HeteroCL: A Multi-Paradigm Programming Infrastructure for
Software-Defined Reconfigurable Computing

Yi-Hsiang Lai'*, Yuze Chi?, Yuwei Hul, Jie Wangz, Cody Hao Yu? 3, Yuan Zhou!, Jason Congz, Zhiru Zhangl*

! School of Electrical and Computer Engineering, Cornell University, USA
2 Computer Science Department, University of California, Los Angeles, USA
3 Falcon Computing Solutions, Inc., USA
*{yl2666,zhiruz}@cornell.edu

ABSTRACT

With the pursuit of improving compute performance under strict
power constraints, there is an increasing need for deploying appli-
cations to heterogeneous hardware architectures with accelerators,
such as GPUs and FPGAs. However, although these heterogeneous
computing platforms are becoming widely available, they are very
difficult to program especially with FPGAs. As a result, the use of
such platforms has been limited to a small subset of programmers
with specialized hardware knowledge.

To tackle this challenge, we introduce HeteroCL, a programming
infrastructure composed of a Python-based domain-specific lan-
guage (DSL) and an FPGA-targeted compilation flow. The HeteroCL
DSL provides a clean programming abstraction that decouples al-
gorithm specification from three important types of hardware cus-
tomization in compute, data types, and memory architectures. Hete-
roCL further captures the interdependence among these different
customization techniques, allowing programmers to explore various
performance/area/accuracy trade-offs in a systematic and produc-
tive manner. In addition, our framework produces highly efficient
hardware implementations for a variety of popular workloads by
targeting spatial architecture templates such as systolic arrays and
stencil with dataflow architectures. Experimental results show that
HeteroCL allows programmers to explore the design space efficiently
in both performance and accuracy by combining different types of
hardware customization and targeting spatial architectures, while
keeping the algorithm code intact.

ACM Reference Format:

Yi-Hsiang Lai, Yuze Chi, Yuwei Hu, Jie Wang, Cody Hao Yu, Yuan Zhou,
Jason Cong, Zhiru Zhang. 2019. HeteroCL: A Multi-Paradigm Programming
Infrastructure for Software-Defined Reconfigurable Computing. In The 2019
ACM/SIGDA International Symposiumon Field-Programmable Gate Arrays
(FPGA °19), February 24-26, 2019, Seaside, CA, USA. ACM, New York, NY, USA,
10 pages. https://doi.org/10.1145/3289602.3293910

1 INTRODUCTION

Recent trends in technology scaling have led to a growing inter-
est in non-traditional architectures that incorporate heterogeneity

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

FPGA 19, February 24-26, 2019, Seaside, CA, USA

© 2019 Association for Computing Machinery.

ACM ISBN 978-1-4503-6137-8/19/02...$15.00

https://doi.org/10.1145/3289602.3293910

and specialization as a means to improve performance under strict
power and energy constraints [4, 8-10, 16]. Heterogeneous architec-
tures with extensive use of accelerators, such as GPUs and FPGAs,
have shown significant potential in this role to bring in orders-of-
magnitude improvement in computing efficiency for a wide range
of applications. Along this line, the latest advances in the industry
have produced highly integrated heterogeneous hardware platforms,
such as the CPU+FPGA multi-chip packages by Intel [19] and the
GPU/FPGA-enhanced AWS cloud by Amazon [29]. Although these
heterogeneous computing platforms are becoming commercially
available to a wide user base, they are challenging to program, espe-
cially with FPGAs. As a result, the use of such platforms has been
limited to a small subset of programmers with specialized knowledge
on low-level hardware details.

To address this deficiency, recent years have seen promising de-
velopment on high-level synthesis (HLS) for FPGAs [12]. This is
evidenced by the availability of commercial C++/OpenCL-to-FPGA
solutions (e.g., Altera/Intel SDK for OpenCL [19] and Xilinx Vi-
vado HLS [40]) and a rapidly growing number of FPGA designs
synthesized by these tools [2, 18, 35, 42]. However, programming
high-performance FPGA applications with HLS tools requires a deep
understanding of hardware details and is entirely different from tra-
ditional software programming. In particular, current programming
models for HLS entangle algorithm specifications with hardware
customization techniques. This approach has several drawbacks: (1)
In order to achieve good quality-of-results (QoRs), programmers are
required to use various vendor-specific data types and pragmas/di-
rectives [43], rendering FPGA-targeted applications even less flexible
and portable; (2) Existing HLS programming models cannot cleanly
capture the interdependence among different hardware optimization
techniques, thus weakening the support of user-guided or automatic
design space exploration. For example, there is no easy way to in-
form the HLS tool that the shape of an on-chip buffer (e.g., depth and
number of banks) directly depends on the degree of parallelization;
(3) HLS users need to extensively restructure the source program to
guide the tool to realize specialized architectures such as data reuse
buffers and systolic arrays, which are nontrivial to describe with
imperative code in C/C++.

There exists an active body of work attempting to further democ-
ratize accelerator programming by using domain-specific languages
(DSLs) to simplify the development and optimization of applications
in certain fields. For example, Halide [32] and Spark [41] are widely
used in image processing and big data analytics, respectively. An-
other relevant example is TVM, which is a Python-based DSL for
high-performance deep learning applications [6]. Similar to Halide,
TVM separates the algorithm from temporal schedule optimization

https://doi.org/10.1145/3289602.3293910

(e.g., loop tiling and reordering), which significantly improves code
portability across different CPU and GPU architectures.

Along this direction, we propose HeteroCL — a multi-paradigm
programming infrastructure for software-defined heterogeneous
computing, currently targeting CPU+FPGA platforms. HeteroCL
builds on the TVM framework and extends it by explicitly exposing
heterogeneity in two dimensions: (1) in programming model with
mixed declarative and imperative code, and (2) in optimization with
decoupled algorithm and compute/data customization. HeteroCL
is designed to retain the distinct strengths of each programming
paradigm/customization technique, but eliminates the complexity
in using them together in a single application. More concretely, our
main technical contributions are as follows:

« The HeteroCL DSL provides a clean programming abstraction
that decouples algorithm specification from three important
types of hardware customization in compute, data types, and
memory architectures. It further captures the interdependence
among different types of hardware customization, enabling pro-
ductive and systematic design space exploration.

Unlike existing DSLs which primarily focus on separating algo-
rithm specifications from temporal compute schedule, HeteroCL
further supports bit-accurate types and enables decoupling be-
tween algorithms and data quantization schemes. This allows
the programmer to productively express and explore the rich
design trade-offs between performance/area and accuracy.

HeteroCL nicely blends declarative symbolic expressions with
imperative code. It also provides a unified interface to specify
customization schemes for both declarative and imperative pro-
grams. This allows our framework to support a broad range of
applications.

The HeteroCL framework produces highly efficient spatial ar-
chitectures by incorporating state-of-the-art HLS optimizations
such as PolySA [13] for systolic arrays and SODA [7] for stencil
with dataflow architectures. This allows productive and effective
acceleration of many popular workloads from image processing
and machine learning domains.

We have developed a fully automated compilation flow from a
HeteroCL program to heterogeneous compute platforms inte-
grating CPUs and FPGAs. Our compiler generates LLVM code
on CPUs and HLS code for FPGA targets (currently using the
Merlin compiler [11]).

The remainder of this paper is organized as follows — In Section 2,
we introduce HeteroCL with a motivating example and then de-
scribe each of its features in detail; Section 3 presents the HeteroCL
compilation flow; We report the evaluation results in Section 4 and
compare with related work in Section 5; Section 6 concludes this
work and outlines future research directions.

2 THE PROGRAMMING MODEL

Figure 1 shows the overview of the proposed framework, where the
input is a HeteroCL program composed of an algorithm specification
and decoupled hardware customization schemes. We then lower it
to an intermediate representation (IR) extended from Halide [32].
After that, we compile it to the back end specified by the users.

