
Accurate Operation Delay Prediction for FPGA HLS
Using Graph Neural Networks

Ecenur Ustun*, Chenhui Deng*, Debjit Pal, Zhijing Li, Zhiru Zhang
School of Electrical and Computer Engineering, Cornell University, Ithaca, NY

{eu49,cd574,debjit.pal,zl679,zhiruz}@cornell.edu

ABSTRACT
Modern heterogeneous FPGA architectures incorporate a variety
of hardened blocks for boosting the performance of arithmetic-
intensive designs, such as DSP blocks and carry blocks. Since hard-
ened blocks can be configured in different ways, a variety of dat-
apath patterns can be mapped into these blocks. We observe that
existing high-level synthesis (HLS) tools often fail to capture some
of the operation mapping patterns, leading to limited estimation
accuracy in terms of resource usage and delay. To address this de-
ficiency, we propose to exploit graph neural networks (GNN) to
automatically learn operation mapping patterns. We apply GNN
models that are trained on microbenchmarks directly to realistic
designs through inductive learning. Experimental results show that
our approach can effectively infer various valid mapping patterns
on both microbenchmarks and realistic designs. Furthermore, the
proposed framework is exploited to improve the accuracy of delay
estimation in HLS.

CCS CONCEPTS
• Hardware → Reconfigurable logic and FPGAs; High-level
and register-transfer level synthesis; • Computing method-
ologies → Neural networks.

KEYWORDS
FPGAs, Graph Neural Networks, High-Level Synthesis

ACM Reference Format:
Ecenur Ustun, Chenhui Deng, Debjit Pal, Zhijing Li, Zhiru Zhang. 2020.
Accurate Operation Delay Prediction for FPGA HLS Using Graph Neu-
ral Networks. In IEEE/ACM International Conference on Computer-Aided
Design (ICCAD ’20), November 2–5, 2020, Virtual Event, USA. ACM, New
York, NY, USA, 9 pages. https://doi.org/10.1145/3400302.3415657

1 INTRODUCTION
Operation delay estimation is a crucial task in high-level synthesis
(HLS) [4], as it directly impacts where the clock cycle boundaries
are introduced during scheduling and pipelining [5–7, 24]. Cur-
rently, most academic and commercial HLS tools rely on simple

*Equal contributions.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
ICCAD ’20, November 2–5, 2020, Virtual Event, USA
© 2020 Association for Computing Machinery.
ACM ISBN 978-1-4503-8026-3/20/11. . . $15.00
https://doi.org/10.1145/3400302.3415657

delay models where each operation is pre-characterized in isola-
tion and the overall delay is calculated additively over individual
operations [2, 4, 35]. However, during technology mapping, opera-
tions are clustered into device resources, invalidating the additive
approach. It is a challenging task for HLS tools to accurately predict
operation mappings as this requires knowledge of the target device
architecture (including the architecture of the hardened blocks),
application requirements (e.g., target speed), and better heuristics
to identify how the given application requirements are best met
with the given design structure on the given device architecture.
Introducing LUT-based mapping-awareness in HLS has been shown
to improve area and timing by producing better scheduling solu-
tions [28, 39]. However, these prior efforts mainly consider optimiz-
ing the mapping on soft logic and can only improve logic-intensive
designs, despite the fact that modern FPGA architectures include a
variety of hardened blocks in addition to the array of programmable
LUTs.

Digital signal processing (DSP) blocks are designed for high-
speed arithmetic operations such as multiplication and accumula-
tionwhich are fundamental in various applications, such asmachine
learning (ML), image processing, and high performance computing.
DSP blocks can be configured in various ways depending on the
application requirements and design constraints, each configura-
tion corresponding to a unique datapath pattern. Modern FPGAs
also embed dedicated carry blocks consisting of dedicated carry-
lookahead logic, muxes, and fast routing that are independent of
the LUT-based soft logic. They further improve efficiency of arith-
metic operations such as adders and counters. Existing commercial
HLS tools typically follow hard-coded rules to infer mapping of
operations onto DSP or carry blocks through subgraph matching.
These rules need to be re-generated by HLS tool developers when
new FPGA architectures are available, which in practice is a labor-
intensive process. Moreover, these manual rules often fail to predict
some of the more complex mapping behaviors of logic synthesis.

There has been an increasing use of ML to improve quality of
results estimations in HLS [8, 21, 23, 38]. Among these, QuickEst [8]
leverages ML inference to narrow the gap between resource esti-
mates in the HLS report and actual post-implementation results.
While QuickEst helps to reduce error in area estimation, it cannot
be easily extended to delay estimation because the underlying ML
model does not use any structural features from the input design.

In order to increase productivity and portability in HLS devel-
opment, we argue that it is essential to automate the inference of
mapping patterns. To this end, we propose to leverage the emerg-
ing graph learning techniques, specifically graph neural networks
(GNNs), to automatically learn mapping and clustering of arith-
metic operations in HLS. Since mapping and clustering patterns are
local structures around arithmetic operations and GNN captures

1

ICCAD ’20, November 2–5, 2020, Virtual Event, USA Ecenur Ustun, Chenhui Deng, Debjit Pal, Zhijing Li, Zhiru Zhang

local neighborhood information in graph-structured data, we find
GNN to be an effective way to learn these patterns. We then show
improvements in the accuracy of delay characterization in HLS with
the introduction of mapping-awareness, which accounts for the
optimizations in logic synthesis. Our major technical contributions
are as follows:

• To the best of our knowledge, this is the first work to predict
technology mapping patterns of operations in HLS using graph
learning. Particularly, we propose GNN-based inference on the
clustering of arithmetic operations in HLS dataflow graphs.

• We propose D-SAGE, an enhanced GNNmodel targeting at learn-
ing high-quality node representations on directed graphs. We ap-
ply D-SAGE to learning operation clustering on dataflow graphs
and achieve 17.3% accuracy improvement compared to a widely-
used baseline GNN model called GraphSAGE [12].

• We develop parameterized microbenchmark generation of arith-
metic operations in order to generate data with various mapping
patterns for building generalizable GNN models. We then extract
the mapping between HLS intermediate representation (IR) and
post-mapping netlist at the arithmetic operation level to formu-
late our GNN model in HLS and learn optimization decisions in
logic synthesis.

• We perform mapping-aware delay characterization in HLS based
on the patterns learned by our GNN-based technique. Our ap-
proach leads to a 72% reduction in root-mean-square error com-
pared to operation delay estimation in Vivado HLS.

The rest of this paper is organized as follows: Section 2 pro-
vides background on delay characterization in HLS, mapping of
arithmetic operations onto FPGA resources, and GNNs. Section 3
presents our overall approach to learn operation mapping patterns
using GNNs. Section 4 reports experimental results. Section 5 sur-
veys related work, followed by conclusions in Section 6.

