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Abstract—FPGA technology mapping is a well-studied problem
and has been an area of interest in EDA tool design for decades.
In most respects, the computational complexity of technology
mapping is understood, and heuristic algorithms have been
successfully employed to mitigate compile times. Even with an
extensive body of research on technology mapping, our experi-
ments show there is still substantial room for improvement in the
quality of results. As a solution, we introduce EqMap, an e-graph
driven compiler that can better span the wide gap between SAT-
based exact synthesis and heuristic cut enumeration techniques.
EqMap’s improvements to synthesis produced circuits with 12%
fewer LUTs on average over the vendor tools—without ever
increasing circuit depth. We also provide an empirical analysis of
the runtime of EqMap and show that it is still practical for large
designs. Finally, we demonstrate that our compiler infrastructure
is reusable, and future work can use our compiler for RTL
equivalence checking or auditing the QoR of synthesis tools.

I. INTRODUCTION

Given the complexity of modern electronic systems, a high
degree of automation is required to develop custom hardware
within sensible timelines. At the highest level, FPGA and
ASIC design flows can be split into logic synthesis and
physical design (e.g., floorplanning, placement, and routing).
This division of work produces suboptimal designs. Moreover,
the individual compilation steps themselves may not be locally
optimal. However, circuit minimization problems in general
are NP-hard [1], [2], and modern EDA flows use phased
compilation and heuristics to bring compile times down to
the human timescale while maintaining acceptable quality of
results (QoR).

With the end of Dennard scaling and Moore’s Law fading,
the quality of logic synthesis becomes more important. Hence,
future synthesis tools will need to expand the design spaces
they explore and find more optimal solutions. Still, finding
provably optimal circuits is computationally intractable. In
this paper, we introduce a way to augment FPGA technology
mapping with e-graph data structures in order to find more
exact solutions, without significantly increasing compile times.

Technology mapping is the hand-off between logic synthesis
and physical design. It converts the abstract Boolean logic into
a network of circuit elements that belong to the target cell
library. For FPGAs, the primary target cell is the lookup table
(LUT). Since every k-LUT can be reprogrammed to satisfy
any k input Boolean function, FPGA technology mapping
has an unmistakably large solution space. Whether the circuit
is optimized for latency or area, most FPGA tools approach
technology mapping as a graph covering problem [3]-[6]. In
the literature, a group of circuit nodes implemented by a k-
LUT is called a k-feasible cut of logic, and the generation of

all cuts is called cut enumeration. These structural mapping
techniques rely on the topology of the input circuit, and hence
they are prone to structural bias.

In contrast, functional mappers attempt to decompose the
Boolean functionality into smaller sub-functions which can be
realized by k-LUTs. Such mappers are a more exact approach,
and often use SAT solvers to drive synthesis [7], [8]. Other
works employ Boolean matching to speed up technology
mapping by identifying known Boolean structures [9], [10].
However, exact synthesis tools cannot be scaled past tens
of gates. As a consequence, cut enumeration and functional
mapping lie on two different extremes. The former is fast but
limited by the input structure, while the latter is unbiased but
fundamentally unscalable.

For this reason, we propose a technology mapper which
uses e-graphs as a way to better span the time-QoR spectrum.
Equality graphs, referred to as e-graphs, are data structures
which use union-find operations to reason about abstract equiv-
alence relations [11]. By using the output of RTL synthesis
as an initial solution, we can use e-graphs to incrementally
remap the circuit to a more compact form. Whereas typical
optimizing compilers apply a greedy sequence of transforma-
tion passes, e-graphs rewrite terms in a nondestructive fashion.
Our work seeks to evaluate the suitability of e-graphs to
superoptimize logic synthesis, while still utilizing the fine-
tuned heuristics of existing work as a starting point.

To that end, we propose EqMap: a tool for remapping
FPGA netlists into more compact forms—without increasing
circuit depth. Our results show many benchmarks, big and
small, which synthesize to significantly fewer LUTs over
vendor EDA tools. To that end, our work makes the following
contributions:

e« We formulate an intermediate language and set of e-
graph rewrite rules that can explore circuit topologies that
heuristic approaches miss.

e We evaluate our compiler against 95 benchmarks com-
bined from three sources: EPFL [12], ISCAS’85 [13],
and LGSynth’91 [14]. The results show improvements in
LUT count without significant increases to compile time.

