
GLAIVE: Graph Learning Assisted Instruction
Vulnerability Estimation

Jiajia Jiao12*, Debjit Pal1*, Chenhui Deng1, Zhiru Zhang1
1Cornell University, Ithaca NY 14853, USA; 2Shanghai Maritime University, China.

Email: {jiaojiajia@shmtu.edu.cn}, {debjit.pal, cd574, zhiruz}@cornell.edu

Abstract—Due to the continuous technology scaling and lower-
ing of operating voltages, modern computer systems are highly
vulnerable to soft errors induced by the high-energy particles.
Soft errors can corrupt program outputs leading to silent data
corruption or a Crash. To protect computer systems against
such failures, architects need to precisely and quickly iden-
tify vulnerable program instructions that need to be protected.
Traditional techniques for program reliability estimation either
use expensive and time-consuming fault injection or inaccurate
analytical models to identify the program instructions that need to
be protected against soft errors. In this work, we present GLAIVE,
a graph learning-assisted model for fast, accurate, and trans-
ferable soft-error induced instruction vulnerability estimation.
GLAIVE leverages a synergy between static analysis and data-
driven statistical reasoning to automatically learn signatures of
instruction-level vulnerabilities and their propagation to program
outputs using a fine-grain error propagation information from
the bit-level program graphs of a set of realistic benchmarks.
Our experiments show that the learned knowledge of instruction
vulnerability is transferable to unseen programs. We further
show that GLAIVE can achieve an average 221× speedup and
up to 33.09% lower program vulnerability estimation error as
compared to a baseline fault-injection technique, up to 30.29%
higher vulnerability estimation accuracy, and on average can cover
up to 90.23% vulnerable instructions for a given protection budget
compared to a set of baseline machine learning algorithms.

I. INTRODUCTION

Progressive technology scaling and lowering of operating
voltages have made contemporary and future computer systems
more susceptible to high-energy particles induced soft errors
(i.e., transient hardware faults). The soft errors propagate fol-
lowing the program execution flow and corrupt program output
leading to silent data corruptions (SDCs) or a System Crash.
Hardware-only protection solutions are becoming increasingly
infeasible for on-field deployment due to the on-chip power
and area constraints [4]. Consequently, there is an urgent need
to develop fault-tolerant programs by quickly and accurately
estimating the soft-error induced program vulnerability.

Traditionally, soft error estimation approaches primarily fo-
cus on fault injection (FI) campaigns and analytical models.
FI [10], [12] involves manipulating program states by randomly
injecting one fault per campaign to emulate a transient hardware
fault. The faulty program is allowed to completion to determine
if the injected fault has been Masked or caused an SDC or
a Crash. However, a realistic program contains billions of
instructions necessitating a large number of time-consuming
FI campaigns to achieve statistically significant results. Al-
ternatively, researchers have developed analytical models [5]

*Equal contribution; Work done while Jiajia Jiao was visiting Cornell.

for error propagation for fast identification of vulnerable in-
structions. However, the analytical models are inaccurate and
suffer from scalability. Recently, machine learning-based (ML)
methods [6], [9] are increasingly used to estimate instruction
vulnerability. However, each of these methods suffers from
high accuracy loss, small training datasets, and requires time-
consuming retraining for unseen programs making them in-
feasible for realistic program vulnerability estimation. Conse-
quently, it is crucial than ever before that we address the current
lack of scalable, fast, accurate, and transferable solutions for
instruction vulnerability estimation for realistic applications.

In this work, we develop GLAIVE, a graph learning assisted
model to automatically learn bit-level vulnerabilities and their
propagation patterns to program outputs to compute individual
instruction vulnerability. We find two key factors that deter-
mine the soft error propagation to program outputs – i) the
bit location of a fault occurrence and ii) the instructions in
the control-data flow path from the fault occurrence location
to the program output. Both of these are local structures
around program instructions and since graph learning can learn
neighborhood information from graph-structured data, we use
graph learning to assist instruction vulnerability estimation.
GLAIVE learns fine-grained bit-level error propagation patterns
by using program control-data flow graphs (CDFG) and data-
driven statistical reasoning such as graph learning [7] in a
complementary and synergistic way resulting in a model that is
scalable to large programs containing millions of instructions,
can quickly and accurately estimate instruction vulnerability,
and can be transferred to unseen programs without retraining.
Our primary contributions in this work are as follows:

• To the best of our knowledge, GLAIVE is the first work
for instruction vulnerability estimation that automatically
learns fine-grained bit-level error propagation patterns
using a synergy of static and data-driven graph learning-
based analysis.