2 PRELIMINARIES
DelayCharacterization inHLS –Academic and commercial HLS
tools provide delay estimations to guide implementation decisions
and design space exploration, andmeet certain post-implementation
criteria such as timing closure. These tools typically build simple
additive delay models based on pre-characterization of individual
operations [2, 4, 35]. For a given device family, operations of vari-
ous types and bitwidths in HLS IR are pre-characterized to extract
operation delays. With the pre-characterized library of target de-
vice families, HLS tools can provide delay estimations of designs
by looking up operation delays from the library and calculating
overall delays by summing up delays of operations along the paths
in the dataflow graphs. Such an approach leads to inaccurate logic
delay estimations due to the lack of awareness of downstream
optimizations in logic synthesis and technology mapping.

DSPMapping –Modern heterogeneous FPGA devices include spe-
cialized DSP blocks to support high-performance implementations
of arithmetic operations, such as FIR filters and FFT. DSP blocks are
highly configurable to realize a wide range of functionalities and
system requirements. They have pre-fabricated datapaths which
can be configured by various control bits. For example, datapath of
the DSP48E2 primitive in Xilinx Ultrascale devices [34] includes a

+ sext

+ sext

+ +
sext +

HLS predicted

a ternary adder

CARRY8 CARRY8CARRY8

Carry chain

Mapped to

carry chain

5

6

1

2

3 4

7 8

Post-synthesis adder cluster

Figure 1: Adder-cluster for an input DFG – + represents an
add operation; sext represents a sign extension operation. HLS
clusters add operations 3 and 4 only (blue rectangular box), whereas
technology mapping clusters add operations 1-4 along with sign
extension operations 5-6 (green rectangular box).

27-bit pre-adder unit, a 27×18-bit multiplier, a 48-bit ALU, registers,
wide logic operations, and multiplexers controlled by configuration
bits to be able to implement various circuit subgraphs. Depending
on the optimizations in logic synthesis and technology mapping
stages, subgraphs in a design canmap to DSP blocks in various ways.
HLS tool proposed in [27] targets an older DSP block primitive, i.e.,
DSP48E1, which supports smaller number of configurations com-
pared to the DSP48E2 primitive. More importantly, they enumerate
all subgraph templates in a DSP block which means mapping rules
need to be regenerated for newer DSP architectures. Due to the
increasing complexity of specialized blocks on newer FPGA device
families, it becomes more challenging to enumerate all possible tem-
plates. We propose to automatically learn DSP mapping patterns by
formulating GNNs on arithmetic-intensive dataflow graphs (DFGs).

Adder Cluster Mapping – In addition to the specialized DSP
blocks, modern heterogeneous FPGA devices also include dedi-
cated carry logic to speed up arithmetic operations (e.g., CARRY8
blocks in Xilinx Virtex UltraScale+ devices [33]). RTL synthesis
can take advantage of the carry blocks by mapping two or more
adjacent addition/subtraction operations on a single carry chain
along with other logic operations (e.g., sign extension, bit trun-
cation, zero extension). We define such patterns of two or more
adjacent addition/subtraction operations along with other logic
operations as an adder cluster. We have shown one such adder
cluster in Figure 1, where all the add and sign-extension operations
within the green block are mapped to a single carry chain. On the
other hand, HLS usually can only predict the ternary adder patterns
where an addition/subtraction operation directly feeds a following
addition/subtraction operation; this is illustrated in the the inner
blue block of Figure 1. In this work, we also propose a learning-
assisted methodology to automatically identify adder cluster that
is mapped to a carry chain, thereby improving delay estimation.

Graph Neural Networks – Recent years have seen a surge of
interest in deep learning on graphs, also known as graph neural
network, which aims to encode nodes into low dimensional vectors
that maximally preserve graph structural information. Specifically,
given a graph G = (V, E), where V and E represent node and

2

Accurate Operation Delay Prediction for FPGA HLS Using Graph Neural Networks ICCAD ’20, November 2–5, 2020, Virtual Event, USA

HLS IR

Scheduling,

Binding, RTL

Generation

Technology

Mapping

Micro-

benchmark

Generation

+
+

×

+
×

+

×

0

1

48

1

0

21

0

1

10

1

0

32

0

1

18

0

1

27

1

0

36

DSP

DSP

DSP

Matching HLS

IR with Netlist

Conversion to

directed graph

node

features

+
+

×

+
×

+

×

0

1

48

1

0

21

0

1

10

1

0

32

0

1

18

0

1

27

1

0

36

+
+

×

+
×

+

×

GNN Step 1: Generate embedding

function through feature aggregation

and neural networks

LUT LUT

DSP

GNN Step 2: Learn embeddings

through supervised learning and

perform classification

+
+

×

+×

+

××

+
+

×

+×

+

×

⁞⁞ ⁞

⁞

⁞⁞

⁞

DSP

DSP

DSP

0

1

18

0

1

27
0

1

10

1

0

21

0

1

48

1

0

36

⁞⁞

⁞

Figure 2: Overall flow – GNN-based learning of operation mapping and clustering in arithmetic-intensive designs

edge set, respectively, we have the adjacency matrix 𝐴 ∈ R𝑛×𝑛 that
captures the topology information of the graph with 𝑛 nodes. Let
𝑋 ∈ R𝑛×𝑘 be the node attribute matrix whose 𝑖-𝑡ℎ row represents
the attribute information of the 𝑖-𝑡ℎ node in a 𝑘-dimension vector.
A graph neural network (GNN) model is essentially a trainable map-
ping function 𝑓 such that 𝐻 = 𝑓 (𝐴,𝑋), where 𝐻 ∈ R𝑛×𝑑 is called
embedding matrix and 𝐻𝑖,: represents the 𝑑-dimension embedding
vector which preserves the (local) structural information of node 𝑖 .

A powerful GNN model should encode nodes with similar local
structures into similar embedding vectors in the embedding space
(e.g., Euclidean space). GNN techniques have shown promising
results for various applications such as node classification, link
prediction, and community detection [1, 11, 40]. Although there
exist various GNN models, they can broadly be divided into the
following two categories:

• Transductive model: To obtain the embedding vector of each
node, a transductive GNN model requires to see the whole graph
structure during training, which means that the model needs to
be retrained once graph structure has changed (e.g., adding a new
node to the graph).

• Inductive model: Instead of knowing the whole graph struc-
ture for producing the embedding vector per node, the inductive
GNNmodel learns the aggregation function that aggregates node
attribute vectors from neighbors to generate node embeddings.
The trainable aggregation function is shared across the graph,
which enables the trained model to be applied on a different
graph without retraining. In this work, we use inductive GNN
model to learn operation clustering across different DFGs.

3 APPROACH
We propose to automatically learn mapping and clustering patterns
of arithmetic operations, i.e., how various arithmetic subgraphs
map to configurable datapaths of hardened blocks on FPGAs, us-
ing graph learning techniques. We formulate GNNs on arithmetic-
intensive DFGs to learn mapping and clustering patterns based on
dataflow structures and operation features. To be able to carry out
our learning-assisted methodology, we automatically extract the
mapping between HLS operations and netlist objects, which is a

nontrivial task due to the difference in the level of abstractions and
difficult-to-predict optimization decisions in RTL synthesis.

