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ABSTRACT
To achieve high performance with FPGA-equipped heterogeneous

compute systems, it is crucial to co-optimize data placement and

compute scheduling to maximize data reuse and bandwidth utiliza-

tion for both on- and off-chip memory accesses. However, optimizing

the data placement for FPGA accelerators is a complex task. One

must acquire in-depth knowledge of the target FPGA device and

its associated memory system in order to apply a set of advanced

optimizations. Even with the latest high-level synthesis (HLS) tools,

programmers often have to insert many low-level vendor-specific

pragmas and substantially restructure the algorithmic code so that

the right data are accessed at the right loop level using the right

communication schemes. These code changes can significantly com-

promise the composability and portability of the original program.

To address these challenges, we propose HeteroFlow, an FPGA

accelerator programming model that decouples the algorithm speci-

fication from optimizations related to orchestrating the placement

of data across a customized memory hierarchy. Specifically, we in-

troduce a new primitive named .to(), which provides a unified

programming interface for specifying data placement optimizations

at different levels of granularity: (1) coarse-grained data placement

between host and accelerator, (2) medium-grained kernel-level data

placement within an accelerator, and (3) fine-grained data placement

within a kernel. We build HeteroFlow on top of the open-source

HeteroCL DSL and compilation framework. Experimental results

on a set of realistic benchmarks show that, programs written in

HeteroFlow can match the performance of extensively optimized

manual HLS design with much fewer lines of code.
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1 INTRODUCTION
FPGA accelerators leverage distributed, specialized datapaths to en-

able massively parallel and/or deeply pipelined computation on-chip.

In comparison, off-chip memory accesses remain a bottleneck in

terms of both latency and bandwidth. Hence contemporary accel-

erators typically allocate significant resources to form customized

memory hierarchies that ensure the many parallel compute engines

are fed with data at a sufficient rate.

A key distinction from general-purpose computing is that FPGA

programmers must leverage the application/domain knowledge to

explicitly manage the orchestration of the important data, namely,

choosing the “right” type of memory storage to place the “right”

granularity of data and moving them in and out at the “right” mo-

ment. For example, a recent study shows that carefully managing the

data layout and communication schemes of the FPGA accelerators

can result in a 3–8× performance improvement on a collection of

benchmarks [30]. In this paper, we use the term data placement to
broadly refer to the programmer-managed control of data orches-

tration and marshaling across the accelerator’s memory hierarchy.

A well-designed data placement scheme should act in concert with

compute scheduling to maximize data reuse and bandwidth utiliza-

tion for both on- and off-chip memory accesses.

Optimizing the data placement for FPGA accelerators is by no

means an easy task, especially using the conventional RTL-based de-

sign methodology. Modern high-level synthesis (HLS) tools improve

the programmability of FPGAs by raising the level of design ab-

straction using software programming languages [11, 26]. However,

there are still several major downsides of the current HLS program-

ming models, which often result in less satisfactory performance

and repeated engineering effort:

• To achieve a high-performance, programmers must acquire in-

depth knowledge of the target FPGA device and its associated

memory system before applying a set of optimizations that account

for the host-accelerator communications as well as the interactions

between different sub-modules within the accelerator.

• Current HLS programming models entangle algorithm descrip-

tions with hardware customization techniques including data

placement. HLS users often have to substantially perturb the struc-

ture of the (originally algorithmic) code and insert many low-level

vendor-specific constructs such as pragmas and library calls. This

significantly lowers the readability and portability of the design.

• The contemporary C-based HLS methodology lacks a concise

and consistent abstraction for expressing data placement schemes

across different levels of the custom memory hierarchy, compro-

mising the design modularity and composability. The lack of ex-

plicit programming abstraction of data placement may also hinder

effective compiler analyses and optimizations.
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Some recent HLS research has proposed end-to-end compila-

tion flow using polyhedral analysis to generate high-performance

FPGA accelerators from C/C++ programs in a push-button man-

ner [6, 9, 12, 43]. The high-level goal is to allow programmers to

focus on the algorithms, while the compiler automatically explores

architecture design space. However, these methods mainly focus on

kernel-level compilation,
1
where the compute kernels are restricted

to highly regular loop nests such as those commonly seen in systolic

algorithms. For example, AutoSA [43] automatically builds systolic

arrays from a plain C/C++ program without sophisticated manual

annotations or code changes. While it provides autotuning capa-

bilities that explore different data placement schemes (e.g., weight-

versus output-stationary), the AutoSA compiler is limited to systolic

kernels and it does not offer a programming abstraction to facilitate

the integration with other non-systolic portions of the accelerator.

Another active line of work attempts to further raise the abstrac-

tion level of FPGA programming by leveraging domain-specific lan-

guages (DSLs) and promoting separation of concerns [24, 25, 27,

35, 40]. One recent example is HeteroCL [24], which provides a

Python-based embedded DSL and compiler for FPGA accelerator

programming. Inspired by Halide [36] and TVM [8], HeteroCL sepa-

rates an algorithm specification from a temporal compute schedule

such as loop reordering and tiling. HeteroCL further decouples the

algorithm from on-chip memory customization and data quantiza-

tion schemes. However, it does not provide programming support

for the explicit management of data placement.

In this paper we propose HeteroFlow, an FPGA accelerator pro-

gramming model that supports a data placement specification de-

coupled from the algorithm description and other hardware cus-

tomizations. HeteroFlow provides a unified programming interface

for customizing: (1) host-accelerator data placement, where a pro-

grammer can specify in a concise and portable manner the data

schemes between the CPU host memory and the FPGA accelerator

(or the device memory associated with the accelerator); (2) inter-

kernel data placement, where efficient on-chip data streaming (via

FIFO and multi-buffers) can be easily enabled between different com-

pute kernels within an accelerator; (3) intra-kernel data placement,

which allows productive yet expressive specifications of various fine-

grained dataflow patterns commonly used in spatial architectures

such as systolic arrays.

Our main technical contributions are as follows:

• To our knowledge, this is the first work to introduce an FPGA-

focused high-level programming model with decoupled data

placement specifications. The proposed HeteroFlow approach

separates the concerns of algorithmic optimizations from or-

chestrating the placement of data across a customized memory

hierarchy, improving both design productivity and portability.

• Unlike conventional HLS, HeteroFlow provides a unified pro-

gramming interface named .to(), for expressing data placement

optimizations at different levels of the design/memory hierarchy

(i.e., host-accelerator, kernel-to-kernel, and intra-kernel), result-

ing in a more modular and composable design specification.

• We extend the open-source HeteroCL framework [24] to imple-

ment the .to() primitive, enabling programmers to co-optimize

1
Here we use a generic term “kernel” to loosely define a sub-module in the accelerator

design that contains a loop nest (or function) with tens to hundreds of operations.

data placement schemes with other hardware customization tech-

niques such as tiling and data quantization. With HeteroFlow,

a programmer can further leverage .to() to seamlessly inte-

grate non-systolic kernels with optimized systolic arrays (either

directly specified in HeteroFlow or generated by an existing

optimizing compiler [43]).

• We evaluate our proposed framework on a set of realistic bench-

marks and show that programs written in HeteroFlow can match

the performance of extensively optimized manual HLS design

with much fewer lines of code.

2 BACKGROUND
Data Placement for FPGA Accelerators. When programming an

FPGA using HLS, the designer is responsible for orchestrating the

placement and movement of data between memory buffers inside

the FPGA chip, and between the FPGA and the CPU host. Common

methods for on-chip memory management include single buffer,

double buffer, and streaming FIFO. CPU-FPGA communication can

be realized using DMA engines. On certain platforms, the FPGA is

allowed to directly read data from the CPU’s host memory or cache.

