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ABSTRACT
The past decade has witnessed increasing adoption of high-level
synthesis (HLS) to implement specialized hardware accelerators tar-
geting either FPGAs or ASICs. However, current HLS programming
models entangle algorithm specifications with hardware customiza-
tion techniques, which lowers both the productivity and portability
of the accelerator design. To tackle this problem, recent efforts such
as HeteroCL propose to decouple algorithm definition from essen-
tial hardware customization techniques in compute, data type, and
memory, increasing productivity, portability, and performance.

While the decoupling of the algorithm and customizations pro-
vides benefits to the compilation/synthesis process, they also cre-
ate new hurdles for the programmers to productively debug and
validate the correctness of the optimized design. In this work, us-
ing HeteroCL and realistic machine learning applications as case
studies, we first explain the key advantages of the decoupled pro-
gramming model brought to a programmer to rapidly develop high-
performance accelerators. Using the same case studies, we will
further show how seemingly benign usage of the customization
primitives can lead to new challenges to verification. We will then
outline the research opportunities and discuss some of our recent
efforts as the first step to enable a robust and viable verification
solution in the future.

1 INTRODUCTION
Targeted specialization of functionality in hardware has become
unarguably the best means to achieve improved compute perfor-
mance and energy efficiency for a plethora of emerging applica-
tions. Unfortunately, it is a very unproductive practice to design
and implement special-purpose accelerators using the conventional
RTL methodology. For this reason, both academia and industry are
seeing increasing use of HLS to automatically generate hardware
accelerators from software programs [6, 8]. However, more wide-
spread adoption of HLS is currently held back by its deficiencies in
the quality of results (QoR) and ease of programming.

Programming high-performance hardware accelerators with
HLS tools requires a deep understanding of hardware details and is
a significant departure from traditional software programming. In
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particular, current HLS programming models entangle algorithm
specifications with hardware customization techniques. This ap-
proach has several limitations: (1) To achieve good QoRs, HLS
programmers need to considerably restructure the source program
to guide the HLS tool to realize specialized architectures such as
data reuse buffers and systolic arrays; (2) Programmers are fur-
thermore required to use various vendor-specific data types and
pragmas [25], reducing the portability of accelerators across target
hardware; (3) Existing HLS programming models fail to capture
the interdependence among different hardware customization tech-
niques, thus weakening the support of user-guided or automatic
design space exploration (DSE).

One promising direction in modern language designs for het-
erogeneous computing is to apply the principle of separation of
concerns. This principle refers to the decoupling of algorithm and
performance optimization for enhanced modularity, composability,
productivity, and performance. Halide is the first domain-specific
language (DSL) to propose such decoupling for image processing
applications [16]. TVM builds on Halide to support decoupled
customization for machine learning applications [4]. Inspired by
Halide and TVM, HeteroCL [9], T2S-Tensor [18], and SuSy [10]
also separate algorithm definition from hardware customizations,
aiming to make accelerator designs much more productive, per-
formant, and portable. In the rest of this paper, we discuss how
HeteroCL, an open-source Python-based programming abstraction
for accelerator-rich computing that fully decouples the algorithm
from hardware customization, increases the productivity of accel-
erator designs using two realistic case studies. We further outline
several research challenges and opportunities that are worth pur-
suing to enable productive and pervasive hardware specialization.

2 DECOUPLING ALGORITHM FROM
HARDWARE CUSTOMIZATIONS

In this section, we first introduce HeteroCL’s decoupled program-
ming model. Then, we outline how the programming model in-
creases the productivity and performance of hardware accelerators
using two case studies.

2.1 HeteroCL Accelerator Programming Model
HeteroCL is a multi-paradigm programming framework targeting
accelerator-rich heterogeneous architectures. It is composed of a
Python-based DSL and an automated compilation flow that maps
the input algorithm into efficient accelerators. Similar to Halide [16]
and TVM [4], HeteroCL separates an algorithm specification from
a temporal compute schedule. Unlike the previous approaches that
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mainly focus on CPUs/GPUs, HeteroCL further decouples the algo-
rithm from memory architectures and data quantization schemes,
which are both essential for efficient hardware customization, as
shown in Figure 1. Another major advantage of HeteroCL is the
mixed-paradigm support of both declarative tensor-based code
and imperative programming constructs such as if-then-else and
for loops. This offers two significant benefits: (1) The tensorized
compute graph derived from the declarative code (extended from
TVM) exposes many high-level domain-specific optimization op-
portunities to the compiler (e.g., mapping stencil or systolic code
to spatial architecture templates); (2) the flexibility of imperative
code allows the description of more general-purpose algorithms
with less-regular and fine-grained parallelism.
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Figure 1: Decoupled Hardware Customizations in HeteroCL.
The current HeteroCL compilation framework has multiple back-

