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ABSTRACT 

System-level synthesis compiles a complex application in a system-
level description (such as SystemC) into a set of tasks to be executed 
on various processors, or a set of functions to be implemented in 
customized logic, as well as the communication protocols and the 
interface logic connecting different modules. Such capabilities are 
part of the so-called electronic system-level (ESL) design 
automation. ESL design automation has caught much attention from 
the industry recently. In general, it has been shown that the code 
density and simulation time can be improved by 10X and 100X, 
respectively, when moved to ESL from RTL. Such an improvement in 
efficiency is much needed for design in the deep submicron era. This 
paper identifies a set of key challenges in ESL design automation 
with major focus on high-level synthesis (HLS). We shall discuss 
existing and potential solutions to these challenges and outline 
research opportunities in the evolution of ESL design automation.  

1. Introduction 
The rapid increase of complexity in System-on-a-Chip (SoC) design 
urges the design community to raise the level of abstraction beyond 
RTL. Electronic system-level (ESL) design automation has been 
widely identified as the next productivity boost for the 
semiconductor industry. However, the transition to ESL design will 
not be as well accepted as the transition to RTL in the early 1990s 
without robust analysis and synthesis technologies that help 
designers quickly converge to high-quality architectures and 
automatically generate highly optimized implementations.  

High-level synthesis (HLS) [8], in particular, is a key cornerstone of 
ESL design automation. It enables automatic generation of optimized 
hardware from high-level programming languages and allows 
effective exploration of software and hardware architectures. Given 
its huge potential value, numerous efforts on research and 
development of HLS tools have been conducted in both academia 
and industry in the past three decades [19]. In the 1980s and the 
1990s, the success of older-generation tools was fairly limited in 
practice. Questionable input language selection (e.g., HDL-based) 
and inferior quality of results (QoR) to manual designs are among 
most notable reasons for the failure. Since early 2000s, the newer 
generation of C-based synthesis solutions is gaining much more 
attractions in the market. The offerings of high-level programming 
languages to manage the daunting design complexity and the 
improved QoR are among the major factors that incentivize the 
industry adoption. Nevertheless, HLS is still an evolving technology. 
Many synthesis and optimization problems need to be addressed in 
its way to becoming an imperative step in the mainstream design 
flow. 

In this paper we identify a number of key challenges and research 
opportunities for ESL design automation (including modeling, 
analysis and synthesis) with a major focus on HLS. The remainder of 
our paper is organized as follows: Section 2 discusses the modeling 
dilemma with the disconnection between high-level simulation 

model and the synthesizable model. Section 3 presents challenges 
and promising directions in high-level memory synthesis, power 
optimization and variation-aware synthesis. Section 4 provides the 
concluding remarks. 

2. Modeling Challenges 
Some of the most widespread uses of ESL models and tools in 
industry today are for early embedded software development, 
architecture modeling, design space exploration, and rapid 
prototyping. In particular, transaction-level modeling (TLM) with 
SystemC [11] has become a very popular approach to describing 
virtual software/hardware platforms which model large-scale SoCs 
with multiple microprocessor cores, software stacks, hardware 
accelerators, hierarchical bus networks, and many other digital and 
analog IP blocks. 

HLS fits in nicely in the context of architecture exploration and rapid 
prototyping. In architecture exploration, HLS tools can provide quick 
estimations and analyses of performance, area and power of the 
synthesized modules. This allows system architects explore different 
architectures and select best one among them without going through 
the time-consuming manual process to implement RTLs. In rapid 
prototyping, HLS tools also provide automated flows to map the ESL 
models to an FPGA-based system for system emulation, functional 
validation and real-time debugging. 

Note that the TLM models for virtual platform modeling are 
typically written with a great deal of emphasis on code reusability 
and readability and are heavily optimized for simulation speed. 
Hence C++/SystemC-based TLM models often make use of dynamic 
memory management, complex pointer maps, and advanced object-
oriented programming features such as run-time polymorphism (e.g., 
virtual member functions).  