Inspired by [33], we categorize these data placement methods

along two dimensions. The first dimension is whether the requester

of data loading is also the consumer of the data. This is common

for traditional computational platforms (e.g., CPUs with caches and

GPUs with shared scratchpad memories) and we refer to this data

access scheme as coupled access-execute. In this scenario, data ac-

cess and computation cannot be performed at the same time. For

heterogeneous CPU-FPGA platforms, directly reading from the host

memory or performing communication using a single buffer inside

the FPGA fall into this category. On the contrary, it is common for

one stage of an FPGA accelerator to consume the data in a buffer

while a separate stage is storing data into the buffer. This approach

is referred to as decoupled access-execute (DAE) because data access
and execution can be performed in parallel. Loading data from the

host using DMA, and performing on-chip communication through

FIFO or double buffers fall into this category.

The second dimension is whether the requester of data loading

has complete knowledge and control about the exact location of

the data in the memory hierarchy. When caches are present in the

memory hierarchy, the load initiator only interacts with the first-

level cache, and the memory system decides how to transfer the

data and where to keep the data. Such a scheme is implicit and al-

leviates the designer’s burden of managing the memory hierarchy.

However, the area and performance penalty of implicit data orches-

tration is often too high for hardware accelerators. As a result, FPGA

accelerators usually adopt explicit data orchestration. For on-chip
communication, the accelerator knows the exact location of the data

when passing data using FIFOs or buffers. Specifically, loading data

from host memory using DMA belongs to explicit data orchestration,

because the DMA engine in the accelerator knows the address to

the host memory buffer.

Programming with Decoupled Hardware Customizations. The core
tenet of a decoupled programming model is to separate the algo-

rithmic description from the specification of target-dependent opti-

mizations (e.g., vectorization). The algorithm only describes what is

computed, while the customizations specify how the computation

should be performed on hardware. The decoupled programming



Table 1: Example customization primitives in HeteroCL [24].
(a) Compute Customization

s[stage].pipeline(axis, ii): pipeline loop with II=ii
s[stage].unroll(axis, factor): unroll loop with target factor
s[stage].tile(i, factors): tile loop with factors
(b) Memory Customization

s.reuse_at(tensor, stage): create reuse buffer for tensor in stage
(c) Data Type Customization

s.quantize(tensor, dtype): quantize tensor to fixed-point type

model was original proposed in Halide [36], and it is later adopted

by several other frameworks such as TVM [8]and HeteroCL [24].

Among these decoupled programming models, HeteroCL is the

one primarily focusing on FPGA-based computing. Similar to Halide,

HeteroCL separates an algorithm specification from compute cus-

tomization techniques such as loop reordering, tiling, unrolling, and

pipelining. HeteroCL further decouples the algorithm from mem-

ory architectures and data quantization schemes, which are both

essential for efficient hardware acceleration. With respect to mem-

ory customization, HeteroCL provides primitives to create custom

on-chip memory hierarchy through banking and reuse buffers.

Table 1 shows a subset of customization primitives provided by

HeteroCL. In HeteroCL, a kernel, which contains a loop nest or

function to perform computations, is defined as a compute stage. The
decoupled customization primitives are applied to either a stage (i.e.,

compute customization) or the memory and data used by a stage

(e.g., memory and data type customization).

It is worth noting that HeteroCL does not provide an explicit

abstraction to model data placement, which essentially captures the

interdependence between custom memories and compute units. The

programmers need to either embed their placement schemes into the

algorithm code or rely on the compiler to generate a default scheme.

3 MOTIVATIONAL EXAMPLE
We use image blurring as a motivational example to demonstrate

the limitations of programming data placement and related opti-

mizations in HLS. The algorithm takes in a 2D image as an input

and computes the output by pushing it through two back-to-back

1D convolution kernels. To achieve better performance, we apply

several hardware customization techniques such as loop tiling, data

reuse, and data quantization. In the following, we focus on constructs

and optimizations related to data placement.

To begin with, we describe the boundary between host and ac-

celerator. In HLS, we need to maintain two sets of codes: one for

describing the offloaded logic (i.e., the accelerator code) and one

for handling data transfer (i.e., the host code). We show the opti-

mized accelerator code in Figure 1. Throughout this example, we use

Vivado HLS syntax . With HLS, in addition to defining a top-level

function (L3-4), we need to specify the data communication interface

via vendor-specific directives such as pragma HLS interface (L5-6).

If a user decides to shift the boundary between host and accelera-

tor, they need to extensively restructure the code by modifying the

top-level function signature, the directives, and the function body,

which is less productive and more error-prone.

More work needs to be done when the number of data transferred

exceeds the number of physical ports. In this case, programmers need

to manually schedule the I/O. Here, after loop tiling and unrolling,

we end upwith 8 compute units executing in parallel. As shown in L8,

1 typedef ap_int<W> DTYPE;
2 // max number of ports per DRAM bank = 14
3 void blur(DTYPE∗ input0, ..., DTYPE∗ input6,
4 DTYPE∗ output0, ..., DTYPE∗ output6) {
5 #pragma HLS interface port=input0 bundle=g0 burst=32
6 #pragma HLS interface port=input1 bundle=g1 burst=32
7 ...
8 stream<DTYPE> fifo_in[8], fifo_out[8];
9 input_io_schedule(fifo_in, input0, ..., input6);
10 compute_units(fifo_in, fifo_out);
11 output_io_schedule(fifo_out, output0, ..., output6);}

Figure 1: Accelerator code for blur in HLS.
we need 8 input and 8 output ports (i.e., 16 ports in total). However,

assuming the target accelerator only has 14 ports per DRAM bank,

we need to schedule the I/O due to insufficient ports (L9 and L11).

1 void compute_units(stream<DTYPE> fifo_in[8], fifo_out[8]) {
2 stream<DTYPE> fifo_inter[8]; #pragma HLS dataflow
3 #pragma HLS stream var=fifo_inter[0] depth=32
4 #pragma HLS stream var=fifo_inter[1] depth=32
5 ...
6 conv1(fifo_in, fifo_inter);
7 conv2(fifo_inter, fifo_out);}

Figure 2: Describing task-level dataflow with FIFOs and
vendor-specific directives in HLS.

To exploit task-level parallelism, one way is to execute the two

convolution kernels in a dataflow fashion. In HLS, as shown in

Figure 2, we need to first define the FIFOs that connect the two

compute kernels in L3. We also need to configure the FIFO depth

in L4-5. Finally, we may need to include vendor-specific directives

such as pragma dataflow for the HLS compiler to generate the right

hardware architecture (L2). Such an approach does not scale well

when the number of compute kernels increases.

1 void PE(DTYPE weight, stream<DTYPE> Xin, Yin, Yout)
2 Yout.write(weight ∗ Xin.read() + Yin.read());
3 void conv2(stream<DTYPE> fifo_inter[8], fifo_out[8]) {
4 for (yo=0; yo<128; yo++)
5 for (xoo=0; xoo<16; xoo++) {
6 for (xoi=0; xoi<8; xoi++) { #pragma HLS unroll
7 stream<DTYPE> Xin[3], Yin[3], Yout[3];
8 broadcast(fifo_inter, Xin[0], Xin[1], Xin[2]);
9 PE(w2[0],Xin[0],Yin[0],Yout[0]); Yin[1]=Yout[0];
10 PE(w2[1],Xin[1],Yin[1],Yout[1]); Yin[2]=Yout[1];
11 PE(w2[2],Xin[2],Yin[2],Yout[2]);
12 data_drainer(Yout[2], fifo_out);}}}

Figure 3: Realizing loop-level dataflow using a systolic array.

