
Challenges and Opportunities of ESL Design Automation
Zhiru Zhang

School of Electrical and Computer Engineering

Cornell University

zhiruz@cornell.edu

Deming Chen

Department of Electrical and Computer Engineering
University of Illinois, Urbana-Champaign

dchen@illinois.edu

ABSTRACT

System-level synthesis compiles a complex application in a system-
level description (such as SystemC) into a set of tasks to be executed
on various processors, or a set of functions to be implemented in
customized logic, as well as the communication protocols and the
interface logic connecting different modules. Such capabilities are
part of the so-called electronic system-level (ESL) design
automation. ESL design automation has caught much attention from
the industry recently. In general, it has been shown that the code
density and simulation time can be improved by 10X and 100X,
respectively, when moved to ESL from RTL. Such an improvement in
efficiency is much needed for design in the deep submicron era. This
paper identifies a set of key challenges in ESL design automation
with major focus on high-level synthesis (HLS). We shall discuss
existing and potential solutions to these challenges and outline
research opportunities in the evolution of ESL design automation.

1. Introduction
The rapid increase of complexity in System-on-a-Chip (SoC) design
urges the design community to raise the level of abstraction beyond
RTL. Electronic system-level (ESL) design automation has been
widely identified as the next productivity boost for the
semiconductor industry. However, the transition to ESL design will
not be as well accepted as the transition to RTL in the early 1990s
without robust analysis and synthesis technologies that help
designers quickly converge to high-quality architectures and
automatically generate highly optimized implementations.

High-level synthesis (HLS) [8], in particular, is a key cornerstone of
ESL design automation. It enables automatic generation of optimized
hardware from high-level programming languages and allows
effective exploration of software and hardware architectures. Given
its huge potential value, numerous efforts on research and
development of HLS tools have been conducted in both academia
and industry in the past three decades [19]. In the 1980s and the
1990s, the success of older-generation tools was fairly limited in
practice. Questionable input language selection (e.g., HDL-based)
and inferior quality of results (QoR) to manual designs are among
most notable reasons for the failure. Since early 2000s, the newer
generation of C-based synthesis solutions is gaining much more
attractions in the market. The offerings of high-level programming
languages to manage the daunting design complexity and the
improved QoR are among the major factors that incentivize the
industry adoption. Nevertheless, HLS is still an evolving technology.
Many synthesis and optimization problems need to be addressed in
its way to becoming an imperative step in the mainstream design
flow.

In this paper we identify a number of key challenges and research
opportunities for ESL design automation (including modeling,
analysis and synthesis) with a major focus on HLS. The remainder of
our paper is organized as follows: Section 2 discusses the modeling
dilemma with the disconnection between high-level simulation

model and the synthesizable model. Section 3 presents challenges
and promising directions in high-level memory synthesis, power
optimization and variation-aware synthesis. Section 4 provides the
concluding remarks.

2. Modeling Challenges
Some of the most widespread uses of ESL models and tools in
industry today are for early embedded software development,
architecture modeling, design space exploration, and rapid
prototyping. In particular, transaction-level modeling (TLM) with
SystemC [11] has become a very popular approach to describing
virtual software/hardware platforms which model large-scale SoCs
with multiple microprocessor cores, software stacks, hardware
accelerators, hierarchical bus networks, and many other digital and
analog IP blocks.

HLS fits in nicely in the context of architecture exploration and rapid
prototyping. In architecture exploration, HLS tools can provide quick
estimations and analyses of performance, area and power of the
synthesized modules. This allows system architects explore different
architectures and select best one among them without going through
the time-consuming manual process to implement RTLs. In rapid
prototyping, HLS tools also provide automated flows to map the ESL
models to an FPGA-based system for system emulation, functional
validation and real-time debugging.

Note that the TLM models for virtual platform modeling are
typically written with a great deal of emphasis on code reusability
and readability and are heavily optimized for simulation speed.
Hence C++/SystemC-based TLM models often make use of dynamic
memory management, complex pointer maps, and advanced object-
oriented programming features such as run-time polymorphism (e.g.,
virtual member functions).