Our overall flow is illustrated in Figure 2. From a set of mi-
crobenchmarks, our tool extracts dataflow graphs from the HLS
IR and matches DFG operations with netlist objects after the tech-
nology mapping stage. Based on these correlations, actual opera-
tion mapping and clustering patterns are extracted automatically.
Dataflow graph structure, node features, and the actual mapping
patterns (i.e., ground truth) are used to train our GNN model. Once
the model is trained, we can infer mapping patterns from given
dataflow graphs using the previously trained GNNmodel. Our tech-
nique can successfully learn operation mappings and their cluster-
ing into device resources, and consequently avoid the manual and
tedious process for matching HLS subgraphs to FPGA resources.

3.1 Microbenchmark Generation
To learn mapping patterns from various local structures and gener-
alize to unseen designs, we generate microbenchmarks composed
of arithmetic operations. These microbenchmarks are used to train
our GNNmodel in an inductive manner such that the trained model
can directly be used to predict mapping patterns of unseen designs.
Therefore, microbenchmarks should contain a wide spectrum of
subgraph structures that can be mapped to device resources after
technology mapping. We first generate directed, weakly connected,
simple graphs of addition and multiplication operations with differ-
ent connectivities as shown in Figure 3a. Total number of operations
in a graph is set to 𝑛, whereas the number of multiplication op-
erations and the number of inputs are varied to generate various
data-sharing patterns, contributing to the variance in training set.
Generated graphs are then converted to C programs to be input to
the HLS flow as shown in Figure 3b.

3.2 Feature and Ground Truth Extraction
The input to our flow is HLS IR, which in our case is the dataflow
graph. Operations in the HLS IR are represented as nodes and data
dependencies are represented as edges in dataflow graphs. Learning-
assisted approaches build models based on the features and ground
truth of the underlying data. Unlike regular Euclidean data types
such as images, graphs are highly irregular which makes manual

3

ICCAD ’20, November 2–5, 2020, Virtual Event, USA Ecenur Ustun, Chenhui Deng, Debjit Pal, Zhijing Li, Zhiru Zhang

+

×

+

a0 a1
a2

a11

a12
a11

out[0]

(a)

1 void DUT(int a0,
2 int a1,
3 int a2,
4 int& out){
5
6 int a11;
7 int a12;
8
9 a11 = a0 + a1;
10 a12 = a11 * a2;
11 out = a11 + a12;
12 }

(b)

Figure 3: Microbench generation procedure – (a) Weakly con-
nected directed graph comprising a total of 𝑛 = 3 operations of
which two operations are addition and one operation is multiplica-
tion. (b) C program generated from the graph of (a).

feature engineering inefficient. Therefore, there has been an increas-
ing interest in learning representations in graph-structured data,
where the main goal is learning low-dimensional representations
of graph objects [32].

In the context of arithmetic operation mapping and clustering,
embeddings need to capture both structural and contextual infor-
mation. Structural information stands for nodes in a graph and their
connectivity patterns, illustrated as the directed dataflow graph
extracted from HLS IR in Figure 2. This sort of information is nec-
essary to identify the neighborhood of an arithmetic operation and
consequently their mapping patterns. In our formulation, struc-
tural information is encoded as adjacency matrices, from which
node connectivities can be inferred. Contextual information, i.e.,
node features, are supplementary information we have about the
operations, which are operation type and bitwidth. Node features,
illustrated as the vectors on each node in Figure 2, are essential for
two reasons. First, mapping patterns are local structures around
arithmetic operations, bringing about the need to distinguish differ-
ent operation types. Secondly, hardened blocks (e.g., DSPs) support
functionalities of certain bitwidths, making operation bitwidths an
important factor in identification of operation clustering.

To guide embedding generation in GNNs in a supervised man-
ner such that embeddings preserve actual operation mapping and
clustering information, we extract ground truth (i.e., node and edge
labels) of the underlying data. Extraction of ground truth requires
matching operations in HLS IR to device resources in post-mapping
netlist. To the best of our knowledge, this is the first work to real-
ize automatic matching of HLS IR to post-mapping netlist at the
arithmetic operations level. Automation involves the analysis of
configuration bits and input signal bits of each hardened block
along with connectivities of operations in dataflow graphs and
netlist objects in post-mapping netlists.

3.3 Graph Neural Network Model
As indicated in [27], DSP mapping patterns are essentially local
structure around multiply operation. As a consequence, whether
an operation is mapped into a DSP block is fully determined by
its local structure and attribute information of its neighbors (e.g.,
operation type, bitwidth). Similarly whether an add operation is

+

+

× +

A

B

C D

(a) Input DFG.

A

B

D

C

C

(b) GraphSAGE.

A

B

C

D

C

 C

(c) D-SAGE.

Figure 4: Comparison of GraphSAGE andD-SAGE at the𝑘-th
layer – (a) Input dataflow graph. (b) Compute embedding vector
of node 𝐶 (i.e., multiply operation) with GraphSAGE. (c) Compute
embedding vector of node 𝐶 with D-SAGE.

clustered with other nearby adjacent add and logic operations (if
any) is determined by its local structure. Since GNN can produce
node embeddings that incorporate both local structure and node at-
tributes, we exploit GNN to learn operation mapping and clustering.
Specifically, given the data flow graph, for DSP mapping we label
nodes mapped into a DSP block as 1, and 0 otherwise, and for adder
cluster mapping we label nodes mapped into a carry chain as 1,
and 0 otherwise. Then we can apply the GNN model to this binary
node classification task. Similarly, we can also perform binary edge
classification to predict whether an edge is mapped into a DSP or a
carry block. The embedding vector of an edge can be obtained by
averaging the embeddings of source and target node.

Inductive learning. We extend the popular GNN model called
GraphSAGE [12] to learn the node embeddings in an inductive man-
ner. More specifically, GraphSAGE learns an aggregation function
(AGG) that collects the information from neighbors and produces
node embeddings at the 𝑘-𝑡ℎ layer as follows:

ℎ
(𝑘+1)
𝑖

= 𝑀𝐿𝑃 (𝑘) (ℎ (𝑘)
𝑖

| | 𝐴𝐺𝐺 (𝑘) ({ℎ (𝑘)
𝑗

, 𝑗 ∈ N (𝑖)})) (1)
whereN(𝑖) is the neighbor set of node 𝑖 , ·| |· is featurewise concate-
nation, 𝐴𝐺𝐺 (𝑘) and 𝑀𝐿𝑃 (𝑘) represent the aggregation function
and multilayer perceptron at the 𝑘-𝑡ℎ layer, respectively. Note that
ℎ
(0)
𝑖

= 𝑥𝑖 , where 𝑥𝑖 is the initial attribute vector of node 𝑖 .
As shown in Eq. (1), GraphSAGE learns the embedding vectors in

two steps: the aggregation function 𝐴𝐺𝐺 first collects embedding
vectors of neighbors to get the aggregated vector, which is then
fed into𝑀𝐿𝑃 to update the embedding vector from previous layer.
Since the trainable weights inside𝑀𝐿𝑃 module do not depend on
the whole structure (i.e., adjacency matrix), the trained GraphSAGE
model can be directly applied to generate embedding vectors of
new graphs without retraining.