However, not all of these features are efficient or even feasible for 
hardware synthesis1. Due to the static nature of hardware, the usage 
of pointers is typically restricted (to compile-time determinable ones) 
and dynamic memory allocation/deallocation is generally forbidden. 
Therefore, the conversion of simulation-oriented virtual platform 
specification into a synthesizable specification remains to be a 
manual process as illustrated in Figure 1. 

Designers need to ensure that the synthesizable code is functionally 
equivalent to the original version. They also need to maintain two 
sets of ESL models and keep them in sync. 

It would be ideal for the designers to maintain a single synthesizable 
model as the golden reference for both simulation and synthesis. To 
reach closer to this goal in the near future, the ESL community shall 
make progress in the following areas: 

1) The synthesis tool shall continue to improve to handle a broader 
class of language constructs. It is particularly desirable to support 
dynamic behaviors in certain restricted forms. For instance, the 

                                                                 
1 The HLS synthesizable subset remains vendor-specific for the time being. 



Pinapa front end with hybrid parsing and elaboration capability [18] 
demonstrates one promising method to extract the static SystemC 
binding and connectivity from the seemingly dynamic specifications. 
Similar approaches can be taken to extend and enhance the 
predominant static analysis methods. 

2) The design community and synthesis tool providers shall 
converge to a standard synthesizable subset. On top of the standard, 
industry and academia shall collaborate to make available a set of 
reusable templates and libraries as references to enable efficient 
synthesis of common functionalities and establish common design 
patterns in important application domains.  

3) The synthesizable reference model should contain as few 
microachitecture and implementation details as possible. Too much 
target-dependent details would slow down the simulation and 
compromise the retargetability of the ESL model. This requires the 
synthesis tools to better support the separation of the target platform 
description and design constraints from the source code. In addition, 
the out-of-box QoR2 is becoming increasingly important to minimize 
manual changes to convert unstructured software code into 
synthesis-friendly specifications. 
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Figure 1: Manual code modification for hardware synthesis. 

We would like to mention that although retargetability is important 
for modeling in the sense that the functional design can be easily 
remapped to a different technology or a different device, high-level 
synthesis and optimization tasks have to consider specific 
architecture characteristics and constraints in order to achieve high 
quality of results. We introduce these details next. 

3. Directions in Synthesis and Optimization 
In this section we address three important HLS topics and discuss the 
challenges and opportunities in each area. Specifically, Section 3.1 
explains the importance of advanced synthesis for both on-chip and 
off-chip memories; Section 3.2 stresses the need for effective low-
power analysis and optimization at the high level; Section 3.3 
suggests new research directions on variation-aware HLS.  

3.1 Advanced Memory Synthesis 
3.1.1 On-Chip Memories 
Modern SoC designs use over 50% of the area on embedded 
memories that serve as FIFOs, line buffers, look-up tables, scratch-
pads, and caches to store data for the microprocessors and 
computational accelerators. These on-chip memories also contribute 
50-70% of the total power dissipation. Undoubtedly, the choice of 
memory architecture at the high level is critical to the quality of the 
final design.  

Interestingly, the majority of HLS research has been primarily 
focusing on reducing the schedule latency under resource constraints 
in terms of functional unit/register count or vice versa. The memory 
optimization, however, is often an afterthought. As indicated by 

                                                                 
2 Out-of-box QoR means the QoR produced by the tool automatically without 

any or much of the user intervention via pragmas, directives, or additional 
tool-specific (not algorithm-specific) code changes. 

STMicroelectronics in [8], memory accesses appear to them as the 
most limiting factor for HLS exploration and optimization. Many 
existing solutions rely on simple method to create memory blocks 
based on bit width and size of data arrays specified in the source 
code. As a result, the limited memory ports often become the 
performance bottleneck. Furthermore, using oversized memory 
blocks would create wiring detours and routability problem.  