However, not all of these features are efficient or even feasible for
hardware synthesis1. Due to the static nature of hardware, the usage
of pointers is typically restricted (to compile-time determinable ones)
and dynamic memory allocation/deallocation is generally forbidden.
Therefore, the conversion of simulation-oriented virtual platform
specification into a synthesizable specification remains to be a
manual process as illustrated in Figure 1.

Designers need to ensure that the synthesizable code is functionally
equivalent to the original version. They also need to maintain two
sets of ESL models and keep them in sync.

It would be ideal for the designers to maintain a single synthesizable
model as the golden reference for both simulation and synthesis. To
reach closer to this goal in the near future, the ESL community shall
make progress in the following areas:

1) The synthesis tool shall continue to improve to handle a broader
class of language constructs. It is particularly desirable to support
dynamic behaviors in certain restricted forms. For instance, the

1 The HLS synthesizable subset remains vendor-specific for the time being.

Pinapa front end with hybrid parsing and elaboration capability [18]
demonstrates one promising method to extract the static SystemC
binding and connectivity from the seemingly dynamic specifications.
Similar approaches can be taken to extend and enhance the
predominant static analysis methods.

2) The design community and synthesis tool providers shall
converge to a standard synthesizable subset. On top of the standard,
industry and academia shall collaborate to make available a set of
reusable templates and libraries as references to enable efficient
synthesis of common functionalities and establish common design
patterns in important application domains.

3) The synthesizable reference model should contain as few
microachitecture and implementation details as possible. Too much
target-dependent details would slow down the simulation and
compromise the retargetability of the ESL model. This requires the
synthesis tools to better support the separation of the target platform
description and design constraints from the source code. In addition,
the out-of-box QoR2 is becoming increasingly important to minimize
manual changes to convert unstructured software code into
synthesis-friendly specifications.

Reference code for

simulation

Manual conversion and

restructuring

Synthesizable code

= ?

Software-centric

Optimized for

simulation

Hardware-centric

optimized for

implementation

Figure 1: Manual code modification for hardware synthesis.

We would like to mention that although retargetability is important
for modeling in the sense that the functional design can be easily
remapped to a different technology or a different device, high-level
synthesis and optimization tasks have to consider specific
architecture characteristics and constraints in order to achieve high
quality of results. We introduce these details next.

3. Directions in Synthesis and Optimization
In this section we address three important HLS topics and discuss the
challenges and opportunities in each area. Specifically, Section 3.1
explains the importance of advanced synthesis for both on-chip and
off-chip memories; Section 3.2 stresses the need for effective low-
power analysis and optimization at the high level; Section 3.3
suggests new research directions on variation-aware HLS.

3.1 Advanced Memory Synthesis
3.1.1 On-Chip Memories
Modern SoC designs use over 50% of the area on embedded
memories that serve as FIFOs, line buffers, look-up tables, scratch-
pads, and caches to store data for the microprocessors and
computational accelerators. These on-chip memories also contribute
50-70% of the total power dissipation. Undoubtedly, the choice of
memory architecture at the high level is critical to the quality of the
final design.

Interestingly, the majority of HLS research has been primarily
focusing on reducing the schedule latency under resource constraints
in terms of functional unit/register count or vice versa. The memory
optimization, however, is often an afterthought. As indicated by

2 Out-of-box QoR means the QoR produced by the tool automatically without

any or much of the user intervention via pragmas, directives, or additional
tool-specific (not algorithm-specific) code changes.

STMicroelectronics in [8], memory accesses appear to them as the
most limiting factor for HLS exploration and optimization. Many
existing solutions rely on simple method to create memory blocks
based on bit width and size of data arrays specified in the source
code. As a result, the limited memory ports often become the
performance bottleneck. Furthermore, using oversized memory
blocks would create wiring detours and routability problem.

Recently, an automatic memory partitioning technique is proposed in
[7]. It honors the given throughput constraints and analyzes the data
access patterns to derive the best possible memory partitioning for
high performance as well as low power. Other promising research
topics along the same direction include automatic memory merging,
reshaping, data reordering, etc.