Finally, for loop-level dataflow, a common approach is to generate

high-performance spatial architectures such as systolic arrays. Fig-

ure 3 shows the HLS code that implements the second convolution

kernel as a weight-stationary (semi-)systolic array. With HLS, de-

scribing a systolic array is usually widely different from describing

general computation. For instance, we need to define the behavior

of each processing element (PE) in the array (L1-2). We also need

to define the connections between the PEs (L7-12), which includes

nontrivial data orchestration such as broadcasting and draining. Any

misconnections may break functionality or result in deadlocks.

To summarize, to apply data placement at different levels, we need

not only to use a wide variety of vendor-specific directives but to take

care of low-level target-specific details as well. The tightly entangled

algorithm specification and data placement schemes make the codes



Table 2: Semantics of the .to() primitive for data placement — At each level of placement, multiple data orchestration methods with

different performance-area trade-offs are supported. We mark the default mode(s) as bold. Inter- and intra-kernel data placement schemes

share the same set of modes.

.to(data, destination, mode=default)

Level of
Placement

Data
Granularity Destination Mode

Access
Order

Hardware
Implementation

Area
Overhead DAE

Data
Movement

Host-accelerator Tensor

Storage

Media

Cache Arbitrary Cache/Cache Interface High N Implicit

DMA
Sequential FIFO+BRAM Medium Y Explicit

Arbitrary FIFO+BRAM Medium-High N Explicit

Inter-kernel Tensor

Compute

Stage(s)

Stream Sequential SRL, BRAM, etc. Low Y Explicit

Single Buffer Arbitrary BRAM, Register, etc. Low-Medium N Explicit

Intra-kernel Scalar
Double Buffer Arbitrary BRAM, Register, etc. Medium Y Explicit

1 void conv1(stream<DTYPE> fifo_in[8], fifo_inter[8]) {
2 DTYPE buffer[2][8][64];
3 for (yo=0; yo<128; yo++) {
4 for (xoo=0; xoo<16; xoo++) {
5 for (xoi=0; xoi<8; xoi++) { #pragma HLS unroll
6 write_buffer(buffer[xoo%2][xoi], fifo_in[xoi]);
7 compute_conv(buffer[1−xoo%2][xoi], fifo_inter[xoi]);
8 }}}}

Figure 4: Co-optimizing data placement with other hardware
customization in HLS.

1 import heteroflow as hf
2 ...
3 conv1 = conv1d(img, w1)
4 conv2 = conv1d(conv1, w2)
5 s = hf.create_schedule()
6 p = platform.xcel_system
7

8 # host−accelerator
9 s.to([img,w1,w2], p.xcel)
10 s.to(conv2, p.host)
11 # inter−kernel
12 s.to(conv1, conv2)
13 # intra−kernel
14 PEs=s[conv1].unroll(axis=1)
15 pe0, pe1, pe2 = PEs
16 s.to(img.v,[pe0,pe1,pe2])
17 s.to(pe0.Y, pe1).to(pe2)

Host-accelerator (§4.1)

w
+

x

FPGA

Inter-kernel (§4.2)

Intra-kernel (§4.3)

HOST (CPU+DDR) outputimage

PE0 PE1

w[0] w[1] w[2]

PE2

yout

img0img1

conv2conv1img

yout

Figure 5: Overview of HeteroFlow programming model.

even more tedious. Not to mention the increased coding complexity

brought by co-optimizations with other hardware customization.

Thus, we need a unified yet concise programming abstraction to

describe data placement from all design levels for better productivity

and composability.

4 THE PROGRAMMING MODEL
To overcome the deficiencies of HLS programming mentioned in

Section 3, we propose HeteroFlow to enable programmers to specify

data placement at different levels of design hierarchy and data gran-

ularity using a unified interface via the .to() primitive. Figure 5

provides an overview of the HeteroFlow programming model using

the image blur example. With the .to() primitive, programmers

can concisely specify data placement at multiple design hierarchies

without changing the algorithm description as shown in the code

snippet on the left. The resulting accelerator implementation on a

CPU+FPGA platform is sketched on the right.

Table 2 describes the semantics of the .to() primitive, which takes

in three arguments: the data to be placed, the destination where the

data is placed, and the mode of placement. The types and values of

these arguments may vary at different levels of design hierarchy:

• At the host-accelerator level, a tensor object (single or multi-

dimensional array) is typically transferred between the host mem-

ory and the FPGA accelerator (either to/from the device memory

or directly to/from the on-chip memories). The data can be ac-

cessed either through DMA or a cache-coherent interface.

• At the inter-kernel level, .to() can be used to place the data

produced by one kernel (or a compute stage) to another kernel.

Here each kernel is loosely defined as a loop nest or a function

and typically each kernel produces one or more tensor objects.

If the data elements in the tensor object are produced and con-

sumed in the same sequential order, the compiler infers a FIFO to

decouple the kernel computation from the communication. If the

access order is arbitrary, a multi-buffer (typically a double-buffer)

is generated. Unlike existing dataflow-oriented programming lan-

guages [5, 9, 14, 28, 34, 41], HeteroFlow does not require the ex-

plicit insertion of FIFO reads/writes. It is worth noting that .to()
does not define the data dependence between kernels. Instead,

the dependence is already defined by the algorithm specification.

Here, .to() only describes the mechanism of the data placement.

• Finally, at the intra-kernel level, a sequence of .to() primitives

can be combined to describe various fine-grained dataflow pat-

terns within a kernel (i.e., a loop nest). The compiler can then

leverage these explicitly specified patterns to infer highly efficient

spatial architectures such as systolic arrays.

Table 2 also shows some additional attributes associated with the

different modes of data placement. In the following, we describe how

.to() and its associated modes operate at each level in more detail.

4.1 Host-Accelerator Data Placement
For a realistic application, it is usually not practical or beneficial to

offload the entire program to the FPGA. Thus, programmers need to

determine which portion(s) of the program should be accelerated.

As shown in Section 3, the HLS users need to maintain both the

accelerator code and host code. Using such an approach, if a user

decides to change the placement of certain data (e.g., from host to

accelerator), they have to extensively modify both portions. More-

over, programmers need to carefully manage the I/O scheduling with

vendor-specific directives and other low-level library calls.
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(a) Different data placement
modes on an FPGA platform

1 import heteroflow as hf
2 p = hf.Platform.xcel_system
3 # Case 1. DMA (direct streaming)
4 s.to(data, p.xcel)
5 # Case 2. DMA (via device DRAM)
6 s.to(data,p.xcel.DRAM).to(p.host)
7 # Case 3. Data access over

cache−coherent interface
8 s.to(tensor, p.xcel, hf.IO.Cache)

(b) HeteroFlow code
Figure 6: Example use cases of host-accelerator .to().
In contrast, HeteroFlow uses the .to() primitive to decouple the

host-accelerator data placement from the algorithm specification,

which has several advantages. First, the decoupled primitive allows

the programmer to flexibly move the boundary between the host

and accelerator. In other words, users only need to add or remove

primitives, or change the data or destination without tainting the

algorithmic code. Second, since the primitive is largely device in-

dependent, it is much easier to port the same program to other

FPGA-equipped platforms. Meanwhile, the HeteroFlow compiler

performs legality checks on the compatibility of the specified data

placement modes. Finally, the I/O management and its optimization

are now taken care of by the HeteroFlow compiler (more details

available in Section 5.1).