« Finally, EqQMap is packaged as a Verilog-to-Verilog tool
that can be dropped into existing RTL flows. The source
code is on GitHub: github.com/cornell-zhang/eqmap.

Before elaborating on our methodology and experimental
setup, we first discuss related ideas in technology mapping and
e-graph driven compilers. Then, the results section illustrates
the typical reduction in LUT count our tool achieves without


https://github.com/cornell-zhang/eqmap

increasing circuit depth. Lastly, we discuss the future work of
our compiler.

II. BACKGROUND
A. FPGA Technology Mapping

FPGA technology mapping is the compilation step that
converts abstract RTL logic into a netlist of lookup tables [3]-
[6], [15]. Due to the computational complexity of optimal LUT
mapping, most implementations avoid restructuring the input
logic and are essentially graph covering algorithms. Given a
k-LUT FPGA architecture, most mappers start by enumerating
the feasible cuts of logic for each node in the circuit. Then,
logic cuts are selected to be used in the circuit covering, which
ultimately becomes the netlist. Where competing implemen-
tations vary, however, is the set of heuristics used to extract
the best cuts of logic. The heuristic nature of these algorithms
means that results can be inconsistent across implementations,
and the discrepancies are difficult to explain.

As an example, Fig. 1 shows two different results of
mapping carry-lookahead logic to a 4-LUT FPGA architecture.
In Fig. la, the circuit is implemented with four total LUTs.
Since the sink LUT is already utilizing all four inputs, the
ability to combine it with another 3-LUT is non-obvious.
Fig. 1b shows how the circuit depth and cell count can both be
reduced by merging the two LUTSs, because they both share
the inputs A; and Bj. This feature in the circuit topology
is referred to in the literature as non-monotone clustering of
logic [3]. In other words, a k-feasible cut of logic may contain
within itself cuts of logic that are the same size or even larger.
That is, traversing subcuts does not decrease the cut size
monotonically. Hence, technology mapping must scrutinize
this type of circuit topology in order to avoid suboptimal LUT
count and depth, adding to tool runtime. It is important to note
that this problem occurs equally on 6-LUT FPGAs.

Not depicted in Fig. 1 is the bias the graph covering has to
the structure of the input logic. Depending on how the input
RTL is written, the optimal solution may not be reachable
with a cut enumeration algorithm. First, notice that both the
AND and OR operations in the circuit are commutative and
associative. A poor grouping of terms can limit the efficacy of
the technology mapper. In this specific case, it is important that
Cy is grouped with Ag+ By and not A; + B;. To summarize,
technology mapping must overcome both the difficulty of cut
selection and bias toward the structure of the input circuit.

B. Equality Graphs

Equality graphs, most commonly referred to as e-graphs,
are an automated reasoning tool built around a union-find
data structure [11], [16]. E-graphs are particularly strong at
equational reasoning. For example, e-graphs can be used to
rewrite mathematical expressions [17] or for automated rea-
soning about functional programs [18]. Briefly put, e-graphs
can drive logic synthesis by exploring other circuit topologies.
Initially, each circuit node starts alone in its equivalence class.
Then, a set of rewrite rules is used to grow the e-graph
with alternative representations. When rewrite rules no longer

introduce new information into the graph, we say we have
reached equality saturation.

Equality saturation is useful for optimizing compilers, be-
cause it defers greedy program transformations. Extracting
solutions from saturated e-graphs can result in more optimal—
sometimes provably optimal—programs. In contrast, tradi-
tional compilers use a pass pipeline architecture which suffers
from a phase-ordering problem. In other words, there is never
an ordering of transformation passes that is optimal for all
input programs. This is a deep-rooted issue in compiler design,
but the problem is particularly consequential for hardware
design. The exploratory nature of e-graphs are useful for
combinatorial problems like LUT-based technology mapping.