Enhanced GNN model for directed graph. Although Graph-
SAGE inductively learn node embeddings, it fails to support di-
rected graphs. Specifically, the aggregation function of GraphSAGE
treats all neighbors uniformly when gathering their information,

4

Accurate Operation Delay Prediction for FPGA HLS Using Graph Neural Networks ICCAD ’20, November 2–5, 2020, Virtual Event, USA

which makes it unable to distinguish predecessors and successors.
Figure 4a shows a simple dataflow graph, where nodes 𝐴, 𝐵, and 𝐷
denote addition operations and node 𝐶 represents multiplication
operation. Since nodes 𝐴 and 𝐵 are the predecessors of node 𝐶 (i.e.,
pre-adders), while node 𝐷 is the successor of 𝐶 (i.e., post-adder),
as shown in Figure 4b, the 𝐴𝐺𝐺 of GraphSAGE fails to capture
such information, which limits its power to learn high-quality node
embeddings on directed graphs. To tackle this issue, we derive a
variant of GraphSAGE model called D-SAGE in the following.

ℎ
(𝑘+1)
𝑖,𝑝𝑟

= 𝑀𝐿𝑃
(𝑘)
𝑝𝑟 (ℎ (𝑘)

𝑖
| | 𝐴𝐺𝐺 (𝑘)

𝑝𝑟 ({ℎ (𝑘)
𝑗

, 𝑗 ∈ PR(𝑖)})) (2)

ℎ
(𝑘+1)
𝑖,𝑠𝑢

= 𝑀𝐿𝑃
(𝑘)
𝑠𝑢 (ℎ (𝑘)

𝑖
| | 𝐴𝐺𝐺 (𝑘)

𝑠𝑢 ({ℎ (𝑘)
𝑗

, 𝑗 ∈ SU(𝑖)})) (3)

ℎ
(𝑘+1)
𝑖

= 𝑀𝐿𝑃 (𝑘) (ℎ (𝑘+1)
𝑖,𝑝𝑟

| | ℎ (𝑘+1)
𝑖,𝑠𝑢

) (4)

where PR(𝑖) and SU(𝑖) denote the predecessors and successors of
node 𝑖 , respectively. Intuitively, D-SAGE works on directed graphs
via separately collecting the information from predecessors and suc-
cessors of each node, and then combines the information from both
sides to update node embeddings at each layer. It is worth noting
that the concatenate operation in Eq. (2) and (3) can be viewed as
“skip connection” between layers, which leads to significant gains in
performance [13, 14]. As indicated by Eq. (5), we implement𝐴𝐺𝐺𝑝𝑟 ,
𝐴𝐺𝐺𝑠𝑢 , and 𝐴𝐺𝐺 of D-SAGE via the “MEAN” aggregator, which
is the most efficient yet effective one compared to other options,
such as LSTM and Max-Pooling aggregators [12].

𝐴𝐺𝐺 (𝑘) ({ℎ (𝑘)
𝑗

, 𝑗 ∈ N (𝑖)}) = 1
|N (𝑖) |

∑
𝑗 ∈N(𝑖)

ℎ𝑘𝑗 (5)

As shown in Figure 4c, our D-SAGE model exploits 𝐴𝐺𝐺𝑝𝑟 to
aggregate the information of predecessors per node and then feeds
it into𝑀𝐿𝑃𝑝𝑟 to generate the aggregated embedding vector of the
predecessor set. D-SAGE then produces the aggregated embedding
vector of the successor set in a similar way. Lastly, D-SAGE com-
bines both aggregated vectors and feeds them into another 𝑀𝐿𝑃

module to update the node embedding, as indicated in Eq. (4). In
this way, D-SAGE can effectively incorporate edge direction in-
formation, which enables D-SAGE capture both pre-adder (nodes
𝐴 and 𝐵) and post-adder (node 𝐷) when learning DSP mapping.
While D-SAGE adopts the idea of learning aggregation function
from GraphSAGE, the way that D-SAGE works on directed graphs
and the addition of “skip connection” make a substantial differ-
ence for learning operation clustering. Our experimental results in
Section 4.2 show that D-SAGE converges faster and considerably
improves the accuracy of operation clustering compared to the
vanilla GraphSAGE.

3.4 Learning Operation Mapping
The first step to learning mapping schemes is identifying the type of
device resource each arithmetic operation in a dataflow graph maps
onto, i.e., learning operation mapping. For example, an addition
operation can map to a LUT network or DSP blocks. Here, the
problem is binary node classification where nodes correspond to
operations in DFGs and these nodes are labeled depending on the
type of resource that they map onto after technology mapping, i.e.,
1 if DSP, 0 if LUT. For adder-cluster mapping, we label all add/sub
operations in a cluster along with other logic operations (e.g., sext,

DSP DSP

a
b

c

0
+

1
+

2
×

3
×

Figure 5: An example to illustrate the impact of operation
clustering on timing.

zext etc., if any) as 1 if they are mapped to a carry-chain; any single
add/sub operation that is mapped to a carry-chain is labeled as 0.
In Figure 1, add operations 1-4 and sign extension operations 5-6
are mapped into a single carry chain, hence all those nodes are
labeled 1. On the other hand, add operation 8 is not clustered with
any other add/sub operations and hence is labeled 0.

Characterization of the device resource types in a DFG is not
sufficient to learn delay of a given design, which is illustrated in
Figure 5. Both node 0 and node 1 are labeled as 1, and whether node
2 is clustered with node 0 or node 1 into a DSP block has a direct
impact on delay calculation, as the path from a to c passes through
a single DSP block whereas the path from b to c passes through
two DSP blocks, or vice versa. To calculate delay accurately, we
should also know which operation is clustered with which other
operation(s) into a DSP block. To this end, we perform the second
stage of our learning formulation, i.e., learning operation clustering.
Here we have a binary edge classification problem, where each
edge with label 1 represents clustering of its two nodes in the same
device resource. In this setting, edges are abstract in the sense that
they represent clustering schemes.

4 EVALUATION
We evaluate our operation mapping, clustering, and delay charac-
terization flows with microbenchmarks we generated as described
in Section 3.1 and real designs from MachSuite [25]. We collect
data and run experiments using Xilinx Vivado and Vivado HLS
2019.1 targeting a Virtex UltraScale+ device. The corresponding
DSP architecture is the DSP48E2 slice, which consists of a 27-bit
pre-adder unit, a 27 × 18-bit multiplier, and a 48-bit ALU [34].