The common use cases of .to() for host-accelerator data place-

ment is shown in Figure 6. First, we import the predefined platform

from HeteroFlow in L1-2. We then specify the destination and the

mode for data placement. For the destination, every platform has two

attributes: host and xcel. In Case 1, without specifying the mode,

it is set to DMA by default. The HeteroFlow compiler automatically

infers the low-level target-specific communication mechanism. By

default, the data is transferred via direct streaming. However, if the

data cannot be accessed in sequence, the data is first placed on the

device memory (e.g., DRAM). Then, the data is loaded to the accel-

erator via communication protocols such as AXI. Instead of letting

the compiler infer the communication mechanism, users can also

explicitly specify the exact storage to place data. For example, in

Case 2, we specify that we transfer data back to the host via device

DRAM. Users can also set mode to Cache as in Case 3 if the target

device provides on-chip caches or cache-coherent interfaces (i.e.,

Cache/IF in Figure 6).

4.2 Inter-Kernel Data Placement
To achieve efficient data streaming between compute kernels, the

common practice is to use FIFOs to connect kernels or use double

buffers to store the intermediate results. However, as we have shown

in Section 3, both approaches are non-trivial in HLS. For FIFO-based

connections, programmers need to explicitly replace the original ar-

ray accesses with FIFO reads/writes (e.g., hls::stream) and provide

additional vendor-specific directives (e.g., pragma HLS dataflow).
For double buffers, programmers need to manage the buffer indices

and the read/write behaviors. Both methods require tremendous

effort to restructure the original program.

With the .to() primitive, programmers can easily apply various

data placement schemes by setting the mode without touching the

algorithm specification. Figure 7 shows examples of use cases of

.to(). If no .to() is specified, the HeteroFlow compiler generates a

single buffer by default. However, once it is specified as in Case 1,

we now transfer the tensor to the consumer stage via either FIFO

① FIFO (Stream)

② Double Buffer

③ Broadcast/Scatter

P C

producer consumer

② FIFO (in tiles)

producer consumer producer consumers

1 # Case 1. User−specified FIFO with depth
2 s.to(tensor, consumer, hf.IO.Stream, depth=10)
3 # Case 2. Generate buffer under specific loop level
4 s.to(tensor, consumer, hf.IO.Buffer, axis=consumer.axis[1])
5 # Case 3. Broadcast/scatter tensor to consumers via FIFOs
6 s.to(tensor, [consumer0, consumer1, ...], hf.IO.Stream)
7 # Case 4. Auto−infer double buffer or FIFO
8 s.to(tensor, p.xcel).to(consumer)

Figure 7: Example use cases of inter-kernel .to().

or double buffer depending on the access order. The programmer

can also enforce the use of FIFO with a specific depth. Case 2 shows

a more advanced use case, which further specifies the loop axis of

the consumer stage. This is useful for both single and double buffer

modes when we only want to transfer a subset of the data (e.g., a tile)

at a time. In addition to one-to-one connection between two kernels,

we can use .to() to concisely express the broadcast to a list of

kernels as shown in Case 3. Finally, we can also combine inter-kernel

data placement with host-accelerator data placement by cascading
.to(). In Case 4, by cascading the two primitives, depending on the

access order, if it is sequential, we directly transfer the tensor to

the consumer stage via FIFO. Otherwise, an on-chip double buffer is

generated to store the tensor. With the double buffer, the compiler

generates a stream to transfer the tensor to the accelerator via FIFO.

4.3 Intra-Kernel Data Placement
With HeteroFlow, a programmer can further leverage .to() to spec-

ify fine-grained data placement schemes. More concretely, a se-

quence of .to() primitives can be cascaded to describe near-neighbor

connections that are commonly seen in efficient spatial architectures

such as systolic arrays. In Figure 8, Case 1 shows an example of

the cascaded .to()’s, where a scalar is propagated through multi-

ple PEs. Here PEs are also compute stages, which can result from

loop unrolling (i.e., if a loop is unrolled N times, we end up with N

new stages). We can also use .to() to broadcast a scalar to a set of

PEs as shown in Case 2. Here we use tensor.v to differentiate from

tensor; the former is a scalar while the latter is a tensor. By concisely

expressing these commonly-used design patterns such as cascade

and broadcast, we can productively describe (and explore) various

systolic and semi-systolic structures in a decoupled way without

changing the algorithm code. Note that If we opt to use systolic array

compilers such as AutoSA [43] as a back end, we can still leverage

the user-specified dataflow patterns to constrain the search space of

backend optimization.

1 # Case 1. Propagate a scalar through PEs by cascading .to()
2 s.to(PE0.X, PE1).to(PE2).to(PE3)
3 # Case 2. Broadcast a scalar to a list of PEs
4 s.to(tensor.v, [PE0, ...]);

Figure 8: Example use cases of intra-kernel .to().

Figure 9 shows a more complete example with general matrix

multiplication (GEMM). The algorithm is defined in Figure 9b L1-5.

In this example, we generate a 2×2 systolic array for simplicity. It can

be easily extended to a larger size. If we unroll the loop in L6 without
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1 def gemm(A, B):
2 k = hf.reduce_axis(0,2)
3 return hf.compute((2,2), lambda i, j:
4 sum(A[i,k] ∗ B[k,j], axis=k), "C")
5 s = hf.create_schedule(gemm)
6 PEs = s[C].unroll(axis=[i,j])
7 # output−stationary systolic array
8 [s.to(A[i].v, PEs[i,0]).to(PEs[i,1]) for i in range(0,2)]
9 [s.to(B[:][j].v, PEs[0,j]).to(PEs[1,j]) for j in range(0,2)]
10 # input−stationary systolic array
11 [s.to(B[:][j].v, PEs[0,j]).to(PEs[1,j]) for j in range(0,2)]
12 [s.to(PEs[i,0].C, PEs[i,1]).to(C[i].v) for i in range(0,2)]

(b) Describing different systolic arrays using .to().
Figure 9: Systolic arrays with GEMM in HeteroFlow.

using .to(), we end up with four PEs with no data movement in be-

tween. Each PE performs a multiplication and accumulation (MAC)

operation (i.e., Figure 9a left). To describe an output-stationary sys-

tolic array (Figure 9a middle), we describe the data movement of

both inputs A and B (L9-10). For input A, we propagate it horizontally
through the PEs by using cascading .to(). Similarly, B is propagated

vertically through the PEs. To describe a different dataflow pattern,

users only need to use a different set of .to() without modifying

the algorithm. For instance, to generate an input-stationary systolic

array (Figure 9a right), we just need to specify the data placement

for input B and output C (L13-14).

4.4 A Complete Example
Figure 10 shows a complete image blur example that uses the .to()
primitives. We first describe the image blurring algorithm using Het-

eroCL APIs (L1-10). We then apply host-accelerator data placement

in L18 and 21. For kernel-level data placement, we generate a local

buffer by cascading two .to() in L18-19 and connect the two convo-

lution kernels with another .to() in L29. In addition, we specify a

weight-stationary systolic structure for the convolution in L32-33.

To achieve a high performance, we can further combine .to()
with other hardware customization primitives to co-optimize com-

pute units and memory. As we have seen in Section 3, with HLS,

many different hardware customization techniques are embedded

into the algorithmic code and tightly entangled with each other. On

the other hand, with decoupled hardware customization, HeteroFlow

can easily combine different customization techniques without the

need of modifying the algorithm. One example is to combine loop

tiling with both host-accelerator and inter-kernel data placement.