end supports, including CPU execution and HLS-based flows tar-
geting Intel or AMD Xilinx FPGAs and ASIC accelerators using
SystemC. It can produce highly efficient hardware implementations
for a variety of popular image processing and DNN workloads by
targeting spatial architecture templates such as systolic arrays and
stencils with dataflow architectures.
Table 1: Sample customization primitives in HeteroCL [9, 20]
– s is the temporal schedule of a HeteroCL program.
(a) Compute Customization

s[kernel].unroll(axis, factor): unroll loop with target factor
s[kernel].tile(i, factors): tile loop with factors

(b) Memory Customization

s.reuse_at(tensor, kernel): create reuse buffer for tensor in kernel

(c) Data Type Customization

s.quantize(tensor, dtype): quantize tensor to fixed-point type
(d) Data Placement Customization

s.to(data, destination, mode): place data to destination using mode

Table 1(a)-(c) show a subset of HeteroCL customization prim-
itives. In HeteroCL, a kernel contains a loop nest or function for
computations. The decoupled customization primitives are applied
to either the computation of a kernel (i.e., compute customization)
or the memory and data used by a kernel (e.g., memory and data
type customization).

Recently, HeteroFlow has extended HeteroCL to decouple data
placement specification from the algorithm description and other
hardware customizations [20]. Data placement refers to orchestrat-
ing the placement and movement of data between memory buffers
inside the accelerator and between the accelerator and the CPU
host. HeteroFlow provides a unified programming interface named
.to() for customizing (1) host-accelerator data placement between

1 def ultranet(image, weight1, weight2, ...):
2 out1 = layer1_conv2d_im2col(image, weight1)
3 out2 = layer2_conv2d_im2col(out1, weight2)
4 out3 = layer3_conv2d_im2col(out2, weight3)
5 ...
6 s.to(out2, layer3_conv2d_im2col)
7 yo, yi, xo, xi = s[out3].tile(axis=[0,1], factor=[4,4])
8 s[out3].reorder(yo, xo, yi, xi)
9 PEs = s[out3].unroll(axis=[yi, xi])
10 for i in range(4):
11 s.to(out2[i][:].X, PEs[i,0]).to(PEs[i,1]).to(PEs[i,2])...
12 s.to(out2[:][i].W, PEs[0,i]).to(PEs[1,i]).to(PEs[2,i])...
13 for PE in PEs:
14 s[PE].vectorize(axis=PE.j, factor=32)
15 s.quantize(PE.X, PE,W], hf.Int(4))

# LUT/FF # BRAM/DSP Freq(MHz) RT(ms) LoC

Original HLS 60.2K/39.6K 377/508 231 2.97 (1.0x) 2872
HeteroCL+SA 69.8K/39.4K 375/594 233.8 2.27 (1.3x) 204

Figure 2: Evaluation on UltraNet in HeteroFlow – RT refers to
the total run-time, and LoC refers to the lines of code.

the CPU host memory and accelerator device memory; (2) inter-
kernel data placement, to specify data streaming between different
compute kernels within an accelerator; (3) intra-kernel data place-
ment to specify fine-grained dataflow patterns commonly used in
spatial architectures such as systolic arrays. The .to() primitive
also enables programmers to co-optimize data placement schemes
with other hardware customization techniques such as tiling and
data quantization and integrate non-systolic kernels with optimized
systolic arrays. Table 1(d) shows the usage of the .to() primitive.