For the classification tasks, metrics of interest are (1) precision,
which is the percentage of the correctly classified samples among all
samples with the predicted label 1, (2) recall, which is the percentage
of the correctly classified samples among all samples with the actual
label 1, and (3) F1, which represents a balance between precision and
recall, and is our main metric for evaluating classification accuracy.
Precision, recall, and F1 scores take values from 0 to 1, while values
closer to 1 mean higher accuracy.

For the regression tasks, metrics of interest are (1) root-mean-
square error (RMSE), which is a standard measure of the spread
of the actual values around those predicted by the model, and
(2) coefficient of determination (R2), which is another standard
measure of how well a model approximates actual data. R2 metric
can take any value smaller than or equal to 1, while 1 corresponds

5

ICCAD ’20, November 2–5, 2020, Virtual Event, USA Ecenur Ustun, Chenhui Deng, Debjit Pal, Zhijing Li, Zhiru Zhang

to the best possible accuracy. RMSE carries the same unit as the
ground truth and smaller values correspond to higher accuracy.

In regard to hyperparameters of machine learning models in
our experiments, we choose three layers MLP with a hidden layer
dimension of 256, and 400 epochs. Moreover, we use two layers
in both D-SAGE and GraphSAGE, with the hidden dimension of
60. We use a learning rate of 0.001, a weight decay of 0.0005, and
rectified linear unit (ReLU) as activation function for all models.
For node classification task, we use an early stopping strategy
on the observed training loss, with a patience of 20 epochs. For
edge classification task, we train all models for 100 epochs with
the batch size of 512. Since our tasks are binary classification, we
use binary cross entropy (BCELoss) with positive label weight as
6 to undermine the dataset imbalance issue. We further leverage
stochastic gradient descent for optimization.

4.1 Data Collection
We set the total number of operations for each microbenchmark to
20 while the number of multiplication operations is varied between
4 to 8. We further vary the number of inputs of each design from
8 to 12 in order to generate various data-sharing patterns across
DFGs. Each microbenchmark is synthesized as combinational logic
on Virtex UltraScale+ device xcvu11p. In our dataset generated
from 2000 microbenchmarks, HLS-estimated LUT usage ranges
from 23 to 449, DSP usage ranges from 3 to 12, and estimated delay
ranges from 7.2 ns to 24.3 ns; whereas post-routing LUT usage
ranges from 15 to 356, DSP usage ranges from 3 to 11, and delay
ranges from 5.2 ns to 17.3 ns. To evaluate generalizability of our
learning model to real designs, we perform additional testing on
FIR filter and five MachSuite [25] benchmarks with DSP usage (i.e.,
FFT, GEMM, MD, SPMV, and STENCIL). Non-optimized versions
of these real benchmarks (e.g., non-pipelined) are synthesized on
the same device as the microbenchmarks, targeting 250 MHz clock
frequency.

4.2 Comparison of Learning Models
To show our model is indeed useful for learning operation mapping
and clustering, we compare D-SAGE with vanilla GraphSAGE as
well as multilayer perceptron (MLP) in Figure 6. We train all models
on mul4,5,7,8 and test on mul6. In regard to node classification task,
as shown in Figure 6a and 6b, GNN-based models (D-SAGE and
GraphSAGE) significantly improve the F1 score compared to MLP,
which indicates that learning graph structural information plays a
crucial role in operation mapping. Moreover, D-SAGE further im-
proves GraphSAGE by a relative gain of (0.95−0.81)/0.81×100% =

17.3%, which means that learning the edge direction information
does make a difference. It is worth noting that D-SAGE also con-
verges much faster than both baselines.

As for edge classification, as shown in Figure 6c and 6d, D-SAGE
still achieves the best performance and improves GraphSAGE by
a margin of (0.89 − 0.76)/0.76 × 100% = 17.1%. Our insight is that
D-SAGE can effectively learn the roles of pre-adder and post-adder
respectively, while GraphSAGE fails to capture such information
and learns all adders in the same way.

0 200 400 600 800
Batch

0.6

0.7

0.8

0.9

M
ic

ro
-F

1

Node Classification (train)

D-SAGE
GraphSAGE
MLP

(a) Train F1 (node)

0 200 400 600 800
Batch

0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

M
ic

ro
-F

1

Node Classification (test)

D-SAGE
GraphSAGE
MLP

(b) Test F1 (node)

0 1000 2000 3000 4000 5000
Batch

0.5

0.6

0.7

0.8

0.9

M
ic

ro
-F

1

Edge Classification (train)

D-SAGE
GraphSAGE
MLP

(c) Train F1 (edge)

0 1000 2000 3000 4000 5000
Batch

0.5

0.6

0.7

0.8

0.9

M
ic

ro
-F

1

Edge Classification (test)

D-SAGE
GraphSAGE
MLP

(d) Test F1 (edge)

Figure 6: Comparison of various learning-assisted classifica-
tion tasks – (a) Training F1 score for node classification. (b) Test
F1 score for node classification. (c) Training F1 score for edge clas-
sification. (d) Test F1 score for edge classification.

4.3 Operation Mapping Prediction
We label each node in DFG with respect to the type of device re-
source they map onto after technology mapping. Operations are
labeled as 1 if they are implemented with DSP blocks, or labeled
as 0 if they are implemented with LUT networks. We first mea-
sure the accuracy of the HLS tool for this node classification task,
and then show our GNN-based classification results. Our model
is trained on a set of designs and tested on designs unseen during
training. To account for the potential impact of network structure
on the learning process, we reserve our test set to designs with a
certain number of multiplication operations and hide these designs
from training. For example, when the test set is mul4, our model
is trained on designs with 5, 6, 7, and 8 multiplication operations
and tested on those with 4 multiplication operations. In Table 1,
we report the classification metrics of HLS and our GNN-based
formulation for different training-testing splits. Our model is able
reduce false positive cases by 75% on average, reflected in the in-
crease in precision and F1 scores. Furthermore, we test our model
that is trained on microbenchmarks directly on real designs from
MachSuite [25]. Testing results on real designs are shown in Table 2.
Compared to HLS, our model D-SAGE achieves 46% improvement
in the operation mapping task.

We label each edge in DFG with respect to the clustering of
operations into device resources after technology mapping. Edges
are labeled as 1 if its nodes are clustered into the same DSP block
after technology mapping, and 0 otherwise. At this second stage
of the learning formulation, node labels predicted at the first stage
are used as extra node attributes, because whether operations are
mapped into DSP or not effect the clustering schemes. For example,
the edge between a node with label 1 and another node with label 0

6

Accurate Operation Delay Prediction for FPGA HLS Using Graph Neural Networks ICCAD ’20, November 2–5, 2020, Virtual Event, USA

Table 1: Node classification accuracy on microbenchmarks.