3.1.2 Off-Chip Memories
The intelligent synthesis support of external off-chip memories is
equally important, especially with the high-definition trend and the
rise of reconfigurable computing:

1) Highly data-intensive video/image processing applications often
require multiple frames of data be stored on DDR SDRAMs. Fast
and efficient direct memory access logic needs to be in place to
achieve high performance.

2) Recent advances in FPGA-based high-performance reconfigurable
computing [10] also require efficient access to the gigabytes external
memories shared by the host processor and the FPGA accelerator.

As mentioned in [20], most of the existing HLS solutions currently
lack efficient support of the memory hierarchy and sufficient
abstraction of the external memory accesses. As a result, the
programmers are exposed to the low-level details of bus interfaces
and memory controllers. They must be familiar with the bus
bandwidth and burst length and substantially modify the original
design source code. Clearly, such design practice is out of the
comfort zone for most software developers and algorithm designers.

Hence it is highly preferable to have synthesis tools hide explicit
external memory transfers as much as possible from programmers.
This would require the support of efficient memory hierarchies
including automatic caching and prefetching. The CHiMPS project
[22] is one of the promising attempts in this area. The proposed C-to-
FPGA compilation flow generates multiple distributed caches used
by multiple concurrent processing elements. The compiler utilizes
dependence and alias analysis to determine data clustering for higher
degree of parallelization.

3.2 Effective Power Analysis and Optimization
Low-power design requires users assess and optimize the system
architecture as early as possible in the design flow [21]. Trying to
optimize for low power at RT level is important but likely has much
less impact than high-level decisions such as hardware/software
partitioning, bus width sizing, and pipelining. However, estimating
power accurately at the high level remains to be very challenging. A
great deal of low-level implementation details need to be considered
to estimate the power consumption in a relatively accurate manner.
For instance:

1) Sophisticated activity propagation across registers and internal
signals is required to obtain high correlation with the real circuit
switching behavior.
2) Clock tree modeling is critical to capture the clock power. The
impact of extensive clock gating must be taken into account as well.
3) Physical prototyping is needed to bypass the actual
implementation and estimate the silicon area and interconnect power.
4) The increasing usage of multi-voltage islands, dynamic voltage
frequency scaling and power gating add further complexities to the
power equation.

Currently, most designers (esp. in ASIC world) are still relying on
time-consuming gate-level power analysis flows to obtain highly
accurate power. It typically takes days to measure the power

consumption in the netlist back-annotated with VCD waveforms and
SPEF files (after parasitic extractors).

Needless to say, this is a great time for research and development on
high-level and system-level power analysis. Advances in this area
have the potential to significantly reduce the turnaround time in
achieving the power closure.

The technique proposed in [3] is one of the promising attempts along
this direction targeting FPGA architectures. In this work we
concentrated on resource allocation and binding tasks because they
are the key steps to determine the interconnections during high-level
synthesis. To fully validate our methodology and result, we target a
real FPGA architecture  Altera Stratix architecture, which includes
generic logic elements, DSP cores, and different types of memories,
etc. We design a high-level power estimator for this architecture and
verify that its power estimation result is very close to that reported
by Altera Quartus II PowerPlay Analyzer. We form, propagate and
prune binding/allocation solution points guided by our power and
delay estimation. During this process, we account for interconnects
and multiplexers to control their power consumption and delay.
Eventually, we generate a design solution curve, which can provide
ideal solution points with low power and high performance.

Table 1: Area estimation functions for common operations on
Altera Stratix FPGAs (N: bitwidth; K: # of input operands) [3].

Operation Resource Usage

Add/Subtract LE N

Bitwise and/or/xor LE N

Compare () LE round0.67*N+0.62

Shift (with variable
shift distance)

LE Round(0.045*N2+3.76*N–8.22)

Multiply DSP9x9
N  18: N/9

N  36: N/18

Multiplexer LE N*round(0.67*K)

Since we target Stratix FPGA device families, we need to deal with
Stratix-specific features in our high-level power estimation. The area
estimation functions for the multiplexers and several commonly
occurring arithmetic units are listed in Table 1. Note that due to the
high regularity of the FPGA device, the final resource usages of most
operations are very predictable and their estimation functions can be
expressed in closed-form equations.