2.2 Case Studies
To demonstrate HeteroCL’s effectiveness in designing hardware
accelerators, we discuss an application-specific accelerator and a
domain-specific accelerator as case studies.
Object Detection Accelerator: UltraNet [21] is an object detec-
tion neural network implemented on FPGAs, and it is the winner of
the DAC System Design Contest in 2020. Figure 2 shows its imple-
mentation in HeteroCL. UltraNet has 9 convolution layers (L1-4).
In the decoupled customization, we map the third layer to a 4x4
output-stationary systolic array (L6-9), and connect it with neigh-
borhood layers using FIFOs (L6). Each PE in the systolic array is
vectorized and quantized to achieve better throughput (L11-15). The
evaluation shows that the HeteorCL design achieves 1.3x speedup
of overall latency while only using 14.1x fewer lines of code com-
pared with the manually optimized HLS design. It is worth noting
that the HeteroCL design employs decoupled customization, which
makes it much easier for programmers to explore the trade-offs of
different hardware architectures without altering the algorithm.
Versatile Tensor Accelerator: This case study showcases Hete-
roCL’s capability of modeling a domain-specific accelerator design
with a simple instruction set. We modeled an open-source deep-
learning accelerator called Versatile Tensor Accelerator (VTA) [13]
in HeteroCL. VTA is composed of four modules – fetch, load, com-
pute, and store. There are three benefits of using HeteroCL to
implement VTA. First, The HeteroCL programming model helped
to quickly develop an executable specification for early software
and compiler development. Especially, the declarative programming
model allowed the programmer to quickly integrate tensor-based
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def algorithm(image, offset):
r = hcl.reduce_axis(0, 3)
c = hcl.reduce_axis(0, 3)
out = hcl.compute((8, 8), lambda y, x:   

hcl.sum(image[offset[y,x,r,c]] * W[r, c], 
axis=[r, c]))

return out

vImg = # run-time values of image
vOff = # run-time values of offset
s = hcl.create_schedule([image, offset], deform_conv)

p = hcl.profile(s, [vImg, vOff])

if p.stencils is not None:
for stencil in p.stencils:

s.reuse_at(stencil.tensor, stencil.stage,
stencil.axis, stencil.info)

try:
s.reuse_at(image, s[out], out.x)
hcl.profile(s, [vImg, vOff])

except hcl.ReuseError as e:
print(e)

Validate Recommend

+

Figure 3: Example of trace-based profiling.
operations without worrying about implementation details of com-
plex tensor operations. Second, the same HeteroCL executable spec-
ification was repurposed to derive a high-performance hardware
implementation using decoupled customizations. Finally, the declar-
ative programming, imperative programming, and the decoupled
customizations together generated HLS code whose performance
is similar to the original VTA with significantly fewer lines of code.

3 CHALLENGES AND OPPORTUNITIES
It is clear that with decoupled customizations, we can improve
productivity, performance, and portability. However, there remain
multiple challenges and opportunities with respect to the correct-
ness verification of decoupled customizations and integration. In
the following sections, we discuss two challenges and opportuni-
ties.

3.1 Automated Generation and Validation of
Customization Primitives

The current HeteroCL compiler relies on user-specified customiza-
tion primitives for optimizing the input program. To achieve high
QoR, programmers need to have in-depth knowledge of the tar-
get accelerators, which creates a high threshold for most software
programmers. Take memory customization as an example. Since
programmers are more used to implicit memory orchestration such
as caches on CPUs, it is non-trivial for them to explicitly design and
manage custom memory hierarchy on FPGAs. Although HeteroCL
provides customization primitives such as .reuse_at() to simplify
the optimization process, it is still difficult for programmers to tell
how and where to apply such a primitive. Even worse, the mis-
application of primitives may worsen the performance or end up
with incorrect results. Therefore, there is an urgent need for tech-
niques that resolve the above challenges by providing programmers
recommendations and validations.

AutoTVM [5] and FlexTensor [24] leverage template-based meth-
ods to search the optimal parameters for the schedule for TVM.
Ansor [23] and Halide’s AutoScheduler [1] employ a template-free
approach to directly generate schedule sequences from different
primitive combinations. However, the above approaches only work
for programs with static behaviors that are known at compile-time
targeting CPUs or GPUs. There are also considerable number of
works to automate DSE for HLS. Most of the existing effort develop
different kinds of heuristics to automatically insert HLS pragmas
into C/C++ programs [19]. For example, by leveraging graph learn-
ing models, a recent HLS DSE framework can make accurate QoR

1 Conv2D = lambda Image, Filter: hcl.compute((N, M), lambda x, y:
2 hcl.sum(Image[x+r, y+c] * Filter[r, c], axis=[r, c]))
3 A = Conv2D(I, FA); B = Conv2D(A, FB); s = hcl.create_schedule()
4 s.to(A, s[B]).reuse_at(B.axis[0]) # streaming and reuse buffer
5 s[B].reorder(B.axis[1], B.axis[0]) # reorder outermost loops

(a) HeteroCL code snippet
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Figure 4: A buggy HeteroCL example – the RAW data depen-
dency between two Conv2D kernels is violated after applying data
streaming and loop reordering customization.
prediction and achieve better performance [17]. While these works
have considerable compute pattern optimizations, there are limited
automation for data reuse and date access optimization.