III. RELATED WORK
A. FPGA Tech Mappers

Broadly speaking, FPGA mapping heuristics can be divided
into architecture-specific and architecture-agnostic optimiza-
tions. Architecture-specific optimizations reduce routing con-
gestion by more efficiently using intra-CLB routing resources.
Examples include mapping dual-output functions to fractured
LUTs [19] or using dedicated multiplexers to implement
functions with more than 6 inputs [20]. In the literature, these
types of optimizations are known as LUT packing, and the
rough optimization goal is to reduce the number of flip-flops
driven across CLB boundaries [21].

In contrast, other works attempt to mitigate the structural
bias of the technology mapper in general and do not account
for the specific architecture. As an example, AGDMap [22]
decomposes simple logic gates with large fan-in to enable
the exploration of better graph coverings. However, struc-
tural bias can take on many forms. Finding advantageous
decompositions of logic in general requires more elaborate
algorithms [23] that may not be practical for large designs.
FlowMap [3] cites non-monotone clustering of logic as the
fundamental difficulty that causes bias in LUT-based technol-
ogy mapping. In other words, this is the observation that a
k-feasible cut of logic may contain subcuts that are not k-
feasible. Overcoming incidences of non-monotone clustering
requires a more elaborate cut-selection algorithm, and our
work lays the foundation for a formal, reasoning-based ap-
proach to the problem.

B. E-Graph Superoptimization

In recent years, e-graphs and equality saturation have en-
joyed renewed popularity within the compilers field. Sev-
eral recent works use e-graph driven superoptimization to
improve upon existing EDA tool flows. SEER [24] uses e-
graphs to optimize and parallelize the control flow of high-
level synthesis (HLS) programs. IMpress [25] also uses e-
graphs at the HLS level, optimizing the datapath of large bit-
width multipliers. At a lower level, ROVER [26]-[28] rewrites
arithmetic data paths at the word and bit levels. ROVER
straddles the RTL and physical level of abstraction, making
it more general purpose than IMpress. In any case, the work



(a) An implementation that uses four LUTSs contains redundancy.

(b) The sink cut of logic can expand its cover and reduce the LUT
count by one.

Fig. 1: A 2-bit CLA (carry-lookahead) circuit demonstrates that non-monotone clustering can cause suboptimal mappings.

which is most similar in its goals to ours is E-Syn [29]. E-
Syn uses the rules of Boolean algebra to rewrite the logic
of a circuit before technology mapping. Ultimately, E-Syn is
a predictive optimization that takes place during technology-
independent synthesis steps, whereas EqMap applies as a
post-processing step after technology mapping. Furthermore,
EqMap’s rewriting system models the netlist in terms of total
functions, rather than as expressions over a Boolean algebra.

IV. E-GRAPH CONSTRUCTION

As an overview, an e-graph is built by accumulating new
equivalences through the iterative rewriting of terms. Rewrite
rules define the equivalence relations in full generality by
defining search patterns of terms to rewrite. This prompts
the creation of a grammar that can represent the structure of
digital circuits and lends itself well to pattern matching. As an
example, one can define De Morgan’s laws as a rewrite rule:

(NOT (AND x y)) => (OR (NOT x) (NOT vy))

On the left of => is the search pattern. The right-hand side
of the rule is the application. In the following subsections,
we will define our netlist representation, LutLang, and the
accompanying equivalence relations. While none of EqMap’s
rewrite rules are particularly novel at face value, together they
define a transformation space that can discover compacted
circuits. Hence, formalizing our language and rules is critical
to both verification and finding deeper insight into the structure
of our rewrite rules under composition.

A. LutLang Representation

Input Verilog netlists are converted to our internal format,
called LutLang, which is compatible with e-graph structures.
When printed to text, LutLang takes on a Lisp-like syntax
and our rewrite rules are written in such style. As an example,
a 2-LUT cascaded into a 3-LUT is written as follows:

(LUT G x2 x3 (LUT F x0 x1))

G and F are the truth-tables of the LUTs. We also call
them the program or function interchangeably. Truth tables are

Domain
Restriction

Adjacent
Transposition
(Symmetry)

Boolean Function

Fig. 2: Transition diagram of rewrite rules. A solid arrow
means that the application of the source rule always becomes
an instance of the target rule.

stored as 64-bit integers, but we analyze them as total functions
F : 7% — 7. To clarify notation, Zy = Z/27Z = B = {0, 1}.
To that end, the denotational semantics [-] : LutLang — Zo
of a LUT is simply applying its Boolean inputs to the function:

[(LUT F x0 x1)] = F([=0],[x1]) (1)

B. Simplifying Degenerate LUTs

Definition: A LUT’s configuration F': Z§ — Z, is degen-
erate if there exists a Shannon expansion F' = z;- F,, +7;- F5,
such that F,, = F5, for some input position i € {0, ..., k—1}.
In other words, F' = F,, = F5,.