For switching activity calculation, we extend a method published in
[1], which performs simulation just once at the beginning at the
behavior level and computes switching activities for any legal
binding without repeating simulations afterwards. We add loop
support in the method. Based on this area and switching activity
estimation, dynamic power of various types of resources can be
estimated which will guide the low power optimization procedure.
We also model the delay characteristics for these resources. We then
are able to construct path delays by modeling the details of the
datapaths during the design space exploration process.

Overall, our high-level power estimator is only 8.7% away from a
commercial gate-level FPGA power estimator. Comparing to a
traditional graph coloring-based register binding algorithm, our
algorithm is 32% better on power and 16% better on Fmax after
placement and routing. This demonstrates the effectiveness of HLS
for power reduction and performance improvement. It also shows
that power/delay modeling needs to pay attention to architecture-
specific features. Good modeling strategies can offer great accuracy
without paying a large penalty in terms of runtime.

In another work, we performed HLS targeting glitch power reduction
[9]. Glitches (i.e. spurious signal transitions) are major sources of
dynamic power consumption. We target FPGAs in this study as well.
Our binding algorithm employs a glitch-aware dynamic power
estimation technique derived from the FPGA technology mapper in

[4], which is utilized to reach to lower-level implementations. We
design a cost function that is able to optimize both switching activity
and path balancing to reduce glitches. High-level binding results are
converted to VHDL, and synthesized with Altera Quartus II
software, targeting the Cyclone II FPGA architecture. Power
characteristics are evaluated with the Altera Power-Play Power
Analyzer. The results of our algorithm are compared to LOPASS [2],
a state-of-the-art low-power high level synthesis algorithm for
FPGAs. Experimental results show that our algorithm, on average,
reduces toggle rate by 22% and area by 9%, resulting in a decrease
in dynamic power consumption of 19%. Figure 2 shows the details.
α = 0.5 indicates that the algorithm optimizes both switching
activities and path balancing (through balancing multiplexers in the
datapath), where α = 1 only optimizes switching activity. We
observe that α = 0.5 produces reductions for all benchmarks,
averaging 21.9%.

Figure 2: Average toggle rate reduction in [9].

It is worth noting that many powerful high-level low-power
optimizations can be applied very effectively without the need of the
most accurate estimation. For example, the concept of observability
don't-care (ODC) is recently generalized at the behavior level in [5]
to guide the compilation and synthesis to identify and avoid (via
gating or shutdown) unnecessary computations, memory accesses
and data transfers. RTL-based analysis can hardly derive such high-
level ODC information completely and efficiently. Moreover,
behavior-level ODC can be more powerful when combined with
HLS optimization.

*

A

B

*

A

B

<

(a)

(b)

<

M
U

X

M
U

X

Figure 3: Scheduling impact on clock gating.

Figure 3 illustrates the impact of scheduling on clock gating with a
small example. In Figure 3 (a), the comparison is scheduled after the
multiplication and none of the registers can be clock gated. In Figure
3 (b), the comparison is scheduled before the multiplication. As a
result, when the comparison result is false and only value ‘A’ is
observable after the multiplexer selection, two pipeline registers can
be gated and the activity of the multiplier can be saved.

In [6], behavior-level ODC is considered in an intelligent soft-
constrained scheduling algorithm. Unlike hard constraints, soft
constraints are treated as design preferences and will be honored
whenever possible but not necessarily. Specifying soft constraints
would offer better design space characterization. Experiments show

that an average of 33.9% reduction in total power can be achieved
with close-to-optimal solutions on many real-life designs.