• We show with empirical evidence that the bit-level in-
formation is significantly more useful than word-level
information in learning instruction vulnerability and its
propagation patterns to program outputs.

• We demonstrate that GLAIVE achieves up to average
221× speedup with average 90.23% coverage of most vul-
nerable instructions under varying protection budgets over
state-of-the-art FI [12], and up to 30.29% higher accuracy
and on average 33.09% lower program vulnerability error
than a set of baseline ML methods.

Debjit
Highlight

Debjit
Highlight

Debjit
Highlight

II. PRELIMINARIES

A. Fault model

In this work, we consider transient hardware faults due to
single-bit upset in the computational elements of a processor,
e.g., registers, caused by high-energy particles and/or random
noise in circuits. Single-bit upset during application execution
can cause SDC or can crash the program. We do not consider
memories and caches as they are usually protected by error
correction code (ECC) or parity bits in modern designs. Further,
we assume that the processor’s control logic is protected against
faults via control-flow checking. However, the program may
take a faulty legal branch (a legal execution path caused
via a wrongly taken branch due to faults propagating to it).
Specifically, we consider faults that happen in the registers that
store instruction inputs and outputs. Our fault model is aligned
with other state-of-the-art methods [8], [9], [12].

B. Terminologies

Bit vulnerability: The impact of each of the single-bit upsets is
defined as bit vulnerability. Bit vulnerability are of three types
– Crash, SDC, and Masked.
Crash: The raising of an exception or hardware trap followed
by program termination by the OS due to an illegal action (e.g.,
out-of-bound memory access, divide-by-zero) of a program is
defined as a crash.
SDC: An SDC is defined as a mismatch between the output of
a faulty execution and an error-free execution of a program.
Masked: A fault during a program execution is said to be
masked if the output of the execution matches to that of
program’s error-free execution.
Error propagation: Error propagation implies post-activation,
a fault has affected one or more program states via control
and/or data paths during program execution and caused the
execution to fail via a Crash or an SDC.
Vulnerable instruction: An instruction is vulnerable if a bit-
upset on that instruction leads to an SDC or a program crash.
We assume a ranking ordering Crash → SDC → Masked to
select most vulnerable instructions in a program.
Instruction vulnerability: The instruction vulnerability of an
instruction I is defined as a tuple Iv = 〈IC , IS , IM 〉 where IC ,
IS , and IM represents Crash probability, SDC probability, and
Masked probability of an instruction, respectively. If an instruc-
tion I contains a total of NU bit upsets that lead to NC , NS ,
and NM numbers of Crashes, SDC, and Masked, respectively,
then IC = NC/NU , IS = NS/NU , and IM = NM/NU where
IC + IS + IM = 1. Instruction vulnerability imposes a ranking
R among program instructions. The program vulnerability Pv

is defined as the weighted sum of all instruction vulnerabilities
where the weight is faults injected in an instruction expressed
as a fraction of total injected faults in a program. The program
vulnerability error is the sum of absolute errors between
estimated program vulnerability and FI for each of the Crash,
SDC, and Masked.
Top-K vulnerable instruction set: Given a instruction ranking
R, we define top-K vulnerable instruction set SK as the top-K

instructions that need to be protected to ensure correct program
execution under a given protection budget K. We set the size
of SK to argmin(N ×K,Nv) where N=number of program
instructions, Nv=number of vulnerable instructions.
Top-K coverage: The top-K coverage SK

C is defined as the
fraction of total vulnerable instructions that are estimated
correctly by an arbitrary estimation approach i.e., SK

C = |(S∗∩
SK)|/|SK | where S∗ are the ideal top-K vulnerable instructions
estimated accurately by fault injection and SK estimated by
proposed estimation approach.

C. Fault injection tool: gem5-Approxilyzer

gem5-Approxilyzer [12] is an efficient and accurate fault
injection tool to characterize the impact of a transient hardware
fault induced by a single-bit upset on a program execution. It
systematically analyzes all potential error sites in a program to
select a small subset of locations for error injections. gem5-
Approxilyzer employs a combination of error-pruning tech-
niques e.g., predicting program outcome post fault injections,
identifying equivalent classes of faults, to reduce the number of
actual fault injections. In this work, we use gem5-Approxilyzer
to generate large-scale ground truth fault injection data.

D. Graph neural networks (GNNs)

Recent years have seen a surge of interest in GNNs, which
are also known as deep learning on graphs. Different from
traditional graph learning techniques, GNNs are able to in-
corporate both graph topology and node attribute information,
which makes GNNs to achieve state-of-the-art results in various
graph-based tasks, including node classification, link prediction,
and community detection [3], [15].