With the image blur example in Figure 10, we first tile, split, and re-

order the loop of the first convolution kernel (L14-16). Then, we use

.to() along with a specified axis to load tiles to an on-chip double

1 import heteroflow as hf
2 image = hf.placeholder(1024,1024)
3 def conv_1d(W, X):
4 k = hf.reduce_axis(0, 3)
5 return hf.compute(X.shape, lambda i,j:
6 sum(X[i,j+k]∗W[k]), "Y")
7 conv1 = conv_1d(image, weight1)
8 conv2 = conv_1d(conv1, weight2)
9 s = hf.create_schedule()
10 p = hf.Platform.xcel_system
11

12 # host−accelerator data placement
13 # co−optimization with tiling and data reuse
14 yo, yi, xo, xi=s[conv1].tile(axis=[0,1], factor=[8,8])
15 xoo, xoi = s[conv1].split(axis=xo, factor=8)
16 s[conv1].reorder(yo, xoo, xoi, yi, xi)
17 s[conv1].unroll(axis=xoi)
18 buf = s.to(image, p.xcel)
19 .to(conv1, hf.IO.DoubleBuffer, axis=xoi)
20 s.reuse_at(buf, conv1)
21 s.to(conv2, p.host)
22

23 # inter−kernel data placement
24 # co−optimization with tiling
25 yo, yi, xo, xi=s[conv2].tile(axis=[0,1], factor=[8,8])
26 xoo, xoi = s[conv2].split(axis=xo, factor=8)
27 s[conv2].reorder(yo, xoo, xoi, yi, xi)
28 s[conv2].unroll(axis=xoi)
29 s.to(conv1, conv2)
30

31 # intra−kernel data placement
32 PEs = s[conv2].unroll(axis=5)
33 s.to(conv1, [pe0, pe1, pe2]); s.to(pe0.Y, pe1).to(pe2)
34 # co−optimization with data quantization
35 s.quantize([pe0.Y, pe1.Y, pe2.Y], hcl.Fixed(32,12))

Figure 10: Complete image blur example in HeteroFlow.

Lowering

Partitioned DFGAnnotated DFGHeteroFlow program

K2

K3

K4

K1

K5

A = conv1(input, w1)
B = conv2(A, w2)
s = create_schedule()

s.to(input, p.xcel)

s.to(A, B, axis=0)

pe0,pe1,pe2=s.unroll(B)
s.to(pe0.B,pe1).to(pe2)

K2

K3

K4

K1

K5HOST

FPGA
Algorithm 

Host-accel 

Inter-kernel

Intra-kernel 

I/O optimized DFG

K2

K3

K4

K1

K5HOST

FPGA

Placement 
Inference (§5.1)

Auto I/O 
Opt (§5.2)

CodeGen
(§5.3)

OpenCL
HLS code

Figure 11: Compilation Flow in HeteroFlow – In the DFG, grey

denotes the edge (vertex) missing placement information. Orange

denotes that the edge (vertex) is placed off-chip, while blue denotes

on-chip placement. Green denotes optimized I/O access.

buffer (L18). Similarly, we apply the same set of compute customiza-

tion to the second convolution kernel (L24-26) for proper streaming.

Another important optimization to ensure the FIFO connection is

inserting reuse buffers via .reuse_at() (L20). We also unroll the

tiled loops to have multiple compute units calculate the outputs in

parallel (L17 and 28). Finally, we combine data type customization

using .quantize() (L36). To sum up, HeteroFlow provides a uni-

fied and compact programming interface via .to(), which applies

to different levels of the design hierarchy and inter-operates with

other hardware customization primitives. It is worth noting that

aside from the example shown in Figure 10, programmers can also

compose .to() with other primitives to explore various trade-offs in

the comprehensive design space for data placement customization.

5 COMPILATION FLOW
This section describes an end-to-end compilation flow that generates

HLS code from an input HeteroFlow program, as shown in Figure 11.

The HeteroFlow compiler is built on the open-source HeteroCL



framework [24]. It first lowers the input program to an intermediate

representation (IR) and constructs a dataflow graph (DFG) annotated

with user-specified data placement. Since users may only specify

placement for a subset of the data objects, the compiler infers the

placement for other objects and also the compute. The DFG is then

partitioned into subgraphs based on the inference results (i.e., either

host or accelerator). Notably, the HeteroFlow compiler opportunisti-

cally applies a set of optimizations for off-chip memory accesses to

improve the bandwidth utilization. Finally, HeteroFlow generates

optimized HLS C/C++ or OpenCL code. In the following, we provide

more details on the placement inference, off-chip memory access

optimization, and code generation.

5.1 Inference of Compute/Data Placement
To free programmers from tediously marking the placements of all

data in the program, HeteroFlow automatically infers placement

scheme for the portion of data and compute that is not explicitly an-

notated with .to(). We formulate placement inference as an integer

linear programming (ILP) problem. Given a HeteroFlow program

modeled as a DFG,𝐺 = (𝑉 , 𝐸), where each vertex 𝑣 ∈ 𝑉 represents a

compute stage, and each edge 𝑒 ∈ 𝐸 represents the data dependency

between a pair of vertices with respect to a particular data object,

we define a set of binary variables 𝑁𝑣 to represent the placement of

computation at each node. For ∀𝑣 ∈ 𝑉 , 𝑁𝑣 = 1 if and only if node 𝑣

is mapped to the accelerator. To represent the data placement, we

define another set of binary variables𝑀𝑒 , where for ∀𝑒 = (𝑢, 𝑣) ∈ 𝐸,

𝑀𝑒 = 𝑋𝑂𝑅(𝑁𝑢 , 𝑁𝑣), i.e.,𝑀𝑒 = 1 if and only if the edge 𝑒 corresponds

to an off-chip memory read or write. Each node is associated with

a list of resource estimates 𝑟𝑒𝑠𝑖 (𝑣), if this node is implemented on

the accelerator. Each edge is associated with an estimated latency

𝑙𝑎𝑡 (𝑒) = 𝑑𝑎𝑡𝑎_𝑠𝑖𝑧𝑒 (𝑒)/𝑏𝑤 , if the edge involves off-chip communica-

tion. Here the off-chip memory bandwidth 𝑏𝑤 is measured through

profiling. For each data array with user-specified data placement,

we constrain its direct consumers in the DFG to be placed onto the

same device as the data itself. As an example, if the user specifies

.to(image, p.xcel), then any DFG node that directly consumes the

array 𝑖𝑚𝑎𝑔𝑒 will be placed onto the accelerator. The set of DFG nodes

affected by these user-specified constraints is denoted as 𝑈 ⊂ 𝑉 .

We use a set of binary constants 𝑐𝑣 to represent the user-specified

constraints: for ∀𝑣 ∈ 𝑈 , 𝑐𝑣 = 1 if and only if the node 𝑣 must be

placed onto the accelerator. With these definitions, we can formulate

the ILP as follows:

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒
∑
𝑒∈𝐸

𝑙𝑎𝑡 (𝑒) ×𝑀𝑒

subject to ∀𝑣 ∈ 𝑈 , 𝑁𝑣 = 𝑐𝑣

∀𝑒 = (𝑢, 𝑣) ∈ 𝐸, 𝑀𝑒 ≤ 𝑁𝑢 + 𝑁𝑣, 𝑀𝑒 ≥ 𝑁𝑢 − 𝑁𝑣,

𝑀𝑒 ≥ 𝑁𝑣 − 𝑁𝑢 , 𝑀𝑒 ≤ 2 − 𝑁𝑢 − 𝑁𝑣

(optional) ∀𝑖 ∈ {𝐵𝑅𝐴𝑀, 𝐿𝑈𝑇, 𝐹𝐹, 𝐷𝑆𝑃},
∑
𝑣∈𝑉

𝑟𝑒𝑠𝑖 (𝑣) × 𝑁𝑣 ≤ 𝑏𝑖

where the second set of constraints linearize the XOR relationship

between𝑀𝑒 , 𝑁𝑢 , and 𝑁𝑣 . The last set of constraints imply that the

total resource utilization of all DFG nodes mapped to the accelerator

must be below the amount of available resources. Figure 11 shows

an example of placement inference, , where the inference algorithm

takes in the partially annotated DFG and decides placement schemes

for each data and compute. With complete placement information

for all nodes and edges in the DFG, the accelerator-specific subgraph

can be extracted, and hardware customizations can be applied to

improve the performance of the accelerator.