The output of a degenerate LUT is not dependent on one of
its inputs. Hence, it can be rewritten into a LUT which uses
fewer inputs. This rule is applied by computing the Shannon
expansions of LUTs and checking for equivalence. As an
example, the rule takes on the following form for k& = 3:



(LUT F x0 x1 x2) => (LUT F’ x0 x1)
if F(x0, x1, false) == (x0, x1, true)
where F’ (x0, x1) := F(x0, x1, true)

One rule is instantiated for each LUT size £ = 1 through
6. One should notice that LUTs which are constant functions
are also handled by this rule.

C. Fartial Application

A LUT with a constant input can be partially evaluated to a
LUT with one less input. It computes the Shannon expansion
along the constant variable and chooses the cofactor that
matches the state of the constant input. One could show that
applying this rule greedily in combination with the previous
one is equivalent to constant propagation. As an example, the
pseudocode for k£ = 3 is written as follows:

(LUT F x0 x1 false) =>
where F’ (x0, x1) :=

(LUT F’
F(x0,

x0 x1)
x1, false)

D. LUT Symmetries

The semantics of LUTs should not depend on the order of
their inputs. If two LUTs have permuted inputs but are oth-
erwise functionally identical, they should belong to the same
e-class in the graph. Thatis, (LUT F .. xi .. xj ..)
is semantically equivalent to (LUT G .. xJ .. xi ..)
if and only if G = F® 0!, where o € S, is the permutation
applied to the inputs.

Proof. ©® is a right-action defined for the sake of permuting
the inputs to a function before they are applied:

©: (Z5 — Zy) x Sy, — (25 — Z»)

Foo:(xo,21,...,06-1) = F(Zo0), Za1), - -+ To(k—1))

It is trivial to prove that this right-action is associative:

(F©01)©02=F(Zoy(0,(0)) Tos(or (1)) - -+ > Torg (o1 (k—1)))
(F@O’l)@UQZF@(O'QOO'l)

With this property, the rest follows directly:
F=G0o0 < Foo '=(Goo)oo =G (@)
O

Therefore, we can conclude that k-LUTs have as much sym-
metry as can be generated by the group Sj. This insight has
two main consequences. First, it precisely reveals how many
e-graph rewrite rules are needed to generate all the symmetries
of a LUT. For any k-LUT with program F', we need exactly
as many rules as it takes to generate F' © Si. It is a well-
known fact in algebra that the £ — 1 adjacent transpositions
generate S [30].In total, there are Zgzz(k’ — 1) = 15 rules
to encapsulate symmetry for every LUT size. The second
consequence is that every other rewrite rule can be defined for
one input position, without loss of generality. This reduces the
total number of rewrite rules, making it easier to rationalize
about the rule system and which types of optimizations are
reachable.

E. Function Composition

Cascaded LUTs can be packed into a single LUT, as long as
the size of the cut of logic has at most 6 leaf nodes. This is the
crucial observation to LUT remapping. For instance, a circuit
that implements F(xg, G(z1,22)) with two 2-LUTs can be
rewritten as a 3-LUT that implements some H (xq,z1,22). In
pseudocode, this would take on the following form:

(LUT H x0 x1 x2)

(LUT F x0 (LUT G x1 x2)) =>
= F(x0, G(x1, x2))

where H(x0, x1, x2)

The search patterns x0, x1 and x1 can match any node.
They are not necessarily principal inputs, and hence can be
outputs from other LUTs. As a consequence, this rule can
be chained together many times in different orders to pack a
sub-circuit into a single LUT. As an example, this rule would
match the 3-LUT and 4-LUT in Fig. 1a and combine them into
the single 4-LUT in Fig. 1b. Since the previous rule captures
LUT symmetry, we can write compositions for one specific
input position, without loss of generality. Therefore, we only
need to sweep over the size of the two LUTs in the search
pattern. In total, there are 6-6 = 36 LUT packing rules. When
the cut of logic is larger than 6 leaves, the rule exits gracefully
and does not interfere with reaching equality saturation.