GNNs aim to encode graph structural information into low-
dimensional vectors that can be utilized for downstream tasks.
Specifically, given a graph G = (V, E) where V and E repre-
sents node and edge set, respectively, let A be a n×n adjacency
matrix where n = |V |, and X be the n×k node attribute matrix
whose ith row represents node attribute information of the ith

node in a k-dimension vector. A GNN model is essentially a
trainable function F such that Y = F (A,X) where Y is the
output n× d embedding matrix, and Yi represents embedding
vector of ith node in d dimension.

Although there are various GNN models, they can be broadly
grouped into two categories – i) transductive and ii) inductive.
A transductive model requires to see the entire graph structure
during training to produce node embedding vectors, which
implies that the model needs to be retrained when the graph
structure changes. In contrast, an inductive model learns a
general rule via learning an aggregation function, which col-
lects attribute information from neighbors without knowing the
whole graph structure. Thus, the trained inductive model can
be directly applied to unseen graphs without retraining. In this
work, we repurpose an inductive GNN model GraphSAGE [7]
to predict top-K vulnerable instructions.

E. Problem formulation

We propose to automatically estimate the instruction vulner-
ability of each of the instructions of a program due to single-

C/C++ program
source code

Bit-level CDFG
construction

Fault injection
campaign

Learing error impacts
via graph learning

Program
binary

Binary object
code

Vulnerability
labels

Feature annotated CDFGs

Dynamic
execution data

Fig. 1: Overall GLAIVE workflow.

Dijk
str

a

Stre
am

clu
ste

r

Jm
ein

t
Asta

r
Sobel

Inve
rse

k2
j

Blac
ks

ch
oles

FFT

Swap
tio

ns

Rad
ix

Ctae
s

LU Avg

Design names

0.00

0.25

0.50

0.75

1.00

Vu
ln

er
ab

ili
ty

di
st

ri
bu

ti
on

Mixed Masked SDC Crash

Fig. 2: Vulnerability distributions of different benchmarks.

bit upsets and induce a ranking to maximize top-K coverage
using graph learning techniques. Specifically, given a program
source code (in C/C++), a set of program inputs, instruction
set architecture (ISA) of the target hardware, and a protection
budget K, our method GLAIVE computes Iv for each of the
instructions and induces a ranking R such that top-K coverage
is maximized and program vulnerability error is minimized.

III. PROPOSED APPROACH: GLAIVE

A. Workflow and insights

We show our proposed workflow in Figure 1. GLAIVE1

relies on two key insights – i) instruction vulnerabilities are
dependent on the bit-level patterns of instructions and ii) failure
of program execution due to error propagation is directly
influenced by control and data dependencies that exist among
various program instructions. Based on these correlations, we
extract bit-level CDFG from program binaries and annotate
each of the CDFGs with additional node features extracted from
bit-level FI campaigns performed on program binaries using
gem5-Approxilyzer. We use bit-level CDFG, annotated node
features, and program execution status (i.e., pass/fail) from the
FI campaign to train our inductive GNN model. Post-training,
we use our model to infer instruction vulnerabilities from bit-
level CDFGs. Our technique can automatically learn instruction
vulnerability and induce a ranking among program instructions
quickly and accurately, thereby avoiding time-consuming FI
campaigns and inaccuracy of analytical methods.

To support our key insights, we performed an initial study
of vulnerability distributions on a set of benchmarks as shown
in Figure 2. We find that up to 87.8% (on average 51.88%)
instructions have mixed vulnerabilities of Masked, SDC, and
Crash based on the bit location of soft error occurrence.
This implies that program output is highly correlated with the
bit location of a soft error rendering word-level information
ineffective for instruction classification. In addition, the relative
location of soft error occurrence (e.g., MSB vs. LSB in a

1GLAIVE is available at https://github.com/cornell-zhang/GLAIVE.