5.2 Automatic I/O Optimizations
After graph partitioning, the HeteroFlow compiler automatically

optimizes the off-chip memory accesses at the boundaries of the

FPGA subgraph(s). These optimizations aim to saturate the off-chip

memory bandwidth and maximize the throughput of memory ac-

cesses. The hardware information (e.g., device DRAM capacity and

physical I/O port limit) needed by the compiler to make optimization

decisions is included in the Platform object in HeteroFlow code.

Memory Coalescing: The maximum number of data bits that can

be read out from the off-chip memory per access is usually larger

than the data bitwidths used in the program. Memory coalescing

tries to saturate the off-chip memory bandwidth by grouping multi-

ple narrow memory accesses into one wider access. For each loop

nest with a contiguous off-chip memory access pattern, HeteroFlow

replaces the narrow memory operation with a bit-slice from a coa-

lesced memory operation. The loop trip count and the bitwidth of

the affected memory ports are also updated accordingly.

AXI Controller Configuration: The off-chip memory requests are

initiated by on-chip AXI controllers and sent to off-chip memory

controllers through the AXI bus. For modern FPGAs, the AXI con-

troller is software-configurable and the configuration (e.g., burst

length, I/O bundle) can affect the bandwidth efficiency in a subtle

way. We employ a similar approach as proposed in [30] to profile

microbenchmarks on a target platform and empirically decide the

default threshold for each parameter based on the data size/bitwidth.

Memory Banking: Modern FPGA platforms are often equipped

with multi-bank off-chip memories, e.g., DRAM or high bandwidth

memory (HBM). To maximize off-chip memory throughput, the

HeteroFlow compiler explores different off-chip data layouts and

tries to minimize memory access conflicts by assigning competing

off-chip memory accesses to different off-chip memory banks. Cur-

rently, HeteroFlow uses a simple greedy algorithm to decide the

memory banking assignment – the compiler determines the priority

of different memory requests based on their data transfer size, and

then assigns the off-chip memory requests to any available off-chip

memory that gives best performance for that memory request.

I/O Scheduling: Each off-chip memory bank on an FPGA can only

serve a limited number of off-chip memory requests from different

AXI controllers at the same time. An accelerator cannot be synthe-

sized if it has too many parallel off-chip memory access requests. In

such cases, the HeteroFlow compiler will insert a static scheduler

inside the accelerator to arbitrate the off-chip memory requests to a

limited number of AXI controllers. Similar to the memory banking

optimization, the HeteroFlow compiler uses a greedy algorithm to

assign the memory requests to the AXI controllers based on their

priority (i.e., data transfer size). For memory requests that are as-

signed to the same AXI controller, the HeteroFlow compiler creates

a for-loop in the generated HLS code to access data through the

shared AXI controller. The AXI controller is shared between differ-

ent requesters in a time-multiplexed fashion.

FIFO Inference: In addition to off-chip I/O optimization, HeteroFlow

also automatically optimizes on-chip communication. Specifically,



1 // intra−kernel data placement with FIFOs
2 void conv_systolic_array(stream<DTYPE>& fifo_inter0,

stream<DTYPE>& fifo_inter1) {
3 #pragma HLS dataflow
4 stream<DTYPE> fifo_in[M], fifo_out[N];
5 #pragma HLS stream var=fifo_in[0]
6 data_loader(fifo_inter0, fifo_in);
7 PE<0,0>(fifo_in[0], fifo_out[0]);
8 ...
9 PE<M,N>(fifo_in[M−1], fifo_out[N−1]);
10 data_drainer(fifo_in[M−1], fifo_inter1);}
11 // top−level function on accelerator
12 void fpga(DTYPE∗ dma_mm, stream<DTYPE>& dma_fifo, int iter) {
13 #pragma HLS interface m_axi port=dma_mm burst=factor
14 #pragma HLS interface axis port=dma_fifo burst=factor
15 for (i=0; i<K;i++) {
16 DTYPE in1 = dma_fifo.read();
17 DTYPE.in2 = dma_mm[INDEX[i]];
18 compute1(in1.range(31,0), in2.range(63,32), ...);}
19 // inter−kernel FIFOs and double buffer
20 stream<DTYPE> fifo_inter[N];
21 #pragma HLS stream var=fifo_inter[0]
22 DTYPE double_buf[2][SIZE];
23 conv_systolic_array(fifo_inter[0], fifo_inter[1]);
24 compute2(fifo_inter[1], double_buf[iter%2]);
25 compute3(double_buf[1−iter%2]);}

Figure 12: Example of HLS code generated by HeteroFlow.

our compiler can infer FIFO channels for sequential in-order inter-

kernel communication. For intra-kernel data placement, the compiler

automates several aspects of the systolic array generation such as in-

sertions of data loader and drainer modules and the inter-PE commu-

nication media (FIFOs or shift registers), according to user-specified

dataflow patterns using the .to() primitives.

5.3 Code Generation
The HeteroFlow compiler backend emits OpenCL or HLS C/C++

code that can be compiled and deployed on mainstream FPGA plat-

forms. This backend generates high-performance code for the com-

munication channels with vendor-specific libraries and pragmas,

and further leverages the existing HeteroCL compiler to realize an

optimized accelerator according to other user-specified hardware

customizations. Figure 12 shows the HLS code snippets generated by

HeteroFlow, which includes data placement specification at differ-

ent levels. Inside the compute kernel function mapped to a systolic

array, HeteroFlow generates parallel PEs connected by FIFOs for

intra-kernel data movement (L3-9). In the top-level function on the

FPGA accelerator, HeteroFlow assigns different memory interfaces

according to the memory access pattern to achieve the best memory

bandwidth with minimal hardware overhead (L13-14). Additionally,

HeteroFlow automatically applies memory coalescing in the data

loading loop to saturate the off-chip memory bandwidth (L15-18).

On-chip FIFOs and double buffers are automatically generated to

fulfill the requirements for inter-kernel data placement (L20-25).

6 EVALUATION
In this section, we select a set of realistic benchmarks and evaluate

the accelerators generated byHeteroFlow.We target twomainstream

commercial FPGA boards: Xilinx Alveo U280 Accelerator Card and

Intel Stratix 10 (S10) GX2800. We use Xilinx Vitis 2019.2 [44] and

Intel FPGA SDK for OpenCL 18.0 [19] to synthesize bitstream.

Weight X Weight Y OutProd Tensor X Tensor Y
Gradient Z

Gradient X&Y

Unpack
DotProduct

Conv1D
Conv1D Conv1D OutProductPack Conv1D Conv1D

1 # (a) data placement between xcel and off−chip memory
2 s.to(packed_frames, p.xcel); s.to(output, p.host)
3 # (b) data placement between compute kernels
4 s.to(tensor_y, tensor_weight_y)
5 # (c) reuse input in kernel and quantize intermediate data
6 s.reuse_at(tensor_weight_y.in_, tensor_weight_y.axis[0])
7 s.quantize([grad_x, ...], Fixed(23,12))

Figure 13: DFG and HeteroFlow code for optical flow.