We further propose a run-time trace-based profiling technique
that provides automated validation and recommendation for appli-
cation -specific hardware customization on FPGAs. Figure 3 shows
an example of using the trace-based profiling techniques for validat-
ing and recommending data reuse by introducing a new primitive
.profile() to HeteroCL. With decoupled customizations, pro-
grammers do not need to modify the algorithm specification (i.e.,
the orange box). In addition, they can validate the specified data
reuse primitives in combination (i.e., the left blue box) and/or im-
prove the QoR by applying the recommended primitives generated
from the profiling results (i.e., the right blue box). Moreover, with
the trace-based technique, we can handle both regular and irregular
data access patterns for memory customization.

3.2 Formal Verification of Decoupled
Customizations

Although the decoupled hardware customizations in HeteroCL pro-
vide a multitude of benefits to the compilation/synthesis process
they also create newhurdles for programmers to productively debug
and validate the correctness of the transformed design. Figure 4a
shows a HeteroCL design where the output from one convolution
kernel is streamed to another (typically implemented by a FIFO in
hardware). Such inter-kernel data streaming imposes a RAW depen-
dency on FIFO for the correctness of the final result. We use .to()
(L4) to specify data streaming and .reuse_at() (L4) to create a
reuse buffer for the second convolution at the receiving end of the
stream. One can easily break the design by (only) applying a loop
reordering primitive (L6) to the second convolution of Figure 4a.
As shown in Figure 4b, the write (→) and read (→) accesses of the
streaming FIFO are in-order before applying the reorder primitive.
However, after applying .reorder() to second convolution, the
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write (→) and read (→) access orders of the streaming FIFO dis-
agree as shown in Figure 4b, thereby violating RAW dependency.
A seemingly benign usage of .reorder() breaks the correctness
of the kernel functionality. While software simulation may show
erroneous outputs, it is nontrivial to pinpoint the bug as the loop
nests are implicit in declarative programming. Additionally, if the
compiler incorrectly infers the size of the reuse buffer, the error
may not manifest until the time-consuming hardware emulation is
invoked. This would be particularly hard to debug by a programmer
at the source level. Hence, we argue that there is an urgent need
to develop new techniques and tools to automatically verify the
correctness of the decoupled customizations specified in a modern
DSL like HeteroCL. Specifically, the tool shall verify (1) the validity
of a given sequence of decoupled customization primitives, and (2)
the semantics equivalence between the original and transformed
code after the compiler implements the specified customizations.

Proving the correctness of an optimizing compiler is an extremely
hard task, as illustrated with the CompCert project [12]. Translation
validation [22] is also difficult to deploy. A decoupled approach,
where the validity of primitives is checked quickly by static analysis,
independently of a later and more costly phase of validation of the
generated code, can enable more efficient verification. There is a
large class of programs typically candidates for acceleration that
can be accurately represented using polyhedral compilation [15].
A large class of numerical computations with regular control flow
such as dense linear algebra including tensor computations, image
processing algorithms, n-dimensional convolutions, etc. can be
exactly represented and analyzed in the polyhedral model (the affine
dialect [11]), or over-approximated to it otherwise [3]. This enables
the use of powerful and exact static analyses for data and control-
flow dependences [7], and complex static and dynamic analyses
for advanced program equivalence [2]. Many customizations can
be expressed as loop transformations in the imperative form. It is
therefore possible to formulate validity conditions for HeteroCL
customizations directly in the polyhedral representation enabling
real-time user feedback on the legality of customization during
development. It also paves the way for automated techniques to
generate legal customization sequences, inspired from results on
legal transformation sets for loop-based programs [14].

4 CONCLUSION
In this paper, we have discussed the shortcomings of the HLS pro-
gramming model, which seriously hinder its widespread adoption
in designing high-performance hardware accelerators. We also dis-
cuss how emerging programming model like HeteroCL addresses
those shortcomings and increases the productivity and performance
of hardware accelerators using two realistic case studies. We outline
various research challenges and opportunities that these new pro-
gramming models present. Finally, we conclude with some of our
recent efforts as initial steps to address those research challenges.
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