1 load R1,20H(R0)
2 add R3,R1,R2
3 cmp R3,80H
4 jz L1
5 store R3,10H(R4)
6 load R5,10H(R4)

(a)

Inter-instruction dependenceIntra-instruction dependence

1
2 4

3

5

6

DCRR R1

R3

R2

RR

Bit-level graph

Inherit
Edge

dependency

Word to
bit node

conversion

R3,2

k=1

RR

RR

Aggregate
& encode

Aggregate
& encode
k=2

R3,3R1,2

R2,2

DD

DD DC

DD

DM

……

……

B1

B2

Bn

B1

B2

Bn

……

……

DD

12

3

(b)
Fig. 3: Instructions to bit-level CDFG construction
– (a) A machine language code snippet. (b) Bit-level
CDFG for the code of Fig. 3a. DD , DC , DM , RR:
Data/Control/Memory/Register-register dependency. Ri,j : ith

register of the jth instruction. Bi : ith bit of a register. k: kth

iteration of aggregation.

control instruction) can change the overall program execution
path resulting in a Crash due to an illegal operation. Therefore
exploiting bit-level information is a natural choice for accurate
instruction vulnerability estimation.

B. Bit-level graph features and ground truth extraction

In this step, we use a program source code (preferably in
C/C++) and a suite of test vectors as inputs and produce a bit-
level CDFG annotated with additional node features that can
be used for graph learning in the next phase.

We compile a program source code to generate target
architecture specific binary and perform static and dynamic
analysis on the binary. For static analysis we use objdump
to disassemble the binary in assembly instructions. We apply
static analysis on the assembly code to generate instruction-
level CDFG where each node in the CDFG is an instruction
and each directed edge represents a inter-instruction control
(DC) / data (DD) / memory (DM) dependency among a
pair of instructions. In Figure 3b we show the instruction-
level CDFG annotated with instruction line number (marked
as ¬) for the assembly code of Figure 3a. To capture the
intra-instruction dependency patterns of instruction operands,
each instruction node is replaced with a operand-level graph
where each node in the operand-level graph is an instruction
operand and each directed edge represents a data dependence.
For example, in Figure 3b we replace node 2 with R1, R2,
and R3, the operands of add instruction in line 2 (marked
as ­). Although the edges in the instruction-level graph can
capture error propagation across instructions, it fails to capture
bit-level error propagation at the operand level. Hence each
word-level operand in the operand-level graph is bit-blasted and
a directed edge is added from each of the bit-level nodes of a
source operand to each of the bit-level nodes of a destination
operand. For example, in Figure 3b, we bit blast register R3 to
its constituent n bits (B1, . . . , Bn) (marked as ®).

Debjit
Highlight

Debjit
Highlight

TABLE I: CDFG node features – B, I: Bit/instruction-level
feature. §: Register is characterized based on its data content.
¶: Auxiliary features only used for pre and post-processing of
graphs. NA: Not applicable.

Description Type Example RepresentationB I
Op code • • ADD/SUB Boolean vector

Op code type • • Control Boolean
Memory related

Register name • R3 Boolean vectorBit location • 15
Register type§ • int BooleanRegister location • src

Static PC¶ • 0x401a88
NA

Dynamic instance¶ • 22504439
7103000

In order to effectively learn bit-level local patterns of in-
struction operands and its correlation with error propagation
our graph learning framework needs to learn both structural
and contextual information. The structural information, i.e.,
node connectivities is directly available from the graph en-
coded as an adjacency matrix. To learn contextual infor-
mation, i.e., local neighborhood around each of the nodes
of the bit-level CDFG, we use additional node features in-
cluding opcode, opcode type, source/destination
register name, register location, and register
type, and bit location. We have shown example of each
of the node features in Table I.

To supervise embedding generation during graph learning,
we need ground truth, i.e., whether a bit-level fault can cause a
Crash/SDC or is Masked in a program execution. To extract
ground truth, we perform bit-level FI campaign using the
program binary. We use annotated bit-level CDFG and ground
truth in the next phase for graph learning.

C. Graph neural network model

Instruction vulnerability depends on a plethora of node
attributes and local structures of a bit-level CDFG such as the
instruction type, bit location of fault occurrence in the operand
registers of an instruction, fault’s proximity to control/data
paths to propagate to program output to cause either a Crash
or an SDC. Since GNNs can incorporate both local structures
and node attributes in node embedding vectors, we leverage
GNNs to estimate instruction vulnerability. We formulate our
task as a bit node classification problem. Specifically, given a
bit-level CDFG, we label a node 0 if a fault at the node is
Masked, 1 if a fault at the node causes an SDC, 2 if a fault at
the node causes a Crash. We apply GNN model to this ternary
node classification task.