Recently, an automatic memory partitioning technique is proposed in 
[7]. It honors the given throughput constraints and analyzes the data 
access patterns to derive the best possible memory partitioning for 
high performance as well as low power. Other promising research 
topics along the same direction include automatic memory merging, 
reshaping, data reordering, etc. 

3.1.2 Off-Chip Memories 
The intelligent synthesis support of external off-chip memories is 
equally important, especially with the high-definition trend and the 
rise of reconfigurable computing:  

1) Highly data-intensive video/image processing applications often 
require multiple frames of data be stored on DDR SDRAMs. Fast 
and efficient direct memory access logic needs to be in place to 
achieve high performance. 

2) Recent advances in FPGA-based high-performance reconfigurable 
computing [10] also require efficient access to the gigabytes external 
memories shared by the host processor and the FPGA accelerator. 

As mentioned in [20], most of the existing HLS solutions currently 
lack efficient support of the memory hierarchy and sufficient 
abstraction of the external memory accesses. As a result, the 
programmers are exposed to the low-level details of bus interfaces 
and memory controllers. They must be familiar with the bus 
bandwidth and burst length and substantially modify the original 
design source code. Clearly, such design practice is out of the 
comfort zone for most software developers and algorithm designers.  

Hence it is highly preferable to have synthesis tools hide explicit 
external memory transfers as much as possible from programmers. 
This would require the support of efficient memory hierarchies 
including automatic caching and prefetching. The CHiMPS project 
[22] is one of the promising attempts in this area. The proposed C-to-
FPGA compilation flow generates multiple distributed caches used 
by multiple concurrent processing elements. The compiler utilizes 
dependence and alias analysis to determine data clustering for higher 
degree of parallelization. 

3.2 Effective Power Analysis and Optimization 
Low-power design requires users assess and optimize the system 
architecture as early as possible in the design flow [21]. Trying to 
optimize for low power at RT level is important but likely has much 
less impact than high-level decisions such as hardware/software 
partitioning, bus width sizing, and pipelining. However, estimating 
power accurately at the high level remains to be very challenging. A 
great deal of low-level implementation details need to be considered 
to estimate the power consumption in a relatively accurate manner. 
For instance: 

1) Sophisticated activity propagation across registers and internal 
signals is required to obtain high correlation with the real circuit 
switching behavior. 
2) Clock tree modeling is critical to capture the clock power. The 
impact of extensive clock gating must be taken into account as well. 
3) Physical prototyping is needed to bypass the actual 
implementation and estimate the silicon area and interconnect power. 
4) The increasing usage of multi-voltage islands, dynamic voltage 
frequency scaling and power gating add further complexities to the 
power equation. 

Currently, most designers (esp. in ASIC world) are still relying on 
time-consuming gate-level power analysis flows to obtain highly 
accurate power. It typically takes days to measure the power 



consumption in the netlist back-annotated with VCD waveforms and 
SPEF files (after parasitic extractors).  

Needless to say, this is a great time for research and development on 
high-level and system-level power analysis. Advances in this area 
have the potential to significantly reduce the turnaround time in 
achieving the power closure. 

The technique proposed in [3] is one of the promising attempts along 
this direction targeting FPGA architectures. In this work we 
concentrated on resource allocation and binding tasks because they 
are the key steps to determine the interconnections during high-level 
synthesis. To fully validate our methodology and result, we target a 
real FPGA architecture  Altera Stratix architecture, which includes 
generic logic elements, DSP cores, and different types of memories, 
etc. We design a high-level power estimator for this architecture and 
verify that its power estimation result is very close to that reported 
by Altera Quartus II PowerPlay Analyzer. We form, propagate and 
prune binding/allocation solution points guided by our power and 
delay estimation. During this process, we account for interconnects 
and multiplexers to control their power consumption and delay. 
Eventually, we generate a design solution curve, which can provide 
ideal solution points with low power and high performance.  

Table 1: Area estimation functions for common operations on 
Altera Stratix FPGAs (N: bitwidth; K: # of input operands) [3]. 