HeteroCL DSL ™\

A = hcl.placeholder((10,))
B = hcl.compute(A.shape,
lambda x: A[x]+1)

Algorithm
Specification

mn
v
(2]
>

Compute s = hcl.create_schedule()
Customization | s[B].parallel(B.axis[0])
Data type

Customization

s.downsize(B, Int(16)) 16b

Memory
Customization

S[A].partition(A.axis[0])

!
| Extended Halide IR | HLS Code
CPU

Figure 1: Overview of the HeteroCL framework.

waw
waw

HeteroCL is a Python-based DSL extended from TVM [6]!. We
choose TVM for the following reasons: (1) Python-based DSL pro-
vides programmers with a rich set of productive language features
such as introspection and dynamic type system. (2) TVM is a tensor-
oriented declarative DSL. Its declarative style is similar to Tensor-
Flow [1], which compiles and executes the computation graph con-
structed by a programmer. This approach is beneficial for uncovering
more high-level optimization opportunities in extracting parallelism
and maximizing data reuse. (3) TVM inherits the idea of decoupling
the algorithm specification from the temporal schedule, which is
first proposed by Halide [32].

In addition to the features offered by TVM, HeteroCL further
exposes heterogeneity in two dimensions: in hardware optimization
techniques and programming paradigms. Figure 1 shows the key
strength of HeteroCL, where HeteroCL programs can exploit vari-
ous hardware optimization techniques efficiently by decoupling the
algorithm specification from three classes of common hardware cus-
tomization for FPGAs, which are compute, data type, and memory
customization. HeteroCL further provides a clean abstraction to cap-
ture the interdependence among different optimization techniques.
Moreover, HeteroCL integrates imperative programming with an
embedded tensor-oriented programming model for the applications
with regular parallelism. Users can choose the programming model
that fits best to express a given component.

In the rest of the section, we first use a motivating example to
show how HeteroCL abstracts different types of hardware customiza-
tion and captures their interdependence. We then describe each cus-
tomization in more detail. Finally, we present the imperative DSL in
HeteroCL.

2.1 A Motivating Example

We use dot product operation as a motivating example that utilizes
all three types of hardware customization. Figure 2a shows the host
program, where we compute the dot product between vectors A and
B. We offload function dot_product (L14) to FPGA for acceleration.
Note that we need to batch the inputs due to FPGA on-chip resource
limitation (L9). Before sending the batched inputs to the acceler-
ator via DMA, we pack them to fully utilize the off-chip memory
bandwidth (L12-13).

Figure 2b shows the optimized dot_product program imple-
mented in HLS C++ code, where we apply all three types of hardware
customization. First, we utilize data type customization by quantizing
the data type of local buffers local_A and local_B from floating to
fixed-point type DType (L4). By reducing the bitwidth DW, we increase
the number of elements per memory I/O access, which shortens the

ISection 5 discusses the major differences between TVM and HeteroCL in more detail.

=

#define N = 1024

#define BATCH = 32

#define MB = 64 /* off-chip memory bandwidth */
#define DW = 32
lelization factor */

typedef MType ap_uint<MB>;

/* bitwidth of the data element */

typedef DType fixed<DW, 2>;

DType dot_prodcut(MTypex vec_A, MTypex vec_B) {
DType local_A[BATCH], local_B[BATCHI;

#pragma HLS partition variable=local_B factor=PAR
unpack(vec_A, local_A); unpack(vec_B, local_B);

Data type customization (§2.3)
32 bit

dot_product

void host_sw(float A[N], float B[NJ,

1

2

3

4

5 #define PAR = 8 /% paral
6

7

8 float& sum){
9

1

2

3

4

5 #pragma HLS partition variable=local_A factor=PAR
6

7

8

Off-chip memory

for(int i = @; i < N; i += BATCH) { 9 DType psum = 0;
10 MTypex vec_A; 10 for (int i = @; i < BATCH/PAR; i++) Memory output
11 MTypex vec_B; 11 #pragma HLS pipeline II=1 customization
12 pack(A + i, vec_A); 12 for (int j = @; j < PAR; j++) (§2.4)
13 pack(B + i, vec_B); 13 #pragma HLS unroll o
14 sum += dot_product(vec_A, vec_B); 14 psum += local _A[i*PAR+j] * local_B[i*PAR+j]; Compute customization (§2.2)
15 3 15 return psum; A
16 3 16} (c) Hardware diagram
(a) Host program (b) Optimized HLS code
5
=3 a
(7] -ED Q
g DW=8 & 8 DW=8
I o <
E DW=16 £ 2 DW=16
2 g N
& DW=32 2 5 DW=32
. £ E
. =min{s ., .}
PAR PAR PAR

(d) Roofline diagram

Figure 2: Motivating example: dot product — This example demonstrates the interdependence between the parallelization factor PAR
and the data bitwidth DW. By tuning them with different values, the performance of the whole design can be bounded by either the compute
throughput (if PAR is too small) or the number of elements per I/O access (if DW is too large).

1 // algorithm only

1 import heterocl as hcl

2 # algorithm 2 for(int i = @; i < BATCH; i++)

3 i = hcl.reduce_axis(@, BATCH) 3 psum += A[i] % B[i];

4 psum = hcl.compute((1,), lambda x: 4

5 hcl.sum(A[i1*B[i], axis=i)) 5 // primitives applied

6 # customization primitives 6 for(int i = @; i < BATCH/PAR; i++)
7 s = hcl.create_schedule() 7 #pragma HLS pipeline II=1

8 i, j = s[psum].split(i, PAR) 8 for(int j = @; j < PAR; j++)

9 slpsum].pipeline(i) 9 #pragma HLS unroll

0 sCpsum].unroll(j) 10 psum += A[i*PAR+j] * BLi*PAR+j];

(a) HeteroCL program (b) Equivalent HLS code

Figure 3: Example of compute customization in HeteroCL.

data transfer latency but introduces the trade-off between through-
put and accuracy. Second, we apply memory customization by using
partition pragmas to bank the buffers (L5-6). Finally, we apply
compute customization to improve the performance by tiling the
loop (L10, 12) and using parallelization pragmas (L11, 13). This re-
sults in PAR processing elements (PEs) computing the multiplication
and accumulation in parallel. With larger PAR, we achieve higher
compute throughput with the trade-off of more on-chip resource.
Moreover, there exists an interdependence between compute and
memory customization, where we need to match the number of PEs
with the memory banking factor. In this specific example, we set
both parameters to PAR. Finally, we show the hardware diagram in
Figure 2c, where we illustrate each type of hardware customization.

In addition, it is important to balance the computation time and
the data communication time to maximize the hardware efficiency.
Specifically, we need to carefully balance the two components by
tuning the data bitwidth DW and the number of PEs PAR. We increase
the compute throughput by increasing PAR. We also increase the
number of elements per I/O access by lowering DW. However, the
final performance is bounded by the minimum of the two. We use
the Roofline [39] diagram in Figure 2d to show the relation between
DW and PAR.

Figure 3 shows how we apply compute customization in HeteroCL.
First, we define the algorithm in Figure 3a, where we first import the

vec_A (MB = 64)
64b |

algorithm
vec_A = hcl.placeholder((128,), UInt(64))
local_A = hcl.unpack(vec_A) |

local_A (DW =32)
30 | 3|

quantization scheme 1
s1 = hcl.create_scheme()
s1.quantize(local_A, Fixed(32, 30))

-

local_A (DW = 8)
8b‘8b‘8h‘8h‘8h‘8h‘8h‘8h|

(b) Results after unpack

quantization scheme 2
s2 = hcl.create_scheme()
s2.quantize(local_A, Fixed(8, 6))

CE S 0vououa W

-

(a) HeteroCL program

Figure 4: Example of data type customization in HeteroCL —
Here we unpack the data sent from DMA vec_A to a local buffer
local_A. The shape of the local buffer varies according to the quan-
tization schemes. If we quantize 1local_A to a 32-bit/8-bit fixed-point
buffer, each element of vec_A will be unpacked to two/eight elements
in local_A.