We repurpose GraphSAGE [7], a recent GNN model, to
learn node embedding inductively. Given a graph G = (V,E),
GraphSAGE learns an aggregation function (AGGk(v)) for
node v by collecting information from all neighbors u ∈ N (v)
and produces node embedding hkv in the kth-iteration as follow.

hkv = σ(Wk.CON(hk−1v , AGGk(h
k−1
u ,∀u ∈ N (v)) (1)

where N (v) consists of 1-hop neighbors of node v, CON
is a feature-wise concatenation function, Wk is a learnable

TABLE II: Details of experimental benchmark with dataset
split. C: Control-sensitive benchmarks. D: Data-sensitive
benchmarks. BL: Bit-level datapoints. IL: Instruction-level
datapoints. TT: Training/Testing dataset. V: Validation dataset.

Category Datapoints Benchmark description Dataset
Type/Name BL IL Suite Domain split

(In thousands)

C

Dijkstra 643 2.552 Others Path search

TT
Astar 1214 0.677
Streamcluster 605 2.801 Parsec Computer vision
Jmeint 234 0.866

AXbench
Robotics

Sobel 864 3.465 Image processing
Inversek2j 359 0.943 3-D gaming V

D

Blackscholes 109 0.217 Parsec Finance

TT
Swaptions 632 1.844
FFT 632 1.238 Splash Signal processing
Radix 296 1.121 Sorting
Ctaes 232 0.828 Others Bitcoin core
LU 0.192 0.003 Splash Computing V

weight matrix at the kth-iteration. At k = 0, h0v = xv , where
xv is the initial attribute vector for node v.

Augmented GNN model for bit vulnerability learning: In bit-
level CDFG, the error propagates from one or more previous
instructions to later instructions. This requires a node embed-
ding to primarily aggregate information from preceding nodes
in its neighborhood. The AGG function of vanilla GraphSAGE
considers all neighbor nodes uniformly without explicitly con-
sidering predecessors, thereby considerably limiting its ability
to learn accurate embedding for instruction vulnerabilities. To
address this issue, we augment the vanilla GraphSAGE to
collect and aggregate information from predecessor neighbors
of a node and use it to update node embedding at the kth-
iteration. We augment Eq. (1) as follows.
hkv = σ(Wk.CON(hk−1v , AGGPRk (hk−1u ,∀u ∈ PR(v)) (2)

where PR(v) represents the set of predecessor nodes of node
v. We use a MEAN aggregator of Eq. (3) as suggested in [7].

AGGPRk (hk−1u ,∀u ∈ PR(v)) = 1

|PR(v)|
∑

i∈PR(v)

hk−1i (3)

This modification captures directionality of error propagation
and improves instruction vulnerability estimation accuracy. For
example, in Figure 3b at k = 1, to compute node embedding
of Orange nodes, we aggregate and encode information from
its predecessors, i.e., Blue nodes (marked as ®).

D. Learning instruction and program vulnerabilities

GLAIVE uses bit vulnerability distribution from the aug-
mented GNN model to compute instruction vulnerability and
program vulnerability as defined in Section II-B. We use
instruction vulnerability ranking to select top-K vulnerable
instructions for a given protection budget K.

IV. EXPERIMENTAL SETUP

Benchmarks: We use 10 benchmarks to construct our training
and testing datasets, as well as 2 benchmarks for validation
datasets from Parsec, Splash-2 [2], and AXBench [13] as shown
in Table II. The benchmarks are classified into two categories:
data-sensitive and control-sensitive. For each category of six
benchmarks, we train GNN models on four out of five bench-
marks leaving one program as a test set in a round-robin ‘n-1’

training/test regime, and an extra unseen benchmark (control-
sensitive inversek2j or data-sensitive LU) for validation to
verify GLAIVE’s transferablity. We compile each benchmark
using g++ 5.0 targeting x86 architecture. For fault injection
and ground truth generation we use gem5-Approxilyzer [12]
in full-system mode using a Ubuntu-18.04 system image. All
experiments were run on an Intel Xeon Gold 6242 CPU 16-core
processor running at 2.8 GHz with 383 GB RAM.

ML algorithms: We compare GLAIVE with a set of other
ML algorithms in terms of accuracy, speed, and transferability.
Specifically, we use Multi-Layer Perceptron (MLP-BIT) clas-
sifier at bit-level, and Random Forest (RF-INST) and Support
Vector Machine (SVM-INST) regressors at instruction-level.
GLAIVE and MLP-BIT use the same bit-level node attributes
and RF-INST uses instruction-level attributes of Table I. We use
Sklearn with default parameters for baseline ML algorithms.