F. LUTs with Domain Restrictions

Definition: A lookup table (LUT F x0 x1 .) is re-
stricted if [xi] = [x3] for some ¢,5 € {0,...,k—1}, i # ;.
In other words, the domain of the LUT is restricted.

The main advantage of using e-graphs is the compact way
in which it represents notions of equality. Whenever a new
equivalence is found between two of the inputs to a k-LUT,
it can be rewritten with a (k — 1)-LUT. We simply need to
define and compute restrict (F, i, 3j) which maps F' :
Z% — Zs to the domain-restricted F|y,—,, : Z5 ' — Zo. In
pseudocode, the rewrite rule can be written as follows:

(LUT F x0 x1 x1) => (LUT F’ x0 x1)
where F’ := restrict(F, 1, 2)

Since rewrite search patterns already match ‘modulo’ e-
class, this rule is automatically triggered when e-classes are
merged. For instance, if the e-graph proved in Fig. 1 that
A; = By, then all the LUTs would shrink by one input—
causing the next wave of rewrites to fire. Again, only one rule
is needed for each LUT size k = 2 through 6, because LUT
symmetry is represented in the graph. Considering the entire
rewriting system as a whole, Fig. 2 visualizes the ways in
which rules can be sequentially composed.

G. Functional Decomposition

Decomposing boolean functions and logic minimization in
general is NP-complete [1]. Correspondingly, decomposing
LUTs explodes the size and build time of the e-graph. How-
ever, we can still define rewrites that look for fully disjoint
decompositions in one or more variables. This rule has no
structural element to search for, so it runs every time an e-
class is updated. Our implementation computes the Shannon
expansion of a k-LUT’s function F' and checks if the first



(a) Three 3-LUT, three FF topology.

(b) Two 4-LUT, four FF topology.

(c) One 6-LUT, one FF topology.

Fig. 3: Three different circuit topologies for a 4:1 MUX with flip-flop.

variable canalizes or inverts the function. For instance, given
k = 3 then it is true that for G, H € Z3 — Z that:

F(.’Eo,l'l,l'g) = G((Eo, H(.’El,l'g))

I

F(xo,z1,%2) = %0 - Gao (H(z1,22)) + To - Gz (H(x1, 22))
3)

In practice, our implementation calculates the truth tables
for G, and Gz, and determines if either represents a constant
function or if they are complements of each other.

H. Register Retiming

Register retiming is a purely structural rule, meaning it can
be implemented with a simple search and apply pattern. An
example for £k = 1 would be written as follows:

(LUT F (REG x0)) <=> (REG (LUT F x0))

Unlike the other rules, this rule is searched for in both
directions. Figure 3 illustrates an example of how register
retiming can compose with LUT rewrite rules to reduce
LUT count and register count simultaneously. In this case,
the 3-LUTs implementing 2:1 multiplexers are pushed across
register boundaries. Since this logic happens to have a 6-
LUT mapping and a two 4-LUT mapping, we can explore
a circuit topology that reduces cell count (Fig. 3¢c) or adjusts
the delay paths (Fig. 3b). To best utilize register retiming, the
e-graph extraction technique must have some sense of timing
information. Our e-graph extractor is explained in the next
section, but it should be noted that in our experiments the
area of LUTs and registers are weighted equally.

V. TooL FLow

While constructing the e-graph is the crux of EqMap, there
are several other important components to consider in the full
design flow. In order to test our hypothesis, EQMap must be
compatible with existing synthesis flows, and the rewritten
circuits must be verified. Fig. 4 provides an overview on
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(a) The design flow integrating EqMap with existing RTL tools.
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(b) The compilation steps internal to EqMap Verilog tool.

Fig. 4: Diagrams of the top-level integration of EqMap into
existing tool flows and internal compiler architecture.

both the integration with existing RTL flows and the internal
compiler architecture. The following sections will describe
each step in more detail.