HeteroCL module (L1), define the range to be sum up (L3), and use a
vector/tensor-oriented compute operation hcl. compute to describe
the multiplication and accumulation operation that sums across i
and returns a scalar (L4-5). The equivalent HLS code is shown in
Figure 3b (L1-3). After that, we apply compute customization prim-
itives, which are called scheduling functions in Halide/TVM, to a
customization scheme created in separation of the algorithm (L7).
The first primitive is a loop transformation primitive which splits
loop i into a two-level nested loop i and j by a factor PAR (L8).
We further apply two parallelization primitives that pipeline the
outer loop i (L9) and unroll the inner loop j (L10). The equivalent
code after applying customization primitives is in Figure 3b (L5-10).
We can see that after applying primitives, we need to restructure
the HLS code, while in HeteroCL, the algorithm specification stays
unchanged.

Unlike existing DSLs, we further decouple the algorithm from data
type customization. Figure 4 shows the results of applying decoupled
quantization schemes in HeteroCL. In the algorithm specification,
we unpack data transmitted from the 64-bit DMA vec_A to a local

1 # memory customization primitives
2 s = hcl.create_schedule()
3 s[local_Al.partition(dim=1, factor=PAR)

(a) HeteroCL program

1 DType local_A[BATCH];
2 #pragma HLS partition variable=local_A factor=PAR

(b) Equivalent HLS code

Figure 5: Example of memory customization in HeteroCL.

1 # algorithm specification

2 def dot_product(vec_A, vec_B):

3 local_A = hcl.unpack(vec_A, name="local_A")

4 local_B = hcl.unpack(vec_B, name="local_B")

5 i = hcl.reduce_axis(@, BATCH, "i")

[3 return hcl.compute((1,),

7 lambda x: hcl.sum(local_A[i] * local_B[i], axis=i),
8 name="psum")

10 # exploring a range of DW and PAR
11 for DW in [4, 8, 16, 32]:
12 for PAR in [4, 8, 16, 32]:

13 # key parameters that depend on data bitwidth (DW)
14 DType = hcl.Fixed(DW, DW-2)

15 MType = hcl.UInt(MB)

16 NPACK = BATCH*DW/MB

17

18 vec_A = hcl.placeholder ((NPACK,), dtype=MType)

19 vec_B = hcl.placeholder ((NPACK,), dtype=MType)

20 psum = hcl.placeholder((1,), dtype=DType)

21 # data type customization

22 sm = hcl.create_scheme([vec_A, vec_B, psum], dot_product)
23 sm.quantize([dot_product.vec_A,

24 dot_product.vec_B], DType)

25 # compute customization

26 sl = hcl.create_schedule_from_scheme(sm)

27 i, j = sl[dot_product.psum].split(dot_product.i, PAR)
28 s1[dot_product.psum].pipeline(i)

29 s1l[dot_product.psum].unroll(j)

30 # memory customization

31 sl[dot_product.local_A].partition(dim=1, factor=PAR)
32 sl[dot_product.local_B].partition(dim=1, factor=PAR)
33

34 f = hcl.build(sl)

35 # evaluate f and pick the best customization scheme
36 if QoR(f) > best_QoR:

37 best_QoR = QoR(f)

38 best_scheme = sl

Figure 6: Complete dot product example in HeteroCL — This
example demonstrates how HeteroCL explores the interdependence
between the data bitwidth DW and parallelization factor PAR.

buffer local _A without specifying the implementation (Figure 4a L3).
Then, we create a quantization scheme (L6) and quantize local_A
to a 32-bit fixed-point buffer using a quantization primitive (L7). The
result of unpacking is illustrated in Figure 4b. We can get a buffer
with a different shape by quantizing to another bitwidth with a
separate scheme (L10-11), while the algorithm stays the same.

Similar to decoupled compute and data type customization, we
further decouple the algorithm from memory customization. In Fig-
ure 5a, we first create a customization scheme (L2). We then specify
the memory customization primitive (L3). Equivalent HLS code is
shown in Figure 5b.

Finally, Figure 6 shows the complete dot product kernel in Hete-
roCL, where we cleanly separate the algorithm specification (L1-8)
from the hardware optimization specification (L14-32). We first apply

Table 1: Compute customization primitives currently sup-
ported by HeteroCL.

Primitive Description
Loop transformation
C.split(i, v) Split loop i of operation C into a two-level nest loop with v
as the factor of the inner loop.
C.fuse(i, j) Fuse two sub-loops i and j of operation C in the same nest
loop into one.
C.reorder(i, j) Switch the order of sub-loops i and j of operation C in the

same nest loop.

P.compute_at(C, i) Merge loop i of the operation P to the corresponding loop
level in operation C.
Parallelization
C.unroll(i, v) Unroll loop i of operation C by factor v.
C.parallel(i) Schedule loop i of operation C in parallel.
C.pipeline(i, v) Schedule loop i of operation C in pipeline manner with a

target initiation interval v.

1 def knn(test_img, train_img):

2 diff = hcl.compute((10, 1800),

3 lambda x, y: train_img[x]1[y] * test_img, "diff")

4 dist = hcl.compute(diff.shape,

5 lambda x, y: popcount(diff[x][y]), "dist")

[3 knn_mat = hcl.compute((10, 3), lambda x, y: 50, "init")
7 hcl.mutate(dist.shape,

8 lambda x, y:
9 return knn_mat

update_knn(dist, knn_mat, x, y), "update")

11 s = hcl.create_schedule([test_img, train_imgl, knn)

12 # loop transformation primitives

13 s[knn.diff].compute_at(s[knn.update], knn.update.axis[@])

14 s[knn.dist].compute_at(s[knn.update], knn.update.axis[@])

15 s[knn.update].reorder(knn.update.axis[1], knn.update.axis[0])
16 # parallelization primitives

17 s[knn.update].parallel(knn.update.axis[1])

18 s[knn.update].pipeline(knn.update.axis[@])

Figure 7: Example of combining different compute cus-
tomization primitives in HeteroCL.

data type customization to quantize the local buffers for better uti-
lization of the off-chip memory bandwidth (L22-24). We then specify
compute customization to tile and parallel the main computation
for higher compute throughput (L26-29). Finally, we apply memory
customization that banks the buffers to match the on-chip memory
bandwidth with compute throughput (L31-32). Moreover, we use a
two-level loop to explore the interdependence between DW and PAR
(L11-12). We then evaluate the built kernel f generated by our back
end for each pair of DW and PAR (L34) and pick the best scheme for
final FPGA synthesis (L36-38).

In the following sections, we describe the syntax and semantics
of HeteroCL for each type of customization in more detail.

2.2 Compute Customization

Compute customization improves the performance of a design by
performing loop transformations and executing the computation in
parallel. Similar to TVM [6], we decouple the algorithm specifica-
tion from compute customization schemes. Table 1 lists compute
customization primitives currently supported by HeteroCL. The
primitives prevent programmers from using vendor-specific prag-
mas, which makes HeteroCL programs portable to different back
ends.

Table 2: Data types currently supported by HeteroCL.

Data Type Description
Int(bw) Bit-accurate signed integer with bw bits.
UInt(bw) Bit-accurate unsigned integer with bw bits.

Fixed(bw, fr) Signed fixed-point type with bw bits, where there are fr fractional

bits.

UFixed(bw, fr) Unsigned fixed-point type with bw bits, where there are fr frac-
tional bits.

Float(bw) Floating-point type with bw bits, where bw could be 64 or 32.

Table 3: Quantization primitives currently supported by Het-
eroCL.

Primitive Description

quantize(t, d) Quantize a list of tensors t from floating to fixed point type d in

the format defined in Table 2.

downsize(t, d) Downsize a list of tensors t from integers with larger bitwidth to
integers d with smaller bitwidth in the format defined in Table 2.