Metrics and learning parameters: We use standard accuracy
score for bit-level classification whereas for instruction-level
regression we use top-K coverage and program vulnerability
loss to measure its performance. Accuracy can take value from
0 to 1 while values closer to 1 mean higher accuracy. For
GLAIVE, we use 10 epochs, a batch size of 256, a learning
rate of 0.001 with a hidden dimension of 128, cross entropy as
loss function, and rectified linear unit (ReLU) as the activation
function in a 3-layer GNN with neighbour sample size of 50.

V. EXPERIMENTAL RESULTS

A. Comparison of accuracy

In this experiment, we compare the fault estimation quality
of GLAIVE to the MLP-BIT algorithm in terms of accuracy.
We show accuracy for both GLAIVE and MLP-BIT on each of
the benchmarks in Table III. GLAIVE achieves up to (0.684 -
0.525)/0.525 × 100% = 30.29% more accuracy (average (0.807
- 0.741)/0.741 × 100% = 8.91%) than MLP-BIT for data-
sensitive benchmarks. The learned model achieves high accu-
racy on unseen programs indicating that the learned knowledge
of bit-level vulnerability is transferable to unseen programs.

Additionally, GLAIVE and MLP-BIT achieve a comparable
accuracy, up to 99% (average 96%) for control-sensitive bench-
marks. We identify three key factors for both GLAIVE and
MLP-BIT achieving high accuracy in control-sensitive bench-
marks. First, control instructions have higher fault resiliency
intrinsically. For example, consider cmp R1, R2 where R1,
R2 are 8-bit wide general-purpose registers and contain 8’b41
and 8’b20, respectively. A single-bit upset at the ith bit
(i ≤ 5) in R1 will keep the output of faulty cmp same as that
of fault-free cmp output. This renders many edges in bit-level
CDFG useless for GLAIVE to learn neighborhood information,
eventually reducing GLAIVE to MLP-BIT. Second, our fault
model does not consider faults in the control registers. Finally,
due to the limited number of control instructions as compared
to a rich set of arithmetic/logic instructions, it is easier for both
methods to learn different error propagation patterns.

These experiments show that GLAIVE can effectively learn
the bit-level vulnerability and the learned knowledge on vul-
nerability is transferable to unseen programs.

Data-sensitive benchmarks Control-sensitive benchmarks
Name GLAIVE MBT Name GLAIVE MBT

Blackscholes 0.92 0.91 Dijkstra 0.97 0.97
FFT 0.73 0.73 Streamcluster 0.98 0.99

Swaptions 0.89 0.87 Jmeint 0.95 0.95
Radix 0.86 0.75 Astar 0.99 0.99
Ctaes 0.68 0.53 Sobel 0.96 0.96
LU 0.77 0.68 Inversek2j 0.91 0.91

TABLE III: Accuracy comparison of GLAIVE and MLP-
BIT – MBT: MLP-BIT.
B. Comparison of top-K coverage

In this experiment we compare effectiveness of GLAIVE and
other ML algorithms in estimating top-K coverage for a given
protection budget K. We vary K from 5%-100% in steps of 5%
and measure top-K coverage for both bit-level and instruction-
level ML algorithms on all benchmarks. For brevity, we show
average top-K coverage of all control-sensitive benchmarks and
top-K coverage of two representative data-sensitive benchmarks
(Radix and Swaptions) in Figure 4.

In Figure 4a and 4b we observe that instruction-level algo-
rithms achieve lower top-K coverage than bit-level algorithms,
particularly with K value less than 70%. This implies that
the instruction-level algorithms fail to learn bit-vulnerability
and consequently failed to predict most vulnerable instructions.
On the other hand, both GLAIVE and MLP-BIT learned
fine-grain bit vulnerability and achieved higher average top-
K coverage than instruction-level algorithms. This is consistent
with the higher accuracy of GLAIVE as shown in Section V-A.
GLAIVE achieves up to 4.89% (average 1.4%) and up to 8.03%
(average 1.08%) higher top-K coverage in Swaptions and Radix
respectively, than MLP-BIT. For control-sensitive benchmarks,
GLAIVE and MLP-BIT achieve similar, on average 93% top-K
coverage as shown in Figure 4c. GLAIVE achieves on average
90.23% top-K coverage for all benchmarks for varying protec-
tion budgets which is up to 21.3% and 23.18% higher than the
top-K coverage of RF-INST and SVM-INST respectively.

This experiment shows that GLAIVE is effective in identify-
ing vulnerable instructions compared to other ML algorithms.