A. Extraction

Regardless of whether equality saturation is achieved or not,
the quality of the output circuit still largely depends on the
extraction technique used. In short, extraction is the process
of selecting the “best” circuit from the e-graph. Given that
a saturated e-graph can contain hundreds of thousands of e-



nodes across tens of thousands of e-classes, a greedy extraction
algorithm is the most pragmatic. The greedy extractor iterates
over the e-classes, updating the cost of the cheapest e-node
until the database of costs no longer change. Whenever pos-
sible, our compiler uses the built-in functionality of the egg
e-graph Rust library [31]. However, e-graph extraction itself
is an ongoing research area [29], [32], [33], and future work
should experiment with more capable extraction algorithms.
Aside from increases in compile time, better extraction has the
potential to raise the QoR yet another level. In any case, the
greedy cost of a LUT is always one plus the sum of the costs
of its children nodes. Further interactions between extraction
and the rewrite rule set are further explained in Section VI-B.

B. Verilog Support

In order for our compiler to be compatible with as many
existing design flows as possible, some level of Verilog sup-
port is necessary. Our compiler supports a subset of Verilog
2001 [34], as required to represent structural netlists. This
includes support for non-ANSI C style module declarations,
wires, and module instantiations with named port connections.
With Verilog support, we are able to test EQMap with tool
flows that use Yosys [35] or Vivado [36]. On the backend, our
compiler also emits an updated Verilog netlist.

C. Verification

While formal verification is not the primary focus of this
work, using e-graphs as a formal reasoning tool helps to
build trust in our synthesis results. In fact, e-graphs were
originally designed for automated theorem proving [11]. Thus,
constructing proofs that demonstrate equivalence between the
original and remapped netlist is a built-in feature of EqMap.
However, we also use two other independent sources of
verification. For combinational netlists, our middle end can do
exhaustive functional testing. Lastly, we use Yosys [35] for its
SAT-driven equivalence checking capabilities. All in all, the
mixed usage of these verification techniques build confidence
in the robustness of our technology mapper built around e-
graphs.

VI. RESULTS

Our experiments were carried out on a Red Hat 8 server
hosting a Intel Xeon Gold 6242 CPU. Since EqMap is written
in Rust, it mostly uses the built-in functionality of the egg
library. The egg e-graph runner was ran in a time-limited
configuration, meaning there was no limit in the size of the e-
graph. Regardless, the median time to saturate a design was 9
seconds. As for the benchmarks, EQMap was evaluated against
circuits from three test suites: EPFL [12], ISCAS’85 [13],
and LGSynth’91 [14]. However, we also included an ALU
and pipelined multiplication module to test how our compiler
behaves with increasing levels of bit-parallelism and register
pipelining. Finally, we measure how our remapping optimiza-
tions influence CLB usage.

TABLE I: Results of 42 improved benchmarks from IS-
CAS’85, LGSynth’91, and EPFL. The percent improvements
use Vivado as the baseline.

Module LUT Count

EgqMap Vivado 2024  Yosys 0.33
mem_ctrl 10566 (-9.35%) 11697 11101
div 5050 (-64.62%) 14337 5319
square 3497 (-14.46%) 4088 4009
arbiter 2655 (-3.21%) 2743 2655
sin 1494 (-7.15%) 1609 1531
voter 1440 (-10.78%) 1614 1461
max 798 (-0.25%) 798 842
il0 559 (-10.99%) 628 580
k2 520 (-0.38%) 522 537
6288 513 (-24.67%) 681 519
¢7552 328 (-8.38%) 358 333
c5315 262 (-6.76%) 281 263
adder 259 (-20.55%) 326 276
dalu 216 (-11.11%) 243 237
vda 204 (-2.86%) 210 270
frg2 199 (-9.13%) 219 202
rot 176  (-6.88%) 189 196
apex6 166  (-9.29%) 183 168
X3 157  (-5.99%) 167 161
alu4 132 (-2.94%) 136 204
i9 128 (-3.76%) 133 150
cavlc 92 (-13.21%) 106 134
c1908 89 (-3.26%) 92 94
example2 87 (-3.33%) 90 88
c880 80 (-12.09%) 91 85
i5 70 (-26.32%) 95 70
i2 52 (-14.75%) 61 52
router 48 (-11.11%) 54 54
c432 47 (-18.97%) 58 47
i4 42 (-22.22%) 54 42
int2float 35 (-7.89%) 38 46
b9 31 (-6.06%) 33 33
alu2 30 (-6.25%) 32 117
terml 24 (-29.41%) 34 25
pcler8 23 (-8.00%) 25 23
comp 19  (-24.00%) 25 19
sct 18  (-5.26%) 19 19
f51m 14 (-12.50%) 16 23
pcle 13 (-7.14%) 14 13
cmb 11 (-8.33%) 12 11
X2 11 (-8.33%) 12 11
cordic 9 (-10.00%) 10 9