Figure 7 shows an example of combining different types of com-
pute customization primitives, where we implement KNN-based
digit recognition in HeteroCL. The knn algorithm contains four oper-
ations, which are diff, dist, init, and update, respectively (L1-9).
By merging different operations (L13-14), changing the loop order
(L15), and applying parallelization schemes (L17-18), we can finally
achieve more than 10X speedup on FPGA comparing with single-
core single-thread CPU execution. We further show the step-by-step
speedup results in Section 4.

2.3 Data Type Customization

Quantized computation using low-bitwidth integers and/or fixed-
point types is an essential technique to achieve efficient execution on
FPGAs. To represent bit-accurate data types, traditional C-based HLS
tools use templates such as ap_int<> and ap_fixed<>. Although
this approach allows programmers to parameterize the bitwidths,
they need to run a separate script to iterate through different quan-
tization schemes. HeteroCL addresses this challenge by utilizing
Python classes to represent the data types, which allows users to try
out different quantization schemes within the same program. Table 2
lists the data types currently supported by HeteroCL.

Even with the bit-accurate data type support, it remains a chal-
lenge for most application developers to determine the right data
types with the right bitwidth to achieve the best trade-off between
accuracy and efficiency. To solve this, HeteroCL further decouples
the algorithm specification from quantization schemes. HeteroCL
provides two quantization primitives in Table 3, where quantize(t,
d) quantizes a list of floating-point variables t to a fixed-point type
d whose format is defined in Table 2. In addition, downsize(t, d)
reduces the precision of a list of integer variables t to an arbitrary-
bit integer type d. With quantize and downsize, programmers can
explore the trade-off between performance/area and accuracy by
tuning the bitwidths of variables in the algorithm. Note that this
decoupled approach is well-suited for automated bitwidth-tuning
frameworks based on autotuning or rule-based heuristics. Users can
further provide domain-specific knowledge such as the numerical
range or the distribution of a variable to quantization primitives to
guide the bitwidth searching process.

1 def lenet(img, w_cnl, w_cn2, w_fcl, w_fc2):

convl = conv2d_nchw(img, w_cnl, "convl")

pooll = max_pool(convl, kernel=(2,2), stride=(2,2))

conv2 = conv2d_nchw(pooll, w_cn2, "conv2")

pool2 = max_pool(conv2, kernel=(2,2), stride=(2,2))

flat = flatten(pool2)

fcl = dense(flat, w_fc1, "fcl1")

fc2 = dense(fcl, w_fc2, "fc2")

9 return softmax(lenet, fc2)

10

11 for i in range(2, 33):

12 s = hcl.create_scheme([img, w_cn1, w_cn2, w_fcl, w_fc2], lenet)
13 s.quantize([lenet.convl, lenet.conv2, lenet.fc1], Fixed(i, i-2))
14 f = hcl.build(s)

15 # run the inference and compute the accuracy

00NN U W N

Figure 8: Example of exploring different quantization
schemes in HeteroCL.

Table 4: Memory customization primitives currently sup-
ported by HeteroCL.

Primitive Description

C.partition(i, v) Partition dimension i of tensor C with a factor v.

C.reshape(i, v) Pack dimension i of tensor C into words with a factor v.

memmap(t, m) Map a list of tensors t with mode m to new tensors. The mode

m can be either vertical or horizontal.

P.reuse_at(C, i) Create a reuse buffer storing the values of tensor P, where the

values are reused at dimension i of operation C.

Figure 8 shows an example of exploring different quantization
schemes in HeteroCL, where we implement LeNet [26], a convolu-
tional neural network (CNN) for digit recognition. The pre-trained
model is in floating point. To explore different quantization schemes,
we simply use a for loop to iterate through different bitwidths (L11).
Since we know the output values of activation are between 1 and —1,
we set the integer bitwidth to two (i.e., i — (i — 2)) (L13). We further
present the evaluation results in Section 4.

2.4 Memory Customization

Accelerating applications on FPGAs usually requires a high on-chip
memory bandwidth to match the throughput of massively parallel
compute units. Without customized memory architectures such as
reuse buffers, the memory bandwidth could become the main hin-
drance preventing designs from achieving better performance. We
decouple the algorithm from the memory customization and pro-
vide a set of primitives (Table 4). Moreover, programmers can apply
several customization primitives in a user-defined sequence, which
is not possible using pragmas supported by existing HLS tools.
Figure 9 shows an example of specifying a sequence of memory
customization primitives in HeteroCL and how we define custom
memory hierarchy. Figure 9a shows the implementation of 3 x 3
convolution in HeteroCL (L1-7). To increase the on-chip memory
bandwidth, we introduce two custom reuse buffers, which are 1b
(linebuffer) and wb (window buffer), respectively (L10-11). We intro-
duce data reuse between tensors/buffers via the reuse_at primitive.
Specifically, Lines 10 and 11 specify that 1b reads values from i_img
and wb reads values from 1b, respectively. Figure 9b illustrates how
the reuse buffers operate, with the arrows indicating the data move-
ment in each cycle. The HeteroCL compiler automatically infers
the shapes of the buffers and the data to be stored based the reuse
axis specified in the primitive. In this example, since wb reuses at

1 # algorithm specification

2 def conv(i_img, kernel):

3 ri = hcl.reduce_axis(@, 3, 'ri')

4 rj = hcl.reduce_axis(@, 3, 'rj')

5 return hcl.compute((N-2, N-2), lambda i, j: hcl.sum(
6 i_imgli+ri, j+rj]l x kernellri, rjJ,
7 axis=[ri, rjl), name='o_img')

8 # memory customization - custom reuse buffers
9 s = hcl.create_scheme([i_img, kernel], conv)
10 1b = s[i_img].reuse_at(conv.o_img, conv.i)

11 wb = s[lb].reuse_at(conv.o_img, conv.j)

(a) HeteroCL code
1b (linebuffer)

a»;
u o
A4 i
- -
G ® =
i_img pil
wb (window buffer) kernel o_img

(b) Illustration of how reuse buffers operate in each cycle

Figure 9: Example of defining custom reuse buffers and their
hierarchy in HeteroCL.

Table 5: Spatial architecture macros currently supported by
HeteroCL.

Primitive Description

C.stencil() Specify operation C to be implemented with stencil with dataflow

architectures using the SODA framework.

C.systolic() Specify operation C to be implemented with systolic arrays using

the PolySA framework.

loop j of operation o_img (L11), it contains data that are read in
a single iteration of loop j, which corresponds to the red box in
i_img. Similarly, the compiler infers the shape of 1b, which stores
the values of the yellow pixels in i_img.

2.5 Mapping to Spatial Architecture Templates

Many popular workloads from image/video processing and machine
learning domains can be realized in a highly efficient manner on
FPGAs using spatial architectures such as systolic arrays [33, 38].
However, with the traditional C-based HLS methodology, it typically
requires extensive code restructuring and the insertion of a right com-
bination of pragmas to guide the tool to generate a high-performance
spatial architecture. This tedious and error-prone process is one of
the major barriers for the mainstream adoption of HLS for FPGA
designs. HeteroCL addresses this deficiency by introducing a set of
optimization macros that synthesize the code into highly efficient
spatial architecture templates. Each of these macros consists of a
combination of compute and memory customization primitives. As
indicated in Table 5, we currently support stencil with dataflow ar-
chitectures and systolic arrays, each of which is described in more
detail as follows.