3.3 Variation-Aware High-Level Synthesis
Aggressive technology scaling to the deep sub-micron realm has
resulted in significant variations in fabricated device parameters. A
new era of statistical design techniques has begun to emerge where
circuit parameters such as delay and power are no longer modeled as
deterministic values, but are represented as probability density
functions. These statistical design techniques are leading to
reclamation of lost performance and yield that has been occurring
when using deterministic design techniques.

The shift to probabilistic design methodologies has produced a
number of gate-level variation-aware optimization techniques
[12][15]. While progress at the gate-level is encouraging, the large
productivity gains available in high-level synthesis make it attractive
and necessary to address the issue of process variations at a higher
level of abstraction. Reference [13] offers a simultaneous scheduling,
binding, and allocation algorithm based on simulated annealing. The
simulated annealing algorithm seeks to reduce the overall latency
while meeting a performance yield requirement. However, the
algorithm does not consider multiplexer use or interconnect delay,
both of which can significantly contribute to the clock period of the
unit. Reference [14] proposes a timing variation-aware HLS
algorithm which improves resource sharing. While the algorithm is
effective, it ignores multiplexers and interconnects, and also relies on
the assumption that functional units are independent of each other in
its yield calculation.

Recently, we proposed a novel variation-aware simultaneous binding
and module selection algorithm, named FastYield, which maximizes
the performance yield of the resulting circuit [17]. We connect our
synthesis engine to the layout closely, so layout information can be
accurately back-annotated to the synthesis and introduce useful
synthesis transformations. Synthesis and layout are iterated until the
performance gain is maximized. We consider registers, multiplexers,
functional units, interconnects, and spatially correlated process
variations. A timing-driven, simulated annealing-based, statistical
floorplanner that considers interconnect delay and spatial correlation
between all units in the design is used to provide layout information
to feedback to the HLS engine. On average, FastYield achieves an
85% performance yield clock period that is 14.5% smaller, and a
performance yield gain of 78.9%, when compared to a variation-
unaware and layout-unaware algorithm. This result shows that by
performing statistical layout-driven synthesis, substantial gains in
performance yield can be made during HLS. A follow-up work is
presented in [16], where we tackle the problem of performance yield
optimization during the scheduling task of high-level synthesis. We
formulate the problem of performance yield optimization for
scheduling as an integer linear programming problem (ILP) and offer
the following contributions: 1) a totally unimodular ILP formulation
for performance yield maximization and 2) a variation-aware and
layout-driven iterative algorithm for performance yield
improvement. Experimental results show that we can obtain
significant gain in performance yield compared to FastYield.

Future work includes simultaneous register and functional unit
binding considering process variation and the consideration of other
variation sources such as voltage and temperature fluctuations.
Challenges remain for controlling the overall runtime and avoiding
conflicts between HLS optimization and layout optimization.

4. Concluding Remarks

This paper identified a set of critical needs and key challenges in
ESL design automation with special focus on high-level synthesis
(HLS)3. Specifically, we discussed the hardware synthesis challenges

3 Note that we have not covered several other important topics such as

verification and IP integration for ESL in this article.

implied by software-centric ESL models and those required for
optimizations of memory hierarchy, low power and process
variations. These needs and challenges have created many new and
important research directions as well as business opportunities in the
EDA community. We hope that this paper would help to stimulate
more research and activities in these areas.

REFERENCES
[1] A. Bogliolo, et. al, “Efficient Switching Activity Computation During

High-Level Synthesis of Control-Dominated Designs,” Intl. Symposium
on Low Power Electronics and Design, Aug. 1999.

[2] D. Chen, J. Cong, Y. Fan, and L. Wan, “LOPASS: A Low-Power
Architectural Synthesis System for FPGAs with Interconnect Estimation
and Optimization,” IEEE Transactions on Very Large Scale Integration
Systems, vol. 18(4), pp. 564-577, Apr. 2010.

[3] D. Chen, J. Cong, Y. Fan and Z. Zhang, “High-Level Power Estimation
and Low-Power Design Space Exploration for FPGAs,” IEEE/ACM
Asia and South Pacific Design Automation Conference, Jan. 2007.