A. Benchmarking

We used a compilation of 95 combinational benchmarks
from three academic sources to test LUT mapping ability.
Among the combinational benchmarks we tested, EQMap was
able to reduce the LUT count 44% of the time. On average,
EqMap packed those netlists to 12% fewer LUTs. The results
in Table I list all the reduced LUT counts, sorted by design
size. It should be noted that 53 benchmarks did not improve.
However, EqQMap was always able to produce a circuit of equal
size at worst. AMD/Xilinx Vivado 2024 [36] was used as the
baseline synthesis tool. For the EqMap flow, Yosys [35] was
used to generate the initial mapped circuit. At a glance, circuits
like ‘int2float,” ‘c6288,° ‘adder,” and ‘square’ have the most to
gain from EqMap. These circuits are all arithmetic in nature,
and this pattern continues throughout the rest of the results.

One result that is not demonstrated by the table is the
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Fig. 5: Yosys 0.47 maps ‘19’ with fewer LUTs than Yosys
0.33. However, remapping with EqMap inverts the trend.

apparent importance of the initial structure inputted to EqMap.
We have not eliminated all sources of structural bias, and
hence our superoptimization tool still occasionally gets stuck
at a local minimum. Fig. 5 illustrates the issue by depicting
the different distributions of k-LUT usage by different tool
flows. In short, an overly packed LUT network will fare worse
in attempts to superoptimize it. Future work will investigate
which qualities make an RTL synthesis engine work well with
our tool versus ones that do not. For example, EqMap opti-
mized Yosys 0.33 netlists (Fig. 5a) better than ones provided
by Yosys version 0.47 (Fig. 5b). A future version of EqMap
should implement new rewrite procedures than can break out
of these local minimums on their own.

B. Marginal Gain and Cost

Given that EqMap is fundamentally a superoptimization
tool, we want to provide evidence that significant gains can
be found within reasonable time bounds. To that end, we
empirically studied the marginal gains in QoR as increasingly
longer rewrite sequences are added to the e-graph. Within the
e-graph infrastructure, this phasing of applying rewrites and
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Fig. 6: The marginal gain in QoR and marginal cost in time
as the e-graph grows in size.

rebuilding the union-find data structure is referred to as an
iteration. As shown in Fig. 6a, nearly all the performance
gains are discovered within the first 10 iterations—well before
equality saturation. Some notable exceptions occur, such as
‘alu4’ being reduced in size after the 40th iteration. Lastly,
the marginal cost of executing an iteration of rewrites becomes
prohibitive as the e-graph grows much larger. Fig. 6b illustrates
that after approximately the 30th iteration, the added cost in
compile time rapidly increases. However, the far majority of
results are reached within 20 iterations of rewriting, which on
average takes only 3 seconds.

C. Case Study: Pipelined Designs

Hardware designs with feed forward pipelines provide inter-
esting opportunities to find a higher-level of area optimization.
When closing timing on FPGA designs, the critical path is
often dominated by routing, more so than ASIC design. Hence,
reducing the cell count and circuit depth along the max delay
path is a valid optimization strategy for FPGA design. As a
caveat, it is important to note that other work has also observed
the opposite trend [37]: decreasing depth too much can strain



TABLE II: Post-implementation results of pipelined multiplication circuit optimized with EqMap. Yosys 0.33 + EqMap is used
for synthesis, and Vivado 2024 is used for placement and routing.

