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ABSTRACT
With the end of Dennard scaling and Moore’s Law reaching its
limits, domain-specific hardware specialization has become a cru-
cial method for improving compute performance and efficiency
for various important applications. Leading companies in compet-
itive fields, such as machine learning and video processing, are
building their own in-house technology stacks to better suit their
accelerator design needs. However, currently this approach is only
a viable option for a few large enterprises that can afford to invest
in teams of experts in hardware, systems, and compiler develop-
ment for high-value applications. In particular, the high license cost
of commercial electronic design automation (EDA) tools presents
a significant barrier for small and mid-size engineering teams to
create new hardware accelerators. These tools are essential for
designing, simulating, and testing new hardware, but can be too
expensive for smaller teams with limited budgets, reducing their
ability to innovate and compete with larger organizations.

More recently, open-source EDA toolflows [1] [8] [7] [3] have
emerged which offer a promising alternative to commercial tools,
with the potential to provide more cost-effective solutions for hard-
ware development. For example, OpenROAD [1] allows the design
of customASICs withminimal human intervention and no licensing
fees. During initial development, it was also able to take advantage
of existing tools such as Yosys [? ] and KLayout [4] to reduce the
amount of new code required to get a working flow. However, early
adoption of open-source alternatives carries risk, as open-source
EDA projects often lack important features and are less reliable
than commercial options. Additionally, current open-source EDA
tools may produce less competitive quality of results (QoR) and may
not be able to catch up to commercial solutions anytime soon. Even
when EDA tool access is not an issue, designing and implementing
special-purpose accelerators using conventional RTL methodology
can be unproductive and incurs high non-recurring engineering
(NRE) costs. High-level synthesis (HLS) has become increasingly
popular in both academia and industry to automatically generate
RTL designs from software programs. However, existing HLS tools
do not help maintain domain-specific context throughout the de-
sign flow (e.g., placement, routing), which makes achieving good
QoR difficult without significant manual fine-tuning. This hinders
wider adoption of HLS.

We advocate for open EDA verticals as a solution to enabling
more widespread use of domain-specific hardware acceleration. The
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objective is to empower small teams of domain experts to produc-
tively develop high-performance accelerators using programming
interfaces they are already familiar with. For example, this means
supporting domain-specific frameworks like PyTorch or Tensor-
Flow for ML applications. In order for EDA verticals to proliferate,
there must first be extensible infrastructure similar to LLVM [5]
and MLIR [? ] from which to build new tool flows. The proper EDA
infrastructure would include novel intermediate representations
specifically tailored to the unique challenges in gradually lowering
high-level code down to gates.

The CIRCT project [2] is the closest work that exists to a true
inter-operable hardware design infrastructure made for open EDA
verticals. In fact, CIRCT was chartered specifically for this purpose.
Building on the MLIR project, CIRCT defines various dialects that
are relevant to hardware design, such as RTL, FSM, handshake, and
pipeline. These dialects provide a standardized way for exchanging
information between tools at different levels of the compilation pro-
cess, both within and across layers. The key benefit of this approach
is that the dialects are specifically designed to meet the needs of
downstream compilers, as opposed to the conventional practice of
using Verilog or VHDL as the representation for interchanging or
signing-off designs between EDA tools.

The primary focus of CIRCT so far has been simplifying RTL
compilers. While it provides some support for high-level design
specification, implementing a traditional HLS tool in CIRCT does
not address the underlying problem HLS faces. Better EDA verticals
hinge on programming models that can (1) bridge the gaps between
popular domains, (2) provide designers with greater control on
important customizations, (3) and serve as a compilation target for
multiple high-level domain-specific languages (DSLs). There are
several ongoing efforts that attempt to tackle this challenge. For
example, Calyx [9] is an intermediate representation that captures
both the temporal control flow of programs and reusable hardware
resources, making it easier to build compilers for domain-specific
languages that generate RTL. HeteroCL [? ] provides a Python-
based intermediate language that separates the specification of
algorithms from hardware customization in terms of data types,
compute, and memory architectures; it further raises the abstrac-
tion level of accelerator design and can serve as a focal point for
integrating various HLS optimizations and supporting high-level
DSLs.

To reiterate, the newest experimental EDA tools aspire to bet-
ter exploit domain-specific information to simplify optimizations
and provide better upfront QoR with minimal intervention from
engineers. Nevertheless, there are still many other unanswered
questions related to open EDA verticals for physical design, and
these questions present great research opportunities for the physical
design community to explore. This leads into the second compo-
nent of EDA verticals: a vertically integrated approach allows for
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cross-stack optimizations and for them to take place at higher levels
of abstraction. By sharing more context across the stack, each tool
in the flow can have a tighter focus on its specific role. As a con-
sequence, redundant steps are eliminated, and there is a reduced
chance that stages of the flow will optimize in opposition to one
another. As for reducing the cost of creating new verticals, it will be
important to use open standard interfaces as interchange between
different tools so as to capture the commonality of compiling for
different domains.

Several recent efforts have demonstrated the benefits of using
higher-level context to improve physical design. For example, Au-
toBridge [? ] proposes a solution for the frequency degradation of
designs spanning multi-die FPGAs by performing coarse-grained
floor-planning of the HLS functions. AutoBridge uses the dataflow
graph to distribute the HLS functions across the FPGA dies and
insert additional pipeline registers in RTL. This work demonstrates
cases where the ordinary register re-timing is not sufficient, and it is
a good example of the higher-level optimizations awarded by verti-
cally integrated flows. In this case, restricting the input HLS designs
to a dataflow model enables a close coupling of placement and the
HLS frontend, and this lessens the difficulty of the compilation for
the backend. However, AutoBridge achieves these results through
complex modification of the RTL produced by HLS. Even one step
lower, one could imagine having an interface to directly modify
and place netlists. As a follow-up work to AutoBridge, RapidStream
[? ] also partitions designs at the HLS level. However, this work
compiles the partitions in parallel and bridges the separately com-
piled pieces by directly editing the netlists and partial placements.
The higher-level knowledge about how partitions will be laid out
on the device allows for a simple router in the stitching phase that
is much faster than a full-featured general-purpose router. Rapid-
Stream achieves this through an open-source framework, called
RapidWright [6], which enables custom place-and-route algorithms
for AMD Xilinx FPGAs. In the end, the work was able to achieve
both compile time speedups and increases in clock frequency. On
one level, open EDA verticals would encourage more tools like
RapidStream and RapidWright to exist. More importantly, having
open standard interfaces would allow these tools to be used in
conjunction for stacking benefits.

As the engineering effort and cost required to build accelerators
with conventional EDA flows continue to increase, we need to seek
out productivity increases through domain-specific approaches.
Tighter vertical integration in these new EDA flows will allow pro-
ductivity and QoR gains that have been impractical to attain in the
past. Moreover, open standard interfaces will enable the develop-
ment of better domain-specific tools with less effort by seamlessly
reusing parts of existing tools. Finally, using open standards in EDA
verticals will naturally encourage the use of more fully open-source
tools. In the end, domain-specific flows, with their cross-stack opti-
mizations and improved design productivity, will be preferred to
manual general-purpose flows and attract new customers of hard-
ware acceleration. Overall, we believe that open EDA verticals are
crucial for the future of the semiconductor industry. To fully real-
ize its potential, it will require close collaboration from hardware
engineers, compiler and EDA tool developers, and domain experts
across various fields.
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