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Abstract—Equality saturation, originally developed in the late
1970s for use in automated theorem provers, has been recently
advanced to perform scalable rule-based rewriting for optimiza-
tions in various domains, such as program synthesis, compiler
optimization, and datapath synthesis. Constructing an e-graph
using rewrite rules that preserve program functionality, equality
saturation addresses phase ordering problems in rewriting-driven
optimizations. This promising approach shows significant potential
for achieving Pareto optimality. This paper provides a brief
introduction to equality saturation and the open-source tool egg,
and highlights its potential application in optimizing datapaths
in both RTL and high-level synthesis. We include case studies
and outline the opportunities for future work in both datapath
and logic synthesis using equality saturation.

I. INTRODUCTION

Optimizing datapaths in digital circuits is a complex multi-
objective process that involves reconciling potentially conflict-
ing objectives and constraints, such as power consumption,
performance, area, and accuracy. By exploring the Pareto-
optimal solutions that achieve a desirable trade-off among these
costs, hardware designers can make informed decisions and
reduce design time and cost. The existing body of literature on
identifying Pareto frontier for datapath optimizations is rich and
varied, encompassing a multitude of techniques, algorithms, and
design metrics. Prior research on automated datapath synthesis
has primarily focused on heuristic search methods, statistical
methods, and machine learning techniques [1]–[5]. However,
existing solutions face a challenge in compactly representing a
large set of functionally equivalent design points and extracting
the Pareto frontier set with formal guarantees.

Equality saturation is a technique used in formal methods
and compilers to optimize logic or code by applying a series of
rules to simplify expressions and reduce redundancy [6]. More
specifically, given an input specification such as a dataflow
graph or program syntax tree, equality saturation constructs an
e-graph, a graph-based data structure, by iteratively applying
a set of rewrite rules that preserve the program’s functionality.
In this context, a rewrite can be a compiler transformation or a
decomposition rule for integer multiplication. As these rewrites
only augment the e-graph, meticulous phase ordering is not
necessary. Upon reaching