X Num. Stages  LUTSs Depth CLBs

Initial EqMap % Difference  Initial EqMap % Difference Initial EqMap % Difference
1 982 917 -6.62% 14 14 0% 148 146 -1.35%
2 971 883 -9.06% 21 21 0% 137 131 -4.38%
4 1041 882 -15.27% 33 31 -6.06% 147 136 -7.48%
8 1243 963 -22.53% 53 52 -1.89% 175 155 -11.43%
16 1317 917 -30.37% 64 58 -9.38% 191 168 -12.04%

the router. In any case, EqMap can be utilized to reduce total
CLB usage in pipelined designs. To test this hypothesis, our
compiler was used to optimize a 32-bit integer multiplier with
a varying number of pipeline stages. The data in Table II
clearly shows that as the number of pipeline stages increases,
an inefficiency in the mapping is accumulated. EqMap is able
to repack the LUTs into roughly the same amount of logic
as the single stage design—without increasing the number of
flip-flops. While our current technique only supports acyclic
designs, we wanted to add an additional case study on a
pipelined operator to prove the potential of extending our
approach beyond combinational logic.

While the drop in CLB usage is desirable, we anticipate
that more exact extraction techniques would find even greater
area reductions. Unlike other logic rewrites, register retiming
changes the topology of the stateful elements—i.e. the flip-
flops. Consequently, greedy extraction cannot take into account
the fan-out these flip-flops. While these results do demonstrate
that optimizing for CLB count over raw cell count is a feasible
strategy, a different extraction method will be needed.

D. Case Study: Bit-Parallel Designs

While the academic benchmarks enable direct comparisons
to the rest of the literature, the circuits are relatively small.
On average, the designs map to 670 LUTs. Among the 42
improved benchmarks in Table I, only six exceed 1000 LUTs.
Although this e-graph driven technology provides promising
results for smaller benchmarks, FPGA technology mapping
is especially difficult—and important—for larger designs By
studying a parameterized design, we can demonstrate that
EqMap’s benefits hold the same with the scaling of logic.

To test how EqMap scales with gate count, we created a
synthetic ALU benchmark and varied the input and output bit
widths from 8 bits to 4096 bits. Table III lists the LUT counts
from the initial synthesis by Vivado 2024, followed by the
packed LUT counts. Even though the 1024-bit, 2048-bit, and
4096-bit ALU designs had up to 15,000 LUTs, EqMap was
able to achieve up to almost 15% improvement over Vivado
within 5 minutes of extra build time. While longer runs lead
to slightly better improvements, these results demonstrate how
EqMap can achieve area reductions within a short period of
time, even when input designs are scaled to beyond 10,000
LUTs. In this specific case, EQMap can be used to audit
synthesis tools and perhaps even reverse-engineer adverse
behavior. Hence, EqMap proves to be a practical tool to
quickly improve a baseline synthesis run.

TABLE III: EqMap synthesis results of n-bit ALU

ALU Bit Width LUT Count

Vivado 2024 EqMap % Improvement
8 14 14 0.00%
16 30 30 0.00%
0.00%
512 1540 1540 0.00%
1024 4292 3679 14.28%
2048 8592 7363 14.30%
4096 15516 14401 7.19%

VII. CONCLUSION AND FUTURE WORK

While technology mapping has been studied for decades,
the end of transistor scaling will require new logic synthesis
tools that are less heuristic in nature. This work seeks to
demonstrate that there are practical solutions that can bridge
the gap between SAT-based exact synthesis and cut enu-
meration techniques. With EqMap, we can use e-graphs to
improve FPGA technology mapping with a post-processing
compilation step. Specifically, our results show that EqMap
improves synthesis by 12% fewer LUTs on average without
increasing circuit depth. While other techniques may approach
or beat these gains, equality saturation as a formal method
makes e-graphs a particularly trustworthy method by which to
transform circuits. Lastly, e-graph construction is decoupled
from extraction, meaning this type of flow is particularly
adaptive to new optimization objectives.

As for future work, the main research problem is the
integration of more sophisticated extraction techniques. The
final QoR is still largely contingent on e-graph extraction, and
more advanced extraction techniques would likely improve the
results even further. While simple greedy extraction clearly
serves a purpose, it fails to capture the full potential of
EqMap’s rewriting system. Nonetheless, EQMap is a promising
step towards EDA tools that can better span the gap between
exact and fully heuristic logic synthesis.
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