Stencil with Dataflow Architecture — Stencil computation is
commonly seen in many areas including image processing and nu-
merical computing, where data elements are updated over a multi-
dimensional grid according to some fixed, local patterns. HeteroCL
incorporates the SODA framework [7], which synthesizes stencil

1 # algorithm specification

2 def jacobi(in_):

3 return hcl.compute(in_.shape, lambda y, x:

4 (in_[y, x-11 + in_[y-1, x] + in_[y, x] +

5 in_[y, x+1] + in_[y+1, x1)/5), "out")

6 # apply compute customization and stencil macro

7 s = hcl.create_schedule([in_], jacobi)

8 s[jacobi.out].unroll(jacobi.out.axis[1], factor=3)
9 s[jacobi.out].stencil()

Figure 10: Example of mapping computations to stencil with
dataflow architectures in HeteroCL.

patterns to a highly efficient dataflow architecture composed of reuse
buffers and data streams. Figure 10 shows an example of mapping a
Jacobi kernel to the stencil with dataflow architecture by using the
macro s[jacobi.out].stencil() specified in Line 9. Given this
macro, the HeteroCL back-end compiler will automatically identify
the stencil pattern within the computation of out (L3-5) and synthe-
size the corresponding spatial architecture with the stencil back end
(elaborated in Section 3).

algorithm specification
def mmult(A, B):

k = hcl.reduce_axis(N)

return hcl.compute(A.shape,

lambda x, y: hcl.sum(A[lx, k] * B[k, y], axis=k), "C")

map to systolic arrays
s = hcl.create_schedule([A, B], mmult)
s[mmult.C].systolic()

00NN U R W N

Figure 11: Example of mapping a computation to systolic ar-
rays in HeteroCL.

Systolic Array - HeteroCL further provides efficient support for
mapping to systolic arrays, which are widely used spatial architec-
tures that consist a group of processing elements locally connected
to each other [25]. Featuring local interconnects and modular de-
signs, the systolic array architecture is highly scalable and can take
advantage of the enormous amount of computation resources on
modern FPGAs. It is particularly suitable for applications having
perfectly nested loops with uniform dependency, such as matrix-
matrix multiplication. However, it is a complex task to manually
create systolic array designs on FPGAs. Recent research from Intel
reports that it takes several to tens of months of human effort to
implement a high-performance systolic array design, even with an
HLS design entry like OpenCL [33].

Similar to stencil optimization, we introduce a systolic macro in
the HeteroCL DSL to allow convenient mapping from tensor code to
systolic array architectures. Figure 11 shows an example of using the
systolic macro for matrix-matrix multiplication. Here we specify
the computation of C (L8) to be synthesized with a specialized back
end, which incorporates the PolySA framework [13] for automatic
systolic array generation (discussed in Section 3).

2.6 Mixed Declarative and Imperative
Programming

HeteroCL blends imperative programming with an embedded declar-
ative, symbolic style for expressing tensor-based code. The idea is
to combine the advantages of both styles — Imperative program-
ming is general and flexible, while symbolic tensorized code exposes
higher-level optimization opportunities when the code allows. The
flexibility offered by imperative programming enables designers to
implement algorithms with less-regular parallelism that cannot be

1 BinOp =+ | - | * |/ | %] & "] >»>]<<

2 BinEqOp := += | -= | *= | /=

3 CompOp :=> | > | ==|<=]|=|<]|I=

4 Expr := Var | Tensor[Expr] | Number

5 | not Expr | Expr BinOp Expr

6 | ExprlExpr] # get bit

7 | ExprlExpr:Expr] # get slice of bits

8 Cond := Expr Comp Epxr | hcl.and_(*Cond) | hcl.or_(*Cond)
9 CondStmt:= hcl.if_(Cond) | hcl.elif_(Cond) | hcl.else_()
10 Stmt := Tensor[Expr] = Expr | Tensor[Expr] BinEqOp Expr
11 | ExprlExpr] = Expr # set bit

12 | Expr[Expr:Expr] = Expr # set slice of bits

13 | with CondStmt:

14 Stmt

15 | with hcl.for_(Expr, Expr, Expr) as Var:

16 Stmt

17 | # HeteroCL compute operations (e.g., compute)
18 | # And more

Figure 12: Imperative DSL in HeteroCL — We provide equivalent
semantics for commonly used expressions and statements in normal
Python. We also support bit-level operations for bit-accurate data
types. The imperative DSL highly resembles normal Python in that
they use same indentations, same rules for variable scope, and similar
keywords. This relieves new users from learning a whole new set of
syntax and semantics.

1 A = hcl.compute((10,), lambda x: x)

2 def popcount(num):

3 out = hcl.compute((1,), lambda x: @, "out")

4 with hcl.for_(@, A.type.bits, 1, "loop1") as i:
5 out[@] += num[i] # bit selection operation

6 return out[0]

7 # extended TVM compute operation

8 B = hcl.compute(A.shape, lambda x: popcount(A[x]))
9 # decoupled data type customization

10 sm = hcl.create_scheme()

11 sm.downsize(B.out, h.UInt(4))

12 # decoupled compute customization

13 sl = hcl.create_schedule_from_scheme(sm)

14 s1[B].unroll(B.loop1)

Figure 13: Example of applying hardware customization to
imperative DSL — We extend existing compute operations (e.g.,
compute) and customization primitives (e.g., unroll) in declarative
code to further support imperative programming.

efficiently represented with declarative programming (e.g., sorting
algorithms). It also gives full control to programmers for specifying
the algorithmic details.

Some of the existing Python-based DSLs use normal Python to sup-
port imperative programming, such as TVM [6] and Hot&Spicy [34].
This approach, however, has some drawbacks: (1) The normal Python
semantic is too flexible to be FPGA synthesizable. (2) A designated
parser/compiler must be built, which could be error-prone. Instead of
using normal Python to support imperative programming, HeteroCL
provides an imperative DSL listed in Figure 12. HeteroCL further ex-
tends existing compute operations (e.g., compute) and develops new
operations for mixed-paradigm programming. We show examples
of supported compute operations in Table 6.

Programmers can also apply hardware customization to the im-
perative DSL. For instance, Figure 13 shows the popcount algorithm
implemented using the imperative DSL, where we apply both com-
pute and data type customization. Programmers access the vectors
and loops declared within a HeteroCL compute operation by their
names. For example, B.out in Line 11 refers to the vector out de-
clared in Line 3; B. loop1 in Line 14 refers to the for loop loop1 in

Table 6: Compute operations currently supported by Hete-
roCL.

Operation Description

compute(s, f) Compute a new tensor of shape s. The value of each element in the
new tensor is calculated according to lambda function f.

update(t, f) Update each element of tensor t according to lambda function f.

mutate(s, f) Write a for loop of shape s in vector code, where f is a lambda

function describing the for loop body.

Line 4. Note that the algorithm behaves differently with different
quantization schemes, where the bound of loop1 is determined by
the bitwidth of A (Line 4).

3 BACK-END CODE GENERATION AND
OPTIMIZATION

The HeteroCL framework has multiple back end supports including
CPU and HLS flows targeting FPGA. Specifically, we extend the
Halide IR used by TVM [6, 32] for our multi-paradigm programming
model and customization primitives. The extended Halide IR serves
as a unified representation for all back-end flows. In this section, we
briefly summarize our FPGA back-end code generation flow.

General Back End - The HeteroCL compiler can generate a cor-
responding accelerator kernel in many languages, including HLS
C/C++, OpenCL, and Merlin C. Merlin C is an OpenMP-like pro-
gramming model used by the Merlin compiler [11] from Falcon
Computing Solutions. We choose the Merlin compiler as one of
our back-end tools for two reasons. First, it leverages a small set
of OpenMP-like pragmas to apply certain architecture structures
by source-to-source C code transformation. Since Merlin pragmas
share lots of similarity with HeteroCL customization primitives, it is
relatively straightforward to integrate with HeteroCL. Second, the
Merlin compiler generates both HLS C kernels and OpenCL kernels
for FPGAs from the unified Merlin C source code.

Table 8 shows the correspondence between HeteroCL primitives
and Merlin C pragmas. The primitive unroll implies fine-grained
parallelism, which indicates all loop body logic to be scheduled in
the same hardware module. As a result, all sub-loops in the target
loop is flattened if a user applies unroll to a non-innermost loop.
On the other hand, the primitive parallel indicates coarse-grained
parallelism (e.g., a PE array). In addition, if a pipeline primitive is
assigned to a non-innermost loop, we map it to a coarse-grained
pipeline architecture.