Operation Resource Usage 

Add/Subtract LE N 

Bitwise and/or/xor LE N 

Compare () LE round0.67*N+0.62

Shift (with variable 
shift distance) 

LE Round(0.045*N2+3.76*N–8.22) 

Multiply DSP9x9 
N  18: N/9

N  36: N/18 

Multiplexer LE N*round(0.67*K) 

 
Since we target Stratix FPGA device families, we need to deal with 
Stratix-specific features in our high-level power estimation. The area 
estimation functions for the multiplexers and several commonly 
occurring arithmetic units are listed in Table 1. Note that due to the 
high regularity of the FPGA device, the final resource usages of most 
operations are very predictable and their estimation functions can be 
expressed in closed-form equations. 

For switching activity calculation, we extend a method published in 
[1], which performs simulation just once at the beginning at the 
behavior level and computes switching activities for any legal 
binding without repeating simulations afterwards. We add loop 
support in the method. Based on this area and switching activity 
estimation, dynamic power of various types of resources can be 
estimated which will guide the low power optimization procedure. 
We also model the delay characteristics for these resources. We then 
are able to construct path delays by modeling the details of the 
datapaths during the design space exploration process.  

Overall, our high-level power estimator is only 8.7% away from a 
commercial gate-level FPGA power estimator. Comparing to a 
traditional graph coloring-based register binding algorithm, our 
algorithm is 32% better on power and 16% better on Fmax after 
placement and routing. This demonstrates the effectiveness of HLS 
for power reduction and performance improvement. It also shows 
that power/delay modeling needs to pay attention to architecture-
specific features. Good modeling strategies can offer great accuracy 
without paying a large penalty in terms of runtime. 

In another work, we performed HLS targeting glitch power reduction 
[9]. Glitches (i.e. spurious signal transitions) are major sources of 
dynamic power consumption. We target FPGAs in this study as well. 
Our binding algorithm employs a glitch-aware dynamic power 
estimation technique derived from the FPGA technology mapper in 

[4], which is utilized to reach to lower-level implementations. We 
design a cost function that is able to optimize both switching activity 
and path balancing to reduce glitches. High-level binding results are 
converted to VHDL, and synthesized with Altera Quartus II 
software, targeting the Cyclone II FPGA architecture. Power 
characteristics are evaluated with the Altera Power-Play Power 
Analyzer. The results of our algorithm are compared to LOPASS [2], 
a state-of-the-art low-power high level synthesis algorithm for 
FPGAs. Experimental results show that our algorithm, on average, 
reduces toggle rate by 22% and area by 9%, resulting in a decrease 
in dynamic power consumption of 19%. Figure 2 shows the details.  
α = 0.5 indicates that the algorithm optimizes both switching 
activities and path balancing (through balancing multiplexers in the 
datapath), where α = 1 only optimizes switching activity. We 
observe that α = 0.5 produces reductions for all benchmarks, 
averaging 21.9%. 

 
Figure 2: Average toggle rate reduction in [9]. 

It is worth noting that many powerful high-level low-power 
optimizations can be applied very effectively without the need of the 
most accurate estimation. For example, the concept of observability 
don't-care (ODC) is recently generalized at the behavior level in [5] 
to guide the compilation and synthesis to identify and avoid (via 
gating or shutdown) unnecessary computations, memory accesses 
and data transfers. RTL-based analysis can hardly derive such high-
level ODC information completely and efficiently. Moreover, 
behavior-level ODC can be more powerful when combined with 
HLS optimization. 
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Figure 3: Scheduling impact on clock gating. 

Figure 3 illustrates the impact of scheduling on clock gating with a 
small example. In Figure 3 (a), the comparison is scheduled after the 
multiplication and none of the registers can be clock gated. In Figure 
3 (b), the comparison is scheduled before the multiplication. As a 
result, when the comparison result is false and only value ‘A’ is 
observable after the multiplexer selection, two pipeline registers can 
be gated and the activity of the multiplier can be saved.  