1 void optical_flow(frame_t∗ frames, output_t∗ outputs) {
2 #pragma HLS INTERFACE m_axi port=frames bundle=gmem0
3 ...
4 #pragma HLS dataflow
5 hls::stream<DTYPE> inter_fifo_0;
6 #pragma HLS stream var=inter_fifo_0 depth=1024
7 ...
8 tensor_weight_y(inter_fifo_5, inter_fifo_6);
9 tensor_weight_x(inter_fifo_6, inter_fifo_7);
10 flow_calc(inter_fifo_7, outputs);}

Figure 14: Manually optimized HLS code for optical flow.

6.1 Case Study: Optical Flow
Optical flow is a widely used video processing algorithm for motion

detection. We show the dataflow graph in Figure 13, where each

block represents a loop nest that processes the input frame(s) and

generates output in raster scan order. We choose the algorithm

implemented in the Rosetta benchmark suite [46]. The algorithm

reads in a sequence of HD video frames (436×1024) and outputs a

2D vector field that reveals the object’s motion.

Figure 13 also shows the HeteroFlow code to optimize optical

flow. In L2, we move the packed input frames from Pack stage to

the accelerator, and the final output back to the host. Consequently,

the Pack stage is computed on the host, and all other stages are

accelerated on the FPGA device. The Unpack stage reads the packed

frame from off-chip device memory, unpacks it, and sends it to the

following stages. We also connect stages with inter-kernel FIFOs (L4)

and co-optimize data placements with reuse buffer and quantization

(L6-7). For comparison, Figure 14 shows the HLS counterpart for

defining the I/O interface, which is much more verbose.

We evaluate the design on different FPGAs and compare the

performance with manually optimized HLS design from [46]. The

results are shown in Table 3. Our design matches the performance

of the manually optimized design in HLS C++, while requiring 3.6×
fewer lines of code. To evaluate portability, we also map the design

to an Intel Stratix 10 FPGA. Since the Intel OpenCL SDK for FPGA

does not provide direct support for fixed-point data types, we use

floating-point data types for evaluation. The full-precision design

results in more resource consumption on Intel Stratix 10 FPGA, and

its run time is slightly longer due to a lower frequency.

6.2 Case Study: GEMM
We use 64×64×64 GEMM as an example and use .to() to implement

it with systolic arrays of different dataflow patterns. Due to limited

on-chip resource on an FPGA, we can fully unroll the loops to build

a 64x64 systolic array. Instead, we tile the loop nest with a factor of

(4,4) and implement the inner loops with a 4×4 systolic array that



Table 3: Evaluation on optical flow inHeteroFlow— In addition

to the resource usage, we show the maximum frequency (Fmax), run

time (RT), and the number of lines of code (LoC).

FPGA # LUTs/FF # BRAM/DSP Fmax(MHz) RT(ms) LoC

Rosetta [46] U280 21.7K/30.5K 66/196 300 3.49 742

HeteroFlow U280 23.8K/32.6K 64/182 300 3.43 206

HeteroFlow S10 29.5K/58.1K 484/106 286 3.82 206

computes GEMM in tiles. Due to space limitation, we do not show

HeteroFlow code here, which is similar to Figure 9b. The systolic

array can be implemented in different dataflow patterns as discussed

in Section 4.3. Here we evaluate two representative dataflow patterns:

output-stationary (OS) and input-stationary (IS).

HeteroFlow can generate systolic arrays using AutoSA [43] or

the HLS C/OpenCL backend. The AutoSA backend provides a push-

button solution to generate high-performance systolic array code,

but it has limited support for quantization. We run the experiments

on Xilinx U280 FPGA, where the input and output data are trans-

ferred between host and accelerator through HBM banks. The re-

sults are shown in Table 4. The IS/OS systolic array generated by

the AutoSA backend has close performance. AutoSA generates a

different I/O network to load (drain) data to (from) systolic arrays

of different dataflow patterns. Such an I/O network could be com-

plex and consume more on-chip resource. In HeteroFlow, we used

.to() to optimize the off-chip memory (i.e., double buffer and mem-

ory coalescing), and we are able to achieve very close performance

with AutoSA using less resource. We can further quantize the de-

sign to fixed-point to achieve an even better throughput. Notably,

HeteroFlow can also integrate optimized systolic arrays generated

by AutoSA with other kernels using the .to() interface, although

currently AutoSA only generates single systolic array kernel.

Table 4: Evaluation on GEMM systolic array in HeteroFlow —
We measure the throughput in Giga operations per second (GOPS).

Data type # LUT/FF # BRAM/DSP GOPS

IS (HF-AutoSA) FP32 30.9K/44.1K 47/48 2.07

OS (HF-AutoSA) FP32 42.3K/57.9K 103/48 2.06

OS (HF-HLSC) FP32 25.4K/32.9K 23/48 2.03

OS (HF-HLSC) Fixed<16,4> 10.2K/15.2K 15/16 4.26

6.3 Case Study: K-Nearest Neighbors
K-nearest neighbors (KNN) is a classification algorithm used in a

wide range of domains such as machine learning and data mining [3,

15]. In this case study, we port an HLS-based KNN implementation

from uBench [30] to HeteroFlow and show that the HeteroFlow

compiler can automatically optimize I/O to improve the performance.

Figure 15 shows the KNN code snippet inHeteroFlow. Since paired

distances between the query point and data points in the KNN search

space can be calculated independently, we duplicate multiple PEs to

compute (L5). After each PE calculates and sorts the local distance,

it sends the top-K results to a global merger to generate the final

top-K distances (L6). These PEs access input data from the off-chip

DRAM bank, and output is written back to the same location (L9).

In this case study, we map the KNN design to a Xilinx U280 FPGA,

and use only one DRAM bank on U280 to evaluate HeteroFlow’s

automatic I/O optimizations in a resource constrained situation. A

single DRAM bank can only serve memory requests from up to 15

1 def KNN(query, inputs):
2 def PE(input_):
3 local_dis = compute_distance(input_, query)
4 return sort(local_dis)
5 PEs = [PE(inputs[n]) for n in range(N)]
6 output = merger(PEs); return output
7 ...
8 # (a) data movement between host and accelerator
9 s.to(inputs,p.xcel.DRAM); s.to(output,p.xcel.DRAM).to(p.host)
10 # (b) data movement between compute kernels
11 [s.to(KNN.PEs[n], KNN.merger) for n in range(N)]

Figure 15: KNN algorithm in HeteroFlow.

Table 5: Ablation analysis on automatic I/O optimization in
HeteroFlow — N/A means the design is not synthesizable because

physical I/O ports on FPGA are not enough to serve 28 PEs.

(a) KNN with 14 PEs.
Optimization RT(s) Speedup

baseline 49.37 1.00x

+mem-coalescing 24.29 2.03x

+axi-controller [30] 10.14 4.82x

+io-scheduling 10.14 4.82x

(b) KNN with 28 PEs.
Optimization RT(s) Speedup

baseline N/A –

+mem-coalescing N/A –

+axi-controller [30] N/A –

+io-scheduling 9.31 5.30x

AXI controllers at the same time. To make PEs and the global merger

execute in parallel, programmers need to reserve one AXI controller

for the global merger to write outputs to, and 14 AXI controllers for

14 PEs to read inputs from the same off-chip DRAM bank.

From the results shown in Table 5(a), we can obtain 4.82× speedup

with optimizations in memory coalescing and AXI controller con-

figuration. Since the total number of off-chip memory accesses in

14-PE KNN does not exceed the physical port limit, the I/O sched-

uling optimization does not improve the performance. HeteroFlow

automatically optimizes off-chip memory accesses in 14-PE KNN

and achieves same performance as the manually optimized design

in [30] with much fewer lines of code. In Table 5(b), we increase

the PE number to 28. This doubles the number of total parallel I/O

requests, which exceeds the physical port limit of one DRAM bank.