Since HeteroCL primitives and Merlin C pragmas mainly specify
loop scheduling or memory organization, the implied architecture
can be represented as a composable, parallel, and pipeline (CPP)
architecture [14]. The authors in [14] have demonstrated that the
CPP architecture can be applied to broad classes of applications with
a good performance.

Stencil Back End - We incorporate the SODA framework pro-
posed in [7] to implement stencil patterns with optimized dataflow
architecture that minimizes the on-chip reuse buffer size. SODA takes
in a lightweight DSL that describes the stencil compute patterns and
design parameters. After the HeteroCL compiler identifies stencil
patterns according to user-specified macros, it generates the proper
DSL code to the SODA framework for hardware generation. In ad-
dition, hardware customization primitives such as loop unrolling
and data quantization are also reflected in the SODA DSL as design
parameters, which in turn guide the SODA framework for further
optimization.

Table 7: Evaluation results of benchmarks in HeteroCL — The speedup is over a single-core single-thread CPU execution.

Benchmark Data Sizes & Type #LUTs #FFs #BRAMs #DSPs Freqency (MHz) Speedup Back End
}(NN DlgltARectA)gmtlon [43] Kf3 #images=1800 4009 5835 88 0 250 125 General
mage classification uint49

K-Means K=16 #elem=320 X32 512708 235011 32 1536 190.6 16.0 General
Clustering int32

Smith-Waterman [36] string len=128 110841 88369 1409 0 152.2 20.9 General
Genomic sequencing uint2

Seidel [30] 2160 pixel X 3840 pixel 1715 31663 46 9% 250 5.9 Stencil
Image processing / linear algebra fixed16

?auss‘a“ 301 2160 pixel X 3840 pixel 5005 131060 46 688 250 13.2 Stencil
mage processing fixed16

Jacobi [30] 2160 pixel x 3840 pixel 1 eas 33485 46 48 250 5.0 Stencil
Linear algebra fixed16

GEMM 1024 x 1024 x 1024 .
Matrix-matrix multiplication fixed16 454492 800283 932 2507 236.8 8.9 Systolic Array
LeNet Inference [26] MNIST [15] .
Convolutional neural network fixed16 362291 660186 739.5 1368 250 10.6 Systolic Array

Table 8: Correspondence between HeteroCL primitives and
Merlin C pragmas.

unroll(i, v) — #pragma ACCEL parallel flatten factor=v
Partial unroll the target loop by factor i and fully unroll all its sub-loops.

parallel(i) — #pragma ACCEL parallel
Wrap the body of loop i to a function and form a PE array.

pipeline(i, v) — #pragma ACCEL pipeline
Wrap the body of loop i to a function and form a load-compute-store coarse-grained
pipeline.

Systolic Array Back End - Similar to the stencil back end, our
compiler analyzes the user-specified systolic macros and generates
annotated HLS C++ code as an input to the PolySA framework [13],
which further performs automated design space exploration that
optimizes the systolic array architecture including the shape of it
and the interconnection between PEs.

4 EVALUATION

In this section, we evaluate the accelerators generated by HeteroCL.
The platform we target is the AWS EC2 f1. 2x1arge instance, which
has 8 vCPU cores, 122GiB main memory, and a Xilinx Virtex Ultra-
Scale+™ VU9P FPGA. The default target frequency for this platform
is 250 MHz.

We select several common FPGA benchmarks from a broad range
of applications that are applied with either general, stencil, or systolic
array back ends. For the general back end, we have (1) KNN-based
digit recognition, which is simplified from that of Rosetta [43], (2)
K-means algorithm, and (3) Smith-Waterman [36]. For the stencil
back end, we have (1) Gaussian, (2) Jacobi, and (3) Seidel. All of
them are from Polybench [30]. For the systolic back end, we use
(1) general matrix multiplication (GEMM) and (2) deep learning
inference with LeNet model [26]. Among these benchmarks, KNN-
based digit recognition, K-means, and Smith-Waterman need to be
implemented with the HeteroCL imperative DSL.

Table 7 shows the benchmarks and the overall evaluation results.
We run the baseline designs on one CPU core with a single thread.
For the two systolic benchmarks, we are comparing our FPGA imple-
mentations with the GEMM function provided in Intel MKL [20] and
a LeNet model optimized with TVM [6], respectively. We include
memory transfer time (i.e., between DDR4 and FPGA) as part of the

Table 9: Speedup over CPU with customization primitives.

Benchmark No Primitive +Parallel +Loop Transform
KNN Digit Recognition 1.2 1.6 12.5
K-Means 1.9 2.8 16.0
Smith-Waterman 0.7 20.9 20.9

Table 10: Speedup over CPU for the stencil back end - To
achieve a higher speedup, we apply both compute and data type
customizations on top of stencil macro. The ideal speedup is de-
termined by the maximum off-chip memory bandwidth.

Benchmark +stencil +unroll +quantize Ideal

Seidel 0.5 2.9 59 6.8
Gaussian 1.1 6.7 13.2 15.6
Jacobi 0.4 2.3 5.0 5.4

total run time. After applying proper customization primitives, we
achieve up to 20.9x speedup for the benchmarks with the general
back end. Moreover, we can achieve up to 13.2x and 10.6X speedup
for benchmarks applied with stencil and systolic array back end, re-
spectively. In the rest of this section, we show the detailed evaluation
of each back end.

General Back End - We first evaluate the impact of HeteroCL
customization primitives on performance with the general back end.
Table 9 shows the speedup of generated accelerator kernels after step-
by-step applications of customization primitives. We first show the
speedup without applying any customization primitive and that after
applying parallelization primitives such as unroll and parallel.
However, without applying appropriate loop transformation prim-
itives such as split and reorder, the performance improvement
could be limited. Thus, we also show the results after applying those
primitives to the benchmarks. Table 9 demonstrates the permutabil-
ity of HeteroCL, where programmers can easily explore the design
space just by adding or removing primitives without changing the
algorithm code.

Stencil Back End - Table 10 shows the speedup of the bench-
marks after applying the stencil macro, customization primitives,
and the ideal speedup. If we only apply the macro, we are only up
to 1.1x faster because of the limited parallelism. To improve the per-
formance, we apply parallelization primitives (i.e., unroll), which

100
90
80
70
60
50
40
30
20
10

Accuracy (%)
D ———— —— ———
00— ——— ———————— -

5 6 7 9 10 11 12 13 14 15 16
Quantization scheme (Total bitwidth)

activation weight both

Figure 14: Accuracy of LeNet with different quantization
schemes.

Table 11: Performance results of systolic array benchmarks -
The performance is in terms of Giga operations per second (GOPs).

Benchmark Backend Data Type Performance (GOPs) Speedup

CPU [6] float32 15.4 1.0

LeNet Inference float32 79.8 5.2
FPGA

fixed16 137.8 8.9

CPU [20] float32 76.0 1.0

GEMM float32 245.9 3.2
FPGA

fixed16 807.6 10.6

results in up to 6.7x speedup. At this stage, since the performance
bottleneck of all benchmarks is the off-chip memory bandwidth
(about 13.8GB/s), we cannot get higher throughput by further in-
creasing the unrolling factor. To address this, we quantize the single-
precision floating-point numbers to 16-bit fixed-point numbers. As
a result, the required external memory bandwidth could be reduced
and we can achieve an additional 2x speedup. As a reference, the last
column shows the ideal speedup assuming the memory bandwidth
is perfectly utilized. In summary, Table 10 shows that by combining
spatial architecture macros with other types of hardware customiza-
tion, we can further improve the performance.

Systolic Array Back End - We finally evaluate the benchmarks
applied with systolic macros. For both applications, we evaluate
the impact of data type customization on performance, which we
present in Table 11. By using both spatial architecture macros and
data type customization primitives, we can improve the performance
of both designs.