In [6], behavior-level ODC is considered in an intelligent soft-
constrained scheduling algorithm. Unlike hard constraints, soft 
constraints are treated as design preferences and will be honored 
whenever possible but not necessarily. Specifying soft constraints 
would offer better design space characterization. Experiments show 



that an average of 33.9% reduction in total power can be achieved 
with close-to-optimal solutions on many real-life designs. 

3.3 Variation-Aware High-Level Synthesis 
Aggressive technology scaling to the deep sub-micron realm has 
resulted in significant variations in fabricated device parameters. A 
new era of statistical design techniques has begun to emerge where 
circuit parameters such as delay and power are no longer modeled as 
deterministic values, but are represented as probability density 
functions. These statistical design techniques are leading to 
reclamation of lost performance and yield that has been occurring 
when using deterministic design techniques. 

The shift to probabilistic design methodologies has produced a 
number of gate-level variation-aware optimization techniques 
[12][15]. While progress at the gate-level is encouraging, the large 
productivity gains available in high-level synthesis make it attractive 
and necessary to address the issue of process variations at a higher 
level of abstraction. Reference [13] offers a simultaneous scheduling, 
binding, and allocation algorithm based on simulated annealing. The 
simulated annealing algorithm seeks to reduce the overall latency 
while meeting a performance yield requirement. However, the 
algorithm does not consider multiplexer use or interconnect delay, 
both of which can significantly contribute to the clock period of the 
unit. Reference [14] proposes a timing variation-aware HLS 
algorithm which improves resource sharing. While the algorithm is 
effective, it ignores multiplexers and interconnects, and also relies on 
the assumption that functional units are independent of each other in 
its yield calculation. 

Recently, we proposed a novel variation-aware simultaneous binding 
and module selection algorithm, named FastYield, which maximizes 
the performance yield of the resulting circuit [17]. We connect our 
synthesis engine to the layout closely, so layout information can be 
accurately back-annotated to the synthesis and introduce useful 
synthesis transformations. Synthesis and layout are iterated until the 
performance gain is maximized. We consider registers, multiplexers, 
functional units, interconnects, and spatially correlated process 
variations. A timing-driven, simulated annealing-based, statistical 
floorplanner that considers interconnect delay and spatial correlation 
between all units in the design is used to provide layout information 
to feedback to the HLS engine. On average, FastYield achieves an 
85% performance yield clock period that is 14.5% smaller, and a 
performance yield gain of 78.9%, when compared to a variation-
unaware and layout-unaware algorithm. This result shows that by 
performing statistical layout-driven synthesis, substantial gains in 
performance yield can be made during HLS. A follow-up work is 
presented in [16], where we tackle the problem of performance yield 
optimization during the scheduling task of high-level synthesis. We 
formulate the problem of performance yield optimization for 
scheduling as an integer linear programming problem (ILP) and offer 
the following contributions: 1) a totally unimodular ILP formulation 
for performance yield maximization and 2) a variation-aware and 
layout-driven iterative algorithm for performance yield 
improvement. Experimental results show that we can obtain 
significant gain in performance yield compared to FastYield. 

Future work includes simultaneous register and functional unit 
binding considering process variation and the consideration of other 
variation sources such as voltage and temperature fluctuations. 
Challenges remain for controlling the overall runtime and avoiding 
conflicts between HLS optimization and layout optimization. 

4. Concluding Remarks 

This paper identified a set of critical needs and key challenges in 
ESL design automation with special focus on high-level synthesis 
(HLS)3. Specifically, we discussed the hardware synthesis challenges 
                                                                 
3  Note that we have not covered several other important topics such as 

verification and IP integration for ESL in this article. 

implied by software-centric ESL models and those required for 
optimizations of memory hierarchy, low power and process 
variations. These needs and challenges have created many new and 
important research directions as well as business opportunities in the 
EDA community. We hope that this paper would help to stimulate 
more research and activities in these areas.  
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