As a result, the design becomes non-synthesizable. With I/O schedul-

ing optimization, HeteroFlow assigns two PEs to one AXI controller,

which requests data from off-chip memory and sends data to the two

PEs. Consequently, the 28-PE KNN design becomes synthesizable

with limited I/O ports and achieves an even higher speedup of 5.30×.

6.4 Case Study: UltraNet
UltraNet [45] is an object detection neural network implemented

on FPGAs, and the winner of the 2020 DAC System Design Contest.

UltraNet has 9 convolution layers implemented as matrix multiplica-

tion units. Figure 16 shows the HeteroFlow code for UltraNet where

we map the third Conv2D layer to a systolic array. The algorithm is

defined in L1-4. We connect the second and third layers with a FIFO

(L7). To map the third Conv2D layer to a systolic array, we first tile

and reorder the outermost loops (L9-10), unroll the middle loops to

spatial PEs (L11), and customize inter-PE data placement to build an

output-stationary systolic array (L12-15). Then, we vectorize PE’s

inner loop (L17) to compute multiple MAC operations in SIMD. We

further quantize inputs and weights to 4-bit integers (L18).

We evaluate the optimized UltraNet design with a systolic array

and compare the results with the original design as baseline. The

baseline implementation has eight vectorized PEs with 16 SIMD

lanes. Each SIMD lane computes input pixels in parallel, and each

PE computes output channels in parallel. Our 4×4 systolic array



1 def ultranet(image):
2 out1 = layer1_conv2d_im2col(image, weight1)
3 out2 = layer2_conv2d_im2col(out1, weight2)
4 out3 = layer3_conv2d_im2col(out2, weight3)
5 ...
6 # inter−kernel data placement
7 s.to(out2, layer3_conv2d_im2col)
8 # build output−stationary systolic array
9 yo, yi, xo, xi = s[out3].tile(axis=[0,1], factor=[4,4])
10 s[out3].reorder(yo, xo, yi, xi)
11 PEs = s[out3].unroll(axis=[yi, xi])
12 for r in range(4):
13 s.to(out2[r][:].X, PEs[r,0]).to(PEs[r,1]).to(PEs[r,2])...
14 for c in range(4):
15 s.to(out2[:][c].W, PEs[0,c]).to(PEs[1,c]).to(PEs[2,c])...
16 for PE in PEs:
17 s[PE].vectorize(axis=PE.j, factor=32)
18 s.quantize(PE.X, PE,W], hf.Int(4))

# LUTs # FFs # BRAM # DSPs Fmax(MHz) RT(ms)

Baseline 60.2K 39.6K 377 508 231 2.97

+Systolic Array 69.8K 39.4K 375 594 233.8 2.27

Figure 16: Evaluation on UltraNet in HeteroFlow.

with 32 SIMD lanes theoretically offers 4× acceleration for the third

layer. Hardware emulation shows that the third layer in baseline

design takes 1.843M cycles to complete, while the systolic array

implementation only takes 0.461M cycles. We show that with less

than 10 lines of code, we achieve 3.99× speed up for the third layer,

and an overall latency improvement from 2.97ms to 2.27ms.

7 RELATEDWORK

Dataflow HLS: FPGA is an excellent fit for dataflow execution due

to the availability of massive distributed hardware resources. Many

HLS tools [20–22, 42] can automatically convert dataflow HLS pro-

grams into dataflow graphs followed by generation of dataflow cir-

cuits. Dynamatic [20, 22] generates fine-grained elastic circuits to

enable dynamically scheduled HLS. TAPA [10] defines a program-

ming interface to describe dataflow parallelism within an application

to construct heterogeneous pipelines. Optimus [18], Maxeler [31],

and ST-Accel [37] propose a programming model to describe stream-

ing applications as dataflow graphs. In comparison, HeteroFlow

introduces a programming model with decoupled data placement

and leverages the capability of downstream HLS tools to generate

efficient dataflow accelerators for FPGAs.

Dataflow DSL: Several works propose DSLs and compilers [2, 5, 9,

13, 29, 38, 39] to automatically synthesize dataflow circuits. Dark-

room [17] compiles image-processing programs directly into line-

buffered pipelines. Spatial [23] defines special constructs to describe

data movements between kernels in the program. SODA [9] is a

DSL for stencil applications, and it compiles declarative operations

into high performance dataflow architectures. In comparison, Het-

eroFlow provides a decoupled and unified programming interface for

expressing data placement at different levels of memory hierarchy

resulting in a modular and composable design specification.

DSLs with Decoupled Optimization: Halide [36] and TVM [8]

decouple the algorithm definition from its schedule for building

high performance kernels for image processing and deep learning

applications. T2S [40] and SuSy [25] provide decoupled schedul-

ing primitives to generate high-performance systolic architectures

Design
Entry

Decoupled
Compute

Decoupled
DP*

Unified DP*
Interface

Design
Complexity

HLS C++ No No No Complete design

Spatial [23] DSL No No No Complete design

SODA [9] DSL No No No Single kernel (stencil)

AutoSA [43] C++ No No No Single kernel (systolic)

HeteroHalide [27] DSL Yes No No Complete design

T2S [40], SuSy [25] DSL Yes Partially No Single kernel (systolic)

HeteroCL [24] DSL Yes No No Single kernel

HeteroFlow DSL Yes Yes Yes Complete design

Table 6: Comparison between HeteroFlow and other pro-
gramming frameworks. *DP stands for data placement.

on FPGAs. HeteroCL [24] decouples the algorithm from a tempo-

ral compute schedule, on-chip memory customization, and data-

quantanization scheme. Tiramisu [4] is based on the polyhedral

model with a rich scheduling language allowing fine-grained control

of optimizations. Fireiron [16] is a data-movement-aware schedul-

ing language for GPUs that customizes compute of kernel and data

movements between memory hierarchies. HeteroFlow represents

the first FPGA-focused DSL that enables fully decoupled data place-

ment and co-optimization with other hardware customizations such

as tiling and data quantization.

Data Placement in Deep Learning Frameworks PyTorch [32]

provides a .to() interface for users to explicitly move tensors and

computation to accelerator devices. In contrast, TensorFlow [1] and

MXnet [7] can automatically infer the location of the computation

based on the manually-specified placement of input tensors. While

the .to() interface in HeteroFlow shares some similar features with

PyTorch, HeteroFlow can also infer the placement of computations

like TensorFlow and MXNet. HeteroFlow also supports fine-grained

control over on-chip data communication, which is important for

achieving high performance and area efficiency on FPGAs.

Table 6 shows a comprehensive comparison between HeteroFlow

and a set of representative prior arts. To summarize, HeteroFlow is

the first to provide a decoupled and unified programming interface

for expressing data placement optimizations for complete accelerator

design (instead of a single kernel).

8 CONCLUSION
We have presented HeteroFlow, an FPGA accelerator programming

model that provides a unified interface .to() for describing data

placement optimizations from different design levels in host-accelerator,

inter-kernel, and intra-kernel. Furthermore, we decouple the data

placement specification from the algorithm specification and other

hardware customizations, which enables better productivity and

portability. Our evaluation results on a set of realistic benchmarks

show that programs written in HeteroFlow can match the perfor-

mance of highly optimized manual HLS counterparts with much

fewer lines of code. Our future work will focus on automating the co-

optimization of data placement and temporal loop-level scheduling

to further reduce the FPGA design complexity.
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