We further show the accuracy results after applying different
quantization schemes to LeNet benchmark in Figure 14, where the
X-axis shows the number of total bitwidth and the Y-axis shows
the accuracy. We demonstrate three different scenarios, which are
quantizing the activation, weights, and both, respectively. We ob-
serve that with 8-bit fixed-point type, the accuracy degradation is
marginal. Moreover, if we choose to quantize the activation only,
4-bit fixed-point type is the best choice.

5 RELATED WORK

There exists a large body of work on HLS and domain-specific pro-
gramming. In this section, we survey a small subset of representative
efforts on C-based HLS, DSLs for hardware accelerator designs, and
those that support decoupled algorithm and optimizations.
C-based HLS - HLS tools such as LegUp [5], Intel FPGA SDK
[21], and Xilinx Vivado HLS [40] allow developers to write FPGA
designs in C/C++ and OpenCL, delivering higher productivity than

traditional register-transfer-level (RTL) designs. The recently intro-
duced Merlin compiler greatly simplifies the HLS design by applying
source-to-source transformation to automatically generate optimized
HLS-C or OpenCL programs [11]. However, to achieve good QoRs,
developers are required to use various vendor-specific data types and
pragmas/directives, rendering FPGA design with HLS less flexible
and portable.

HeteroCL lifts the abstraction level of FPGA programming and
provides developers with a systematic way to efficiently explore var-
ious trade-offs, making FPGA design more portable and productive.

DSLs for Hardware Accelerator Design — There is a growing
interest in compiling programs written in high-level languages (e.g.,
Python, Scala) into reconfigurable hardware accelerators. Hot &
Spicy compiles annotated Python code into HLS C/C++, where the
annotations are translated into pragmas [34]. DHDL introduces a
representation of hardware using parameterized templates in Scala
that captures locality and parallelism information and compiles the
representation into FPGAs and CGRAs [24]. Spatial extends DHDL
by adding a set of low-level abstractions for control and memory [23].
However, in these DSLs the algorithm specification is tightly entan-
gled with hardware optimizations, making design space exploration
less productive.

HeteroCL decouples algorithm specification from hardware cus-
tomization, and abstracts three important types of hardware cus-
tomization into a set of customization primitives, enabling produc-
tive and systematic design space exploration. HeteroCL further offers
additional macros in stencil and systolic for efficient mapping
to highly optimized spatial architecture templates.

DSLs with Decoupled Algorithm and Optimization — Most
computing patterns in image processing and deep learning can be
concisely described as nested loops in a declarative programming
paradigm, as illustrated in a lot of DSLs [17, 22, 27, 37]. Halide first
proposes to decouple the algorithm specification from the temporal
schedule [32]. Tiramisu extends Halide by adding explicit communi-
cation, synchronization, and mapping buffers to different memory
hierarchies [3, 33]. Jing Pu, et al. also extend Halide to support custom
reuse buffers and support FPGAs and CGRAs as back end [31]. T2S
extends Halide by decoupling the spatial schedule from the algorithm
specification, which allows programmers to define systolic-array-
like architectures [33]. TVM builds a deep learning compiler stack
on top of Halide IR, supporting both CPUs and GPUs [6]. While
the declarative programming paradigm in these DSLs is powerful,
it cannot express applications beyond image processing and deep
learning.

HeteroCL, as a multi-paradigm programming infrastructure, nicely
blends declarative symbolic expressions with imperative code, and
provides a unified interface to specify customization schemes for
both declarative and imperative programs. This allows HeteroCL to
support a broader range of applications.

More specifically, we list the major differences between TVM and
HeteroCL as follows: (1) TVM extensively uses declarative program-
ming to target deep learning applications, while HeteroCL supports
mixed imperative and declarative programming to target general
applications. (2) TVM tries to solve the optimization challenges
mainly for CPUs and GPUs, while HeteroCL focuses on hardware
customization for FPGA and incorporates advanced spatial archi-
tecture templates. (3) TVM programs can target FPGAs as back end
by using VTA, a programmable accelerator that uses a RISC-like
programming abstraction to describe tensor operations [28]. On the
other hand, HeteroCL programs are not limited to tensor operations.

In addition, programmers can apply various hardware customization
techniques with provided primitives while the hardware generated
by VTA is pre-defined. (4) HeteroCL supports bit-accurate data types,
which are not available in TVM. Furthermore, HeteroCL proposes
to decouple the quantization scheme from algorithm specification.

6 CONCLUSIONS AND FUTURE WORK

We have presented HeteroCL, a multi-paradigm programming infras-
tructure for heterogeneous platforms integrating CPUs and FPGAs.
HeteroCL not only provides a clean abstraction that decouples the
algorithm from compute/data customization, but it also captures
the interdependence among them. Moreover, HeteroCL incorporates
spatial architecture templates including systolic arrays and stencil
with dataflow architectures. We believe HeteroCL can help devel-
opers to focus more on designing efficient algorithms rather than
being distracted by low-level implementation details.

We are releasing the proposed framework in an open-source for-
mat. The programming infrastructure as well as the associated doc-
uments and example designs are publicly available on the authors’
website. Additionally, we plan to introduce primitives for data and de-
vice placement, and also data streaming interfaces. We will also inte-
grate HeteroCL with more spatial architecture templates, distributed
autotuning capabilities, and accurate QoR estimation boosted by
machine learning techniques.

ACKNOWLEDGEMENTS

This research was supported in part by CRISP, one of six centers in
JUMP, a Semiconductor Research Corporation (SRC) program spon-
sored by DARPA, NSF/Intel CAPA Award #1723773, DARPA Young
Faculty Award D15AP00096, NSF Awards #1453378, #1436827, and
#1707408, and research gifts from Intel and Xilinx. We thank Ama-
zon for providing AWS EC2 credits. We thank Prof. Adrian Sampson
(Cornell), Dr. Hongbo Rong (Intel), and Dr. Justin Gottschlich (Intel)
for providing helpful feedback on the HeteroCL framework. We also
thank Ritchie Zhao, Ziyan Feng, Shaojie Xiang, Yichi Zhang, Patrick
Clobridge, and Qing Yu for their contributions to the HeteroCL
benchmarks.

REFERENCES

[1] M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, G. S. Corrado,
A. Davis, J. Dean, M. Devin, et al. TensorFlow: Large-Scale Machine Learning on
Heterogeneous Distributed Systems. arXiv preprint arXiv:1603.04467, 2016.

[2] A. Althoff and R. Kastner. A Scalable FPGA Architecture for Nonnegative Least
Squares Problems. Int’l Conf. on Field Programmable Logic and Applications (FPL),
2015.

[3] R. Baghdadi, J. Ray, M. B. Romdhane, E. Del Sozzo, P. Suriana, S. Kamil, and
S. Amarasinghe. Tiramisu: A Code Optimization Framework for High Performance
Systems. arXiv preprint arXiv:1804.10694, 2018.

[4] S.Borkar and A. A. Chien. The Future of Microprocessors. Communications of the
ACM, 2011.

[5] A.Canis, J. Choi, M. Aldham, V. Zhang, A. Kammoona, J. H. Anderson, S. Brown,
and T. Czajkowski. LegUp: High-level Synthesis for FPGA-Based Processor/Accel-
erator Systems. Int’l Symp. on Field-Programmable Gate Arrays (FPGA), 2011.

[6] T.Chen, T. Moreau, Z. Jiang, H. Shen, E. Yan, L. Wang, Y. Hu, L. Ceze, C. Guestrin,
and A. Krishnamurthy. TVM: End-to-End Optimization Stack for Deep Learning.
arXiv preprint arXiv:1802.04799, 2018.

[7] Y. Chi, J. Cong, P. Wei, and P. Zhou. SODA: Stencil with Optimized Dataflow
Architecture. Int’l Conf. on Computer-Aided Design (ICCAD), 2018.

[8] A.A.Chien, A. Snavely, and M. Gahagan. 10x10: A General-Purpose Architectural
Approach to Heterogeneity and Energy Efficiency. Procedia Computer Science,
2011.