[4] L. Cheng, D. Chen, and D.F. Wong, “GlitchMap: An FPGA Technology
Mapper for Low Power Considering Glitches,” IEEE/ACM Design
Automation Conference, Jun. 2007.

[5] J. Cong, B. Liu, and Z. Zhang, “Behavior-Level Observability Don't-
Cares and Application to Low-Power Behavioral Synthesis,” Intl.
Symposium on Low Power Electronics & Design, pp. 139-144, Aug.
2009.

[6] J. Cong, B. Liu, and Z. Zhang, “Scheduling with Soft Constraints,” Intl.
Conference on CAD, Nov. 2009.

[7] J. Cong, W. Jiang, B. Liu, and Y. Zou, “Automatic Memory Partitioning
and Scheduling for Throughput and Power Optimization,” Intl.
Conference on CAD, Nov. 2009.

[8] P. Coussy and A. Morawiec, eds., “High-Level Synthesis: From
Algorithm to Digital Circuit,” Springer, 2008.

[9] S. Cromar, J. Lee, and D. Chen, “FPGA-Targeted High-Level Binding
Algorithm for Power and Area Reduction with Glitch-Estimation,”
IEEE/ACM Design Automation Conference, Jul. 2009.

[10] T. El-Ghazawi, E. El-Araby, M. Huang, K. Gaj, V. Kindratenko, and D.
Buell, “The Promise of High-Performance Reconfigurable Computing,”
IEEE Computer, vol. 41(2), pp. 69-76, Feb. 2008.

[11] F. Ghenassia, “Transaction Level Modeling with SystemC,” Springer,
2005.

[12] M. Guthaus, N. Venkateswaran, C. Visweswariah, V. Zolotov, “Gate
Sizing Using Incremental Parameterized Statistical Timing Analysis,”
Intl. Conference on CAD, 2005.

[13] W. L. Hung, X. Wu, and Y. Xie, “Guaranteeing Performance Yield in
High-Level Synthesis,” Intl. Conference on CAD, 2006.

[14] J. Jung and T. Kim, “Timing Variation-Aware High Level Synthesis,”
Intl. Conference on CAD, 2007.

[15] I. Lin, T. Ling, Y. Chang, “Statistical Circuit Optimization Considering
Device and Interconnect Process Variations,” Intl. Workshop on System
Level Interconnect Prediction, 2007.

[16] G. Lucas and D. Chen, "Variation-Aware Layout-Driven Scheduling for
Performance Yield Optimization," IEEE/ACM Intl. Conference on
Computer-Aided Design, Nov. 2010.

[17] G. Lucas, S. Cromar, and D. Chen, "FastYield: Variation-Aware,
Layout-Driven Simultaneous Binding and Module Selection for
Performance Yield Optimization," IEEE/ACM Asia and South Pacific
Design Automation Conference, Jan. 2009. (Best Paper Award)

[18] M. Moy, F. Maraninchi, and L. Maillet-Contoz, “Pinapa: An Extraction
Tool for SystemC Descriptions of Systems-On-a-Chip,” ACM Intl.
Conference on Embedded Software, pp. 317-324, Sept. 2005.

[19] G. Martin and G. Smith, “High-Level Synthesis: Past, Present, and
Future,” IEEE Design & Test of Computers, vol. 26(4), pp. 18-25, Dec.
2009.

[20] S. Neuendorffer and K. Vissers, “Streaming Systems in FPGAS,” in
SAMOS Workshop, ser. Lecture Notes in Computer Science, no. 5114,
pp. 147-156, Jul. 2008.

[21] M. Pedram, “Low Power Design Methodologies and Techniques: An
Overview,” http://atrak.usc.edu/~massoud/Papers/LPD-talk.pdf, 1999.

[22] A. Putnam, S. Eggers, D. Bennett, E. Dellinger, J. Mason, H. Styles, P.
Sundararajan, and R. Wittig, “Performance and Power of Cache-Based
Reconfigurable Computing,” Intl. Symposium on Computer
Architecture, Jun. 2009.