C. Comparison of program vulnerability error

In this experiment, we compare the program vulnerability
error for each of the ML algorithms as compared to baseline
FI. We observe from Figure 5a that for data-sensitive bench-
marks, GLAIVE achieves on average 26.24%, 33.09%, and
16.78% lower error than RF-INST, SVM-INST, and MLP-BIT
respectively. Additionally, for control-sensitive benchmarks,
GLAIVE achieves on average 1% and 12.7% lower error than
RF-INST and SVM-INST respectively, and less than 1% more
error compared to MLP-BIT.

This experiment shows that GLAIVE is highly effective in
accurately estimating program vulnerability compared to other
ML algorithms.

D. Comparison of runtime

In this experiment, we compare the runtime of the instruction
vulnerability estimation of GLAIVE to that of other ML algo-
rithms considering FI as a baseline. Due to the large difference
in the FI runtime and ML-based inference runtime, we show

Debjit
Highlight

Debjit
Highlight

0 10 20 30 40 50 60 70 80 90 100
K values (in %)

0.0

0.2

0.4

0.6

0.8

1.0

Av
er

ga
e

to
p-

K
co

ve
ra

ge

GLAIVE MLP-BIT SVM-INST RF-INST

(a) Radix (data-sensitive benchmark).

0 10 20 30 40 50 60 70 80 90 100
K values (in %)

0.0

0.2

0.4

0.6

0.8

1.0

Av
er

ga
e

to
p-

K
co

ve
ra

ge

GLAIVE MLP-BIT SVM-INST RF-INST

(b) Swaptions (data-sensitive benchmark).

0 10 20 30 40 50 60 70 80 90 100
K values (in %)

0.0

0.2

0.4

0.6

0.8

1.0

Av
er

ga
e

to
p-

K
co

ve
ra

ge

GLAIVE MLP-BIT SVM-INST RF-INST

(c) Control-sensitive benchmarks.
Fig. 4: Comparison of top-K coverage for various ML algorithms for varying protection budget K .

Data-sensitive benchmarks Control-sensitive benchmarks
Name M1 M2 M3 M4 Name M1 M2 M3 M4
D1 0.079 0.074 0.125 0.204 C1 0.053 0.052 0.213 0.070
D2 0.343 0.441 0.304 0.349 C2 0.033 0.001 0.127 0.036
D3 0.093 0.095 0.680 0.614 C3 0.098 0.093 0.258 0.083
D4 0.079 0.260 0.402 0.298 C4 0.019 0.015 0.239 0.100
D5 0.550 0.922 0.985 0.785 C5 0.082 0.081 0.173 0.058
D6 0.031 0.388 0.663 0.498 C6 0.181 0.180 0.217 0.157

(a) Program vulnerability error comparison

Data-sensitive benchmarks Control-sensitive benchmarks
Name M1 M2 M3 M4 Name M1 M2 M3 M4
D1 2.22 3.22 3.48 3.48 C1 2.3 2.5 2.8 2.8
D2 2.23 2.35 2.65 2.65 C2 2.27 2.45 2.75 2.75
D3 1.96 2.16 2.46 2.46 C3 2.45 2.79 3.09 3.09
D4 2.31 2.39 2.68 2.68 C4 2.46 2.67 2.97 2.97
D5 2.47 3.01 3.31 3.31 C5 2.48 2.71 3.01 3.01
D6 1.4 1.47 1.7 1.7 C6 2.38 2.69 2.99 2.99

(b) Instruction vulnerability estimation speedup comparison
Fig. 5: Comparison of GLAIVE and each of the ML algorithms for different benchmarks in terms of key metrics – M1:
GLAIVE. M2: MLP-BIT. M3: SVM-INST. M4: RF-INST. D1: Blacksholes. D2: FFT. D3: Swaptions. D4: Radix. D5: Ctaes.
D6: LU. C1: Dijkstra. C2: Streamcluster. C3: Jmeint. C4: Astar. C5: Sobel. C6: Inversek2j.

the speedup in the logarithmic scale in Figure 5b. We observe
that ML based algorithms can achieve up to three orders of
magnitude of a speedup as compared to baseline FI (even with
16-way parallel execution). Additionally, GLAIVE is slower
than MLP-BIT as GLAIVE needs more computations due to its
complex graph embedding structure. Since GLAIVE considers
a larger bit-level dataset, it is up to one order of magnitude
slower than RF-INST and SVM-INST. However, GLAIVE still
achieves up to 221× speedup over accelerated FI.

This experiment shows that GLAIVE is computationally
efficient for vulnerability estimation as compared to FI.

VI. RELATED WORK AND CONCLUSION

The literature for program resiliency can be classified into
fault injection, analytical models, and ML-based approaches.