Method Training Set Test Set Precision Recall F1

- mul4 0.69 0.99 0.82
- mul5 0.72 0.99 0.84

HLS - mul6 0.74 1.00 0.85
- mul7 0.77 1.00 0.87
- mul8 0.77 1.00 0.87

mul5,6,7,8 mul4 0.88 0.95 0.91
mul4,6,7,8 mul5 0.90 0.97 0.93

D-SAGE mul4,5,7,8 mul6 0.92 0.98 0.95
mul4,5,6,8 mul7 0.93 0.95 0.94
mul4,5,6,7 mul8 0.87 0.99 0.92

Table 2: Node classification accuracy on real designs.

Method Training Set Test Set Precision Recall F1

HLS - MachSuite 0.33 0.60 0.43

D-SAGE mul4,5,6,7,8 MachSuite 0.45 1.00 0.63

Table 3: Edge classification accuracy on microbenchmarks.

Method Training Set Test Set Precision Recall F1

- mul4 0.61 0.87 0.71
- mul5 0.62 0.85 0.72

HLS - mul6 0.60 0.81 0.69
- mul7 0.59 0.77 0.67
- mul8 0.57 0.74 0.64

mul5,6,7,8 mul4 0.83 0.95 0.89
mul4,6,7,8 mul5 0.82 0.97 0.89

D-SAGE mul4,5,7,8 mul6 0.80 0.97 0.88
mul4,5,6,8 mul7 0.78 0.95 0.86
mul4,5,6,7 mul8 0.78 0.96 0.86

Table 4: Edge classification accuracy on real designs.

Method Training Set Test Set Precision Recall F1

HLS - MachSuite 0.25 0.60 0.35

D-SAGE mul4,5,6,7,8 MachSuite 0.42 1.00 0.59

has to be labeled 0 since only one of the nodes is mapped to a DSP
block. We first measure the accuracy of the HLS tool for this edge
classification task. We then show our GNN-based classification
results, which are later used to improve the accuracy of delay pre-
diction in HLS. We follow the same training-testing split strategy as
in the node classification task to ensure our model is generalizable
to unseen structures. In Table 3, we report the classification metrics
of HLS and our GNN-based formulation. Compared to the previous
node classification task, our improvement over the HLS tool in
the edge classification task is more significant. Our GNN-based
formulation reduces false positive cases by 62% and false negative
cases by 67% on average, reflected in the significant increase in
the F1 score. HLS tool fails to capture many clustering schemes of
operations into DSP blocks, which has a direct impact on timing.
Furthermore, we test our model that is trained on microbenchmarks
directly on real designs fromMachSuite [25]. Testing results on real
designs are shown in Table 4. Compared to HLS, our model D-SAGE
achieves significant improvement in the operation clustering task.

As shown in Table 5, we further evaluate our approach on our
microbenchmarks for carry chain clustering task. Specifically, we

Table 5: Edge classification accuracy of carry chain.

Method Training Set Test Set Precision Recall F1

HLS - mul6 0.13 0.24 0.17
MLP mul4,5,7,8 mul6 0.61 0.92 0.73

GraphSAGE mul4,5,7,8 mul6 0.63 0.94 0.75

D-SAGE mul4,5,7,8 mul6 0.73 0.94 0.82

formulate the carry chain clustering as an edge classification task,
where edge is labeled 1 if it is mapped into carry chain, and 0 oth-
erwise. Similar to the settings of DSP mapping, we train on designs
with 4, 5, 7, and 8 multiply operations, and test on designs with 6
multiply operations. Our results indicate that D-SAGE achieves the
best F1 score compared to other baselines, confirming its efficacy
on directed graphs.

4.4 Delay Prediction
We introduce mapping-awareness in HLS delay prediction by cal-
culating logic delays based on the results from learning operation
mapping. Improvement in the accuracy of delay prediction is shown
in Figure 7. We first show scatter plots of all microbenchmarks
with respect to logic delays, where each marker corresponds to a
microbenchmark, x-axis represents actual logic delays from post-
mapping netlists, and y-axis represents logic delays estimated in
HLS. As shown in Figure 7a, HLS deviates significantly from the ac-
tual delay values, especially for longer datapathswhere downstream
optimizations may become harder to predict. Our framework, on
the other hand, captures the timing behavior across all datapath
ranges as shown in Figure 7b. To better understand the source of
improvement, we also show histogram of percentage error in logic
delay prediction across all microbenchmarks. In Figure 7c, where we
show delay results from the HLS tool, majority of the designs have
more than 60% error in delay estimation and the maximum error is
143%. In Figure 7d, where we show D-SAGE-based results, almost
all designs have less than 60% error in delay estimation and the
maximum error is 88%. We further incorporate operation mapping
results of D-SAGE in improving delay estimations of MachSuite
designs. Percentage error of delay estimation in HLS for the realistic
designs are shown in Figure 7e, whereas the results from D-SAGE
are shown in Figure 7f. D-SAGE reduces maximum observed error
from 164% down to 40%. Our GNN-based model is considerably
more accurate compared to the HLS tool due to the introduction of
mapping-awareness in delay calculations.

To further show learning structural information is critical to
HLS delay estimation, we compare our approach against both HLS
report and QuickEst [8], which is the state-of-the-art method of
estimating resource usage for HLS. Specifically, we append the cor-
rected estimated delay from D-SAGE to the original HLS 87 features
(e.g., estimated number of DSPs), and then feed the new features to
QuickEst. We evaluate all the methods on the MachSuite designs.
Since QuickEst uses root relative squared error (RRSE) as the per-
formance metric, we choose the same metric for a fair comparison.
Lower RRSE score denotes better delay estimation results. Table 6
shows that applying D-SAGE to incorporate structure information
significantly reduces the delay estimation error of both HLS report
and QuickEst, which confirms that learning structural information
via D-SAGE does make a difference for HLS delay estimation.

7

ICCAD ’20, November 2–5, 2020, Virtual Event, USA Ecenur Ustun, Chenhui Deng, Debjit Pal, Zhijing Li, Zhiru Zhang

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
Actual Logic Delay (ns)

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0

Es
tim

at
ed

 L
og

ic
De

la
y

(n
s)

(a) Scatter plot of HLS estima-
tions on microbenchmarks

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
Actual Logic Delay (ns)

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0

Es
tim

at
ed

 L
og

ic
De

la
y

(n
s)

(b) Scatter plot of D-SAGE esti-
mations on microbenchmarks

0 20 40 60 80 100 120 140 160
Percentage Error of Delay Estimation

0

25

50

75

100

125

150

175

200

225

Nu
m

be
r o

f D
es

ig
ns

(c) Histogram of HLS estima-
tions on microbenchmarks

0 20 40 60 80 100 120 140 160
Percentage Error of Delay Estimation

0

25

50

75

100

125

150

175

200

225

Nu
m

be
r o

f D
es

ig
ns

(d) Histogram of D-SAGE esti-
mations on microbenchmarks

50 0 50 100 150 200
Percentage Error of Delay Estimation

0

1

2

3

4

5

Nu
m

be
r o

f D
es

ig
ns

(e) Histogram of HLS estima-
tions on MachSuite designs

50 0 50 100 150 200
Percentage Error of Delay Estimation

0

1

2

3

4

5

Nu
m

be
r o

f D
es

ig
ns

(f) Histogram of D-SAGE esti-
mations on MachSuite designs

Figure 7: Operation delay prediction in HLS.

