 2009. Formal verification of a realistic compiler. Commun. ACM
52, 7 (2009), 107–115.

[30] Daniel Liew, Daniel Schemmel, Cristian Cadar, Alastair F Donaldson, Rafael

Zahl, and Klaus Wehrle. 2017. Floating-point symbolic execution: a case study

in n-version programming. In 2017 32nd IEEE/ACM International Conference on
Automated Software Engineering (ASE). IEEE, 601–612.

[31] Nuno P Lopes, Juneyoung Lee, Chung-Kil Hur, Zhengyang Liu, and John Regehr.

2021. Alive2: bounded translation validation for LLVM. In ACM SIGPLAN Inter-
national Conference on Programming Language Design and Implementation.

[32] Anmol Mathur, Masahiro Fujita, Edmund Clarke, and Pascal Urard. 2009. Func-

tional Equivalence Verification Tools in High-Level Synthesis Flows. IEEE Design
& Test of Computers 26, 4 (2009), 88–95. https://doi.org/10.1109/MDT.2009.79

[33] George C Necula. 2000. Translation validation for an optimizing compiler. In

ACM SIGPLAN conference on Programming language design and implementation.
[34] Auguste Olivry, Julien Langou, Louis-Noël Pouchet, Ponnuswamy Sadayappan,

and Fabrice Rastello. 2020. Automated derivation of parametric data movement

lower bounds for affine programs. In Proceedings of the 41st ACM SIGPLAN
Conference on Programming Language Design and Implementation.

[35] Debjit Pal, Yi-Hsiang Lai, Shaojie Xiang, Niansong Zhang, Hongzheng Chen,

Jeremy Casas, Pasquale Cocchini, Zhenkun Yang, Jin Yang, Louis-Noël Pouchet,

et al. 2022. Accelerator design with decoupled hardware customizations: benefits

and challenges. In 59th ACM/IEEE Design Automation Conference.
[36] Louis-Noel Pouchet and Emily Tucker. 2023. PAST, the PoCCAST Library, version

0.7.2. https://sourceforge.net/projects/pocc/files/1.6/testing/modules/past-0.7.2.

tar.gz,https://doi.org/10.5281/zenodo.10449349

[37] Louis-Noel Pouchet and Tomofumi Yuki. 2023. PolyBench/C 4.2.1. https:

//polybench.sourceforge.net

[38] David A Ramos and Dawson Engler. 2015. Under-constrained symbolic execu-

tion: Correctness checking for real code. In 24th {USENIX} Security Symposium
({USENIX} Security 15).

[39] KC Shashidhar, Maurice Bruynooghe, Francky Catthoor, and Gerda Janssens.

2005. Verification of Source Code Transformations by Program Equivalence

Checking. CC (2005).

[40] Nitish Srivastava, Hongbo Rong, Prithayan Barua, Guanyu Feng, Huanqi Cao,

Zhiru Zhang, David Albonesi, Vivek Sarkar, Wenguang Chen, Paul Petersen, et al.

2019. T2S-Tensor: Productively generating high-performance spatial hardware

for dense tensor computations. In 2019 IEEE 27th Annual International Symposium
on Field-Programmable Custom Computing Machines (FCCM).

[41] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,

Aidan N Gomez, Łukasz Kaiser, and Illia Polosukhin. 2017. Attention is all

you need. Advances in neural information processing systems 30 (2017).
[42] Sven Verdoolaege, Gerda Janssens, and Maurice Bruynooghe. 2012. Equivalence

checking of static affine programs using widening to handle recurrences. ACM
Trans. on Programming Languages and Systems (TOPLAS) (2012).

[43] Jie Wang, Licheng Guo, and Jason Cong. 2021. AutoSA: A polyhedral compiler for

high-performance systolic arrays on FPGA. In The 2021 ACM/SIGDA International
Symposium on Field-Programmable Gate Arrays.

[44] Yisu Remy Wang, Shana Hutchison, Jonathan Leang, Bill Howe, and Dan Suciu.

2020. SPORES: Sum-Product Optimization via Relational Equality Saturation for

Large Scale Linear Algebra. Proc. VLDB Endow. 13, 12 (jul 2020), 1919–1932.
[45] Max Willsey, Chandrakana Nandi, Yisu Remy Wang, Oliver Flatt, Zachary Tat-

lock, and Pavel Panchekha. 2021. Egg: Fast and extensible equality saturation.

Proceedings of the ACM on Programming Languages (2021).
[46] Shaojie Xiang, Yi-Hsiang Lai, Yuan Zhou, Hongzheng Chen, Niansong Zhang,

Debjit Pal, and Zhiru Zhang. 2022. HeteroFlow: An Accelerator Programming

Model with Decoupled Data Placement for Software-Defined FPGAs. In Proceed-
ings of the 2022 ACM/SIGDA International Symposium on Field-Programmable Gate
Arrays (Virtual Event, USA) (FPGA ’22). Association for Computing Machinery,

New York, NY, USA, 78–88. https://doi.org/10.1145/3490422.3502369

[47] AMD Xilinx. 2022. Merlin. https://github.com/Xilinx/merlin-compiler

http://repo.or.cz/w/isa.git
https://klee.github.io
https://pocc.sourceforge.net
https://www.quut.com/c/
https://github.com/cornell-zhang/heterocl/releases/tag/v0.5
https://github.com/cornell-zhang/heterocl/releases/tag/v0.5
https://www.intel.com/content/www/us/en/docs/programmable/683053/19-1/high-level-synthesis-hls-design-examples.html
https://www.intel.com/content/www/us/en/docs/programmable/683053/19-1/high-level-synthesis-hls-design-examples.html
https://doi.org/10.1145/3469660
https://doi.org/10.1109/MDT.2009.79
https://sourceforge.net/projects/pocc/files/1.6/testing/modules/past-0.7.2.tar.gz,https://doi.org/10.5281/zenodo.10449349
https://sourceforge.net/projects/pocc/files/1.6/testing/modules/past-0.7.2.tar.gz,https://doi.org/10.5281/zenodo.10449349
https://polybench.sourceforge.net
https://polybench.sourceforge.net
https://doi.org/10.1145/3490422.3502369
https://github.com/Xilinx/merlin-compiler

	Abstract
	1 Introduction
	2 Approach to Verification
	3 AST-based Hybrid Interpreter
	3.1 Architecture of the Interpreter
	3.2 AST Traversal for Interpretation
	3.3 Interpreter Memory
	3.4 Concrete Expression Evaluation
	3.5 Overview Algorithm for SICF Interpretation

	4 Building CDAGs by Symbolic Analysis
	4.1 Formal Definition
	4.2 Procedure for CDAG construction
	4.3 Complexity Considerations

	5 Equivalence Checking
	5.1 Theoretical Foundation
	5.2 CDAG Normalizations

	6 Verification When Using FIFOs
	6.1 FIFOs in Sequential Verification
	6.2 FIFOs in Dataflow-style Programs

	7 Experimental Results
	7.1 Verifying A Systolic Array Compiler
	7.2 Verifying Customizations in HeteroCL
	7.3 Verifying Intel HLS Examples
	7.4 Verifying Compositions of Optimizations
	7.5 Detecting Simulation Mismatches
	7.6 Verification Time and Scalability

	8 Related Work
	9 Conclusion
	References