In [10] authors proposed an accelerated FI using a multi-
level processor simulator. gem5-Approxilyzer [12] reduces FI
complexity by identifying equivalent fault groups. However, FI
methods are accurate but are extremely time-consuming.

To quickly estimate the effect of soft-errors on programs,
various analytical models were proposed. CIAP [5] uses a com-
bination of static analysis and runtime monitoring to identify
critical instructions. Trident [8] constructs a three-level model
to capture error propagation via static control, memory, and
data dependency. However analytical models are inaccurate.

To leverage high accuracy of FI and high speed of analytical
models, ML-based methods are increasingly used to identify
vulnerable instructions. SVM models are used to predict critical
instructions via partial FI [9]. Random Forest regressor is used
to estimate the SDC probability per instructions [6]. However,
there has not been an effort to automatically learn instruction
vulnerability using graph-structured data.

Recently, GNN models have been applied to a plethora of
difficult EDA problems. Ustun et al. [11] have developed a
GNN model to automatically learn operation pattern mapping
for high-level synthesis. In [1] authors proposed a GCN model
to extract structural features from the gate-level netlist and
predict soft error propagation metrics. Zhang et al. proposed

a GPU-accelerated GNN model for fast, accurate, and transfer-
able vector-based average power estimation [14].

In conclusion, we have presented GLAIVE, a GNN-based
model to automatically learn instruction vulnerability patterns.
Our empirical analysis showed that GLAIVE is accurate, scal-
able, fast, and transferable compared to the state-of-the-art FI,
ML, and analytical methods. In future, we plan to improve
GLAIVE to estimate instruction vulnerability in out-of-order
processors, dynamic scheduling, and hybrid branch prediction.

REFERENCES

[1] A. Balakrishnan, T. Lange, M. Glorieux, D. Alexandrescu, and M. Jeni-
hhin. Composing graph theory and deep neural networks to evaluate seu
type soft error effects. MECO, 2020.

[2] C. Bienia. Benchmarking Modern Multiprocessors. PhD thesis, Princeton
University, USA, 2011.

[3] H. Cai, V. W. Zheng, and K. C. Chang. A comprehensive survey of graph
embedding: Problems, techniques, and applications. IEEE Transactions
on Knowledge and Data Engineering, 2018.

[4] E. Cheng, Daniel-Mueller-Gritschneder, J. Abraham, P. Bose, A. Buyuk-
tosunoglu, and et al. Cross-layer resilience: Challenges, insights, and the
road ahead. DAC, 2019.

[5] J. Cong and K. Gururaj. Assuring application-level correctness against
soft errors. ICCAD, 2011.

[6] J. Gu, W. Zheng, Y. Zhuang, and Q. Zhang. Vulnerability analysis of
instructions for sdc-causing error detection. IEEE Access, 2019.

[7] W. L. Hamilton, R. Ying, and J. Leskovec. Inductive representation
learning on large graphs. NIPS, 2017.

[8] G. Li, K. Pattabiraman, S. K. S. Hari, M. Sullivan, and T. Tsai. Modeling
soft-error propagation in programs. DSN, 2018.

[9] L. Liu, L. Ci, W. Liu, and H. Yang. Identifying sdc-causing instructions
based on random forests algorithm. TIIS, 2019.

[10] D. Mueller-Gritschneder, U. Sharif, and U. Schlichtmann. Performance
and accuracy in soft-error resilience evaluation using the multi-level
processor simulator etiss-ml. ICCAD, 2018.

[11] E. Ustun, C. Deng, D. Pal, Z. Li, and Z. Zhang. Accurate operation delay
prediction for FPGA HLS using graph neural networks. ICCAD, 2020.

[12] R. Venkatagiri, K. Ahmed, A. Mahmoud, S. Misailovic, D. Marinov,
C. W. Fletcher, and S. V. Adve. gem5-approxilyzer: An open-source tool
for application-level soft error analysis. DSN, 2019.

[13] A. Yazdanbakhsh, D. Mahajan, H. Esmaeilzadeh, and P. Lotfi-Kamran.
Axbench: A multiplatform benchmark suite for approximate computing.
IEEE Design Test, 2017.

[14] Y. Zhang, H. Ren, and B. Khailany. Rannite: Graph neural network
inference for transferable power estimation. DAC, 2020.

[15] J. Zhou, G. Cui, Z. Zhang, C. Yang, Z. Liu, and M. Sun. Graph neural
networks: A review of methods and applications. CoRR, 2018.

Debjit
Highlight

Debjit
Highlight

Debjit
Highlight