Table 6: Delay estimation error (RRSE) on realistic designs.

Method Logic delay Logic+Interconnect delay

HLS 2.19 2.22
QuickEst [8] 1.92 2.44

D-SAGE+HLS 0.82 0.83
D-SAGE+QuickEst 0.89 1.20

5 RELATEDWORK
With increasing complexity of FPGA architectures, performance
optimization has become more challenging than ever. In recent
years, ML techniques are increasingly used to address that challenge
by automatically exploring optimal FPGA tool configurations [15,
29, 36]. In spite of such extensive research efforts, the discrepancy
between QoR estimations in HLS and post-implementation results
hinders fast design closure.

To efficiently and effectively narrow the gap between HLS esti-
mation and actual QoR, several prior efforts attempt to leverage ML
approaches. For example, Zhao et al. use gradient boosting model
to improve estimation accuracy of routing congestion in HLS [38].
In [8, 20, 21], various ML models are employed to achieve fast and
accurate area estimation in HLS. Recently, Lin et al. propose an
ML-based power estimation model for HLS [18]. However, none
of the existing approaches consider operation clustering in their
formulations.

Considering clustering of logic operations into LUTs in logic-
intensive designs to improve scheduling solutions has been ad-
dressed in HLS [28, 39]. In [26, 27], Ronak et al. propose a novel
HLS flow to fully exploit DSP block capabilities considering other
design structures such as arithmetic-intensive designs and map-
ping those arithmetic operations onto DSP blocks. Several prior
work have leveraged the performance boost that DSP delivers to
FPGAs for accelerating various algorithms (e.g., color space conver-
sion [3], filters [22], and cryptography [9]). However, to the best of
our knowledge, there has not been an effort to automatically iden-
tify operation mapping patterns by formulating learning-assisted
methodologies on graph-structured data.

Gori et al. first outline the notion of GNNs that aims to extract key
graph structural information [10]. Inspired by convolutional neural
networks (CNNs) that achieve impressive results on image-based
tasks, Bruna et al. introduce convolutional operation on graphs,
followed by Kipf and Welling, who simplify the graph convolution
operation and propose graph convolutional network (GCN)[16].
Later, Hamilton et al. propose GraphSAGE that aims to learn nodes
embeddings inductively [12]. Moreover, Velickovic et al. derive
graph attention network (GAT) by exploiting attention mechanism
to further improve the expressiveness of GNNs, with the cost of
computing the attention score per edge [30]. Nonetheless, the above
GNN models either fail to work on directed graphs or are unable to
support inductive learning. Our model D-SAGE tackles both issues
and show promising results when learning operation clustering.

In recent years, GNN models have been applied to a plethora of
EDA problems that are traditionally known to be extremely difficult.
Kirby et al. introduced a novel GNN-based solution for congestion
estimationwithout requiring placement information by learning fre-
quent cell connectivity patterns that cause congestion [17]. Circuit-
GNN, a GNN-based model for designing distributed circuits, was
proposed in [37] where the model learns to simulate electromag-
netic properties of distributed circuits. Ma et al. have proposed a
GNN-based classifier to insert observation points in design netlist
to enhance design testability [19]. Most recently, Wang et al. have
proposed GCN-RL circuit designer which combines GNN and rein-
forcement learning to transfer the knowledge of transistor sizing
from one circuit to another to reduce re-design overhead [31].

6 CONCLUSIONS
We present a new approach based on graph learning to automat-
ically learn operation mapping patterns in HLS. Local structure
around arithmetic operations impact the mapping between opera-
tions and FPGA resources, and consequently timing. We leverage
automatically learned operation mapping behaviors to perform
mapping-aware timing characterization of arithmetic-intensive de-
signs, which aremore accurate compared to the conventional timing
models in the academic and commercial HLS tools.

ACKNOWLEDGMENTS
Thisworkwas supported in part byNSFAwards #1512937, #1723715,
and Intel Strategic Research Alliance (ISRA) Program.Wewould like
to thank Bain Syrowik andDr. Aravind Dasu from Intel Corporation,
and the anonymous reviewers for their invaluable feedback.

8

Accurate Operation Delay Prediction for FPGA HLS Using Graph Neural Networks ICCAD ’20, November 2–5, 2020, Virtual Event, USA

REFERENCES
[1] H. Cai, V. W. Zheng, and K. C. Chang. A Comprehensive Survey of Graph Embed-

ding: Problems, Techniques, and Applications. IEEE Transactions on Knowledge
and Data Engineering, 2018.

[2] A. Canis, J. Choi, M. Aldham, V. Zhang, A. Kammoona, T. Czajkowski, S. D.
Brown, and J. H. Anderson. LegUp: An Open-Source High-Level Synthesis Tool
for FPGA-Based Processor/Accelerator Systems. ACM Transactions in Embedded
Computing Systems (TECS), 2013.

[3] Z. Chun, Z. Yongjun, C. Xin, and G. Xiaoguang. Research on Technology of Color
Space Conversion Based on DSP48E. Int’l Conf. on Measuring Technology and
Mechatronics Automation (ICMTMA), 2011.

[4] J. Cong, B. Liu, S. Neuendorffer, J. Noguera, K. Vissers, and Z. Zhang. High-
Level Synthesis for FPGAs: From Prototyping to Deployment. IEEE Trans. on
Computer-Aided Design of Integrated Circuits and Systems (TCAD), 2011.

[5] J. Cong and Z. Zhang. An Efficient and Versatile Scheduling Algorithm Based on
SDC Formulation. Design Automation Conf. (DAC), 2006.

[6] S. Dai, G. Liu, and Z. Zhang. A Scalable Approach to Exact Resource-Constrained
Scheduling Based on a Joint SDC and SAT Formulation. Int’l Symp. on Field-
Programmable Gate Arrays (FPGA), 2018.

[7] S. Dai and Z. Zhang. Improving Scalability of Exact Modulo Scheduling with
Specialized Conflict-Driven Learning. Design Automation Conf. (DAC), 2019.

[8] S. Dai, Y. Zhou, H. Zhang, E. Ustun, E. F. Y. Young, and Z. Zhang. Fast and Accurate
Estimation of Quality of Results in High-Level Synthesis with Machine Learning.
IEEE Symp. on Field Programmable Custom Computing Machines (FCCM), 2018.

[9] A. de la Piedra, A. Braeken, and A. Touhafi. Leveraging the DSP48E1 Block in
Lightweight Cryptographic Implementations. Int’l Conf. on e-Health Networking,
Applications and Services (Healthcom), 2013.