[9] E. S. Chung, P. A. Milder, J. C. Hoe, and K. Mai. Single-Chip Heterogeneous
Computing: Does the Future Include Custom Logic, FPGAs, and GPGPUs? Int’l
Symp. on Microarchitecture (MICRO), 2010.

[10] J. Cong, M. A. Ghodrat, M. Gill, B. Grigorian, K. Gururaj, and G. Reinman.
Accelerator-Rich Architectures: Opportunities and Progresses. Design Automation
Conf. (DAC), 2014.

[11] J. Cong, M. Huang, P. Pan, D. Wu, and P. Zhang. Software Infrastructure for
Enabling FPGA-Based Accelerations in Data Centers. Int’l Symp. on Low Power
Electronics and Design (ISLPED), 2016.

[12] J. Cong, B. Liu, S. Neuendorffer, J. Noguera, K. Vissers, and Z. Zhang. High-Level
Synthesis for FPGAs: From Prototyping to Deployment. IEEE Trans. on Computer-
Aided Design of Integrated Circuits and Systems (TCAD), 2011.

[13] J. Cong and J. Wang. PolySA: Polyhedral-Based Systolic Array Auto Compilation.
Int’l Conf. on Computer-Aided Design (ICCAD), 2018.

[14] J. Cong, P. Wei, C. H. Yu, and P. Zhang. Automated Accelerator Generation
and Optimization with Composable, Parallel and Pipeline Architecture. Design
Automation Conf. (DAC), 2018.

[15] L.Deng. The MNIST Database of Handwritten Digit Images for Machine Learning
Research. IEEE Signal Processing Magazine, 2012.

[16] H. Esmaeilzadeh, E. Blem, R. S. Amant, K. Sankaralingam, and D. Burger. Dark

Silicon and the End of Multicore Scaling. Int’l Symp. on Computer Architecture

(ISCA), 2011.

J. Hegarty, J. Brunhaver, Z. DeVito, J. Ragan-Kelley, N. Cohen, S. Bell, A. Vasilyev,

M. Horowitz, and P. Hanrahan. Darkroom: Compiling High-Level Image Processing

Code into Hardware Pipelines. ACM Trans. Graph., 2014.

G. Inggs, S. Fleming, D. Thomas, and W. Luk. Is High Level Synthesis Ready for

Business? A Computational Finance Case Study. Int’l Conf. on Field Programmable

Technology (FPT), 2014.

Intel. Xeon+FPGA Platform for the Data Center. https://www.ece.cmu.edu/ cal-

cm/carl/lib/exe/fetch.php? media=carl15-gupta.pdf.

Intel. Intel Math Kernel Library. 2007.

Intel. Intel High Level Synthesis Compiler User Guide. 2017.

F. Kjolstad, S. Kamil, S. Chou, D. Lugato, and S. Amarasinghe. The Tensor Algebra

Compiler. Intl’l Conf. on Object-Oriented Programming, Systems, Languages, and

Applications, 2017.

D. Koeplinger, M. Feldman, R. Prabhakar, Y. Zhang, S. Hadjis, R. Fiszel, T. Zhao,

L. Nardi, A. Pedram, C. Kozyrakis, et al. Spatial: A Language and Compiler for

Application Accelerators. ACM SIGPLAN Conf. on Programming Language Design

and Implementation (PLDI), 2018.

D. Koeplinger, R. Prabhakar, Y. Zhang, C. Delimitrou, C. Kozyrakis, and K. Olukotun.

Automatic Generation of Efficient Accelerators for Reconfigurable Hardware. Int’l

Symp. on Computer Architecture (ISCA), 2016.

[25] H.Kung and C. E. Leiserson. Systolic Arrays (for VLSI). Sparse Matrix Proceedings,

1979.

Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner. Gradient-Based Learning Applied

to Document Recognition. Proceedings of the IEEE, 1998.

[27] R. Membarth, O. Reiche, F. Hannig, J. Teich, M. Korner, and W. Eckert. Hipa®: A
Domain-Specific Language and Compiler for Image Processing. IEEE Transactions
on Parallel and Distributed Systems, 2016.

[28] T. Moreau, T. Chen, Z. Jiang, L. Ceze, C. Guestrin, and A. Krishnamurthy. VTA: An

Open Hardware-Software Stack for Deep Learning. arXiv preprint arXiv:1807.04188,

2018.

D. Pellerin. Fpga accelerated computing using aws f1 instances. AWS Public Sector

Summit, 2017.

[30] L.-N. Pouchet. Polybench: The Polyhedral Benchmark Suite. URL: http://www. cs.
ucla. edu/pouchet/software/polybench, 2012.

[31] J. Pu, S. Bell, X. Yang, J. Setter, S. Richardson, J. Ragan-Kelley, and M. Horowitz.

Programming Heterogeneous Systems from an Image Processing DSL. ACM Trans.

on Architecture and Code Optimization (TACO), 2017.

J. Ragan-Kelley, C. Barnes, A. Adams, S. Paris, F. Durand, and S. Amarasinghe.

Halide: A Language and Compiler for Optimizing Parallelism, Locality, and Re-

computation in Image Processing Pipelines. ACM SIGPLAN Notices, 2013.

[33] H.Rong. Programmatic Control of a Compiler for Generating High-Performance

Spatial Hardware. arXiv preprint arXiv:1711.07606, 2017.

S. Skalicky, J. Monson, A. Schmidt, and M. French. Hot & Spicy: Improving

Productivity with Python and HLS for FPGAs. IEEE Symp. on Field Programmable

Custom Computing Machines (FCCM), 2018.

[35] Z. Wang, B. He, and W. Zhang. A Study of Data Partitioning on OpenCL-Based

FPGAs. Int’l Conf. on Field Programmable Logic and Applications (FPL), 2015.

M. Waterman. Identification of Common Molecular Subsequence. Mol. Biol, 1981.

R. Wei, V. Adve, and L. Schwartz. DLVM: A Modern Compiler Infrastructure for

Deep Learning. arXiv preprint arXiv:1711.03016, 2017.

[38] X. Wei, C. H. Yu, P. Zhang, Y. Chen, Y. Wang, H. Hu, Y. Liang, and J. Cong. Auto-
mated Systolic Array Architecture Synthesis for High Throughput CNN Inference
on FPGAs. Design Automation Conf. (DAC), 2017.

[39] S.Williams, A. Waterman, and D. Patterson. Roofline: An Insightful Visual Perfor-
mance Model for Multicore Architectures. Communications of the ACM, 2009.

[40] Xilinx Inc. Vivado Design Suite User Guide: High-Level Synthesis. 2012.

] M. Zaharia, M. Chowdhury, M. J. Franklin, S. Shenker, and L. Stoica. Spark: Cluster

Computing with Working Sets. HotCloud, 2010.

[42] R. Zhao, W. Song, W. Zhang, T. Xing, J.-H. Lin, M. Srivastava, R. Gupta, and

Z. Zhang. Accelerating Binarized Convolutional Neural Networks with Software-

Programmable FPGAs. Int’l Symp. on Field-Programmable Gate Arrays (FPGA),

2017.

Y. Zhou, U. Gupta, S. Dai, R. Zhao, N. Srivastava, H. Jin, J. Featherston, Y.-H. Lai,

G. Liu, G. A. Velasquez, W. Wang, and Z. Zhang. Rosetta: A Realistic High-Level

Synthesis Benchmark Suite for Software Programmable FPGAs. Int’l Symp. on

Field-Programmable Gate Arrays (FPGA), 2018.

[17

[18

[19

[20
[21
[22

[23

[24

[26

[29

[32

[34

[36
[37

[43

	Abstract
	1 Introduction
	2 The Programming Model
	2.1 A Motivating Example
	2.2 Compute Customization
	2.3 Data Type Customization
	2.4 Memory Customization
	2.5 Mapping to Spatial Architecture Templates
	2.6 Mixed Declarative and Imperative Programming

	3 Back-end Code Generation and Optimization
	4 Evaluation
	5 Related Work
	6 Conclusions and Future Work
	References