[10] M. Gori, G. Monfardini, and F. Scarselli. A New Model for Learning in Graph
Domains. IEEE Int’l Joint Conference on Neural Networks, 2005.

[11] P. Goyal and E. Ferrara. Graph Embedding Techniques, Applications, and Perfor-
mance: A Survey. Knowledge-Based Systems (KBS), 2018.

[12] W. Hamilton, Z. Ying, and J. Leskovec. Inductive Representation Learning on
Large Graphs. Advances in Neural Information Processing Systems, 2017.

[13] W. L. Hamilton, R. Ying, and J. Leskovec. Representation Learning on Graphs:
Methods and Applications. arXiv preprint arXiv:1709.05584, 2017.

[14] K. He, X. Zhang, S. Ren, and J. Sun. Identity Mappings in Deep Residual Networks.
European Conf. on Computer Vision (ECCV), 2016.

[15] N. Kapre, H. Ng, K. Teo, and J. Naude. InTime: A Machine Learning Approach
for Efficient Selection of FPGA CAD Tool Parameters. Int’l Symp. on Field-
Programmable Gate Arrays (FPGA), 2015.

[16] T. N. Kipf and M. Welling. Semi-Supervised Classification with Graph Convolu-
tional Networks. arXiv preprint arXiv:1609.02907, 2016.

[17] R. Kirby, S. Godil, R. Roy, and B. Catanzaro. CongestionNet: Routing Congestion
Prediction Using Deep Graph Neural Networks. Int’l Conf. on Very Large Scale
Integration (VLSI-SoC), 2019.

[18] Z. Lin, J. Zhao, S. Sinha, and W. Zhang. HL-Pow: A Learning-Based Power
Modeling Framework for High-Level Synthesis. Asia and South Pacific Design
Automation Conf. (ASP-DAC), 2020.

[19] Y. Ma, H. Ren, B. Khailany, H. Sikka, L. Luo, K. Natarajan, and B. Yu. High
Performance Graph Convolutional Networks with Applications in Testability
Analysis. Design Automation Conf. (DAC), 2019.

[20] M. Makni, M. Baklouti, S. Niar, and M. Abid. Hardware Resource Estimation for
Heterogeneous FPGA-based SoCs. Symp. on Applied Computing (SAC), 2017.

[21] H. M. Makrani, F. Farahmand, H. Sayadi, S. Bondi, S. M. Pudukotai Dinakarrao,
H. Homayoun, and S. Rafatirad. Pyramid: Machine Learning Framework to
Estimate the Optimal Timing and Resource Usage of a High-Level Synthesis
Design. Int’l Conf. on Field Programmable Logic and Applications (FPL), 2019.

[22] R. Mehra and S. Devi. FPGA Implementation of High Speed Pulse Shaping Filter
for SDR Applications. Recent Trends in Networks and Communications, 2010.

[23] V. Mrazek, M. A. Hanif, Z. Vasicek, L. Sekanina, and M. Shafique. autoAx: An
Automatic Design Space Exploration and Circuit Building Methodology utilizing
Libraries of Approximate Components. Design Automation Conf. (DAC), 2019.

[24] R. Nane, V. Sima, C. Pilato, J. Choi, B. Fort, A. Canis, Y. T. Chen, H. Hsiao, S. Brown,
F. Ferrandi, J. Anderson, and K. Bertels. A Survey and Evaluation of FPGA High-
Level Synthesis Tools. IEEE Trans. on Computer-Aided Design of Integrated Circuits
and Systems (TCAD), 2015.

[25] B. Reagen, R. Adolf, Y. S. Shao, G. Wei, and D. Brooks. Machsuite: Benchmarks
for Accelerator Design and Customized Architectures. Int’l Symp. on Workload
Characterization (IISWC), 2014.

[26] B. Ronak and S. A. Fahmy. Efficient Mapping of Mathematical Expressions into
DSP Blocks. Int’l Conf. on Field Programmable Logic and Applications (FPL), 2014.

[27] B. Ronak and S. A. Fahmy. Mapping for Maximum Performance on FPGA DSP
Blocks. IEEE Trans. on Computer-Aided Design of Integrated Circuits and Systems
(TCAD), 2016.

[28] M. Tan, S. Dai, U. Gupta, and Z. Zhang. Mapping-Aware Constrained Scheduling
for LUT-Based FPGAs. Int’l Symp. on Field-Programmable Gate Arrays (FPGA),
2015.

[29] E. Ustun, S. Xiang, J. Gui, C. Yu, and Z. Zhang. LAMDA: Learning-Assisted Multi-
stage Autotuning for FPGA Design Closure. IEEE Symp. on Field Programmable
Custom Computing Machines (FCCM), 2019.

[30] P. Veličković, G. Cucurull, A. Casanova, A. Romero, P. Lio, and Y. Bengio. Graph
Attention Networks. arXiv preprint arXiv:1710.10903, 2017.

[31] H. Wang, K. Wang, J. Yang, L. Shen, N. Sun, H. S. Lee, and S. Han. GCN-RL
Circuit Designer: Transferable Transistor Sizing with Graph Neural Networks
and Reinforcement Learning. arXiv preprint arXiv:2005.00406, 2020.

[32] Z. Wu, S. Pan, F. Chen, G. Long, C. Zhang, and P. S. Yu. A Comprehensive Survey
on Graph Neural Networks. IEEE Transactions on Neural Networks and Learning
Systems, 2020.

[33] Xilinx Inc. UltraScale Architecture Configurable Logic Block. 2017.
[34] Xilinx Inc. UltraScale Architecture DSP Slice User Guide. 2019.
[35] Xilinx Inc. Vivado Design Suite User Guide: High-Level Synthesis. 2020.
[36] C. Xu, G. Liu, R. Zhao, S. Yang, G. Luo, and Z. Zhang. A Parallel Bandit-Based

Approach for Autotuning FPGA Compilation. Int’l Symp. on Field-Programmable
Gate Arrays (FPGA), 2017.

[37] G. Zhang, H. He, and D. Katabi. Circuit-GNN: Graph Neural Networks for
Distributed Circuit Design. Int’l Conf. on Machine Learning (ICML), 2019.

[38] J. Zhao, T. Liang, S. Sinha, and W. Zhang. Machine Learning Based Routing
Congestion Prediction in FPGA High-Level Synthesis. Design, Automation, and
Test in Europe (DATE), 2019.

[39] R. Zhao, M. Tan, S. Dai, and Z. Zhang. Area-Efficient Pipelining for FPGA-
Targeted High-Level Synthesis. Design Automation Conf. (DAC), 2015.

[40] J. Zhou, G. Cui, Z. Zhang, C. Yang, Z. Liu, L.Wang, C. Li, andM. Sun. GraphNeural
Networks: A Review ofMethods andApplications. arXiv preprint arXiv:1812.08434,
2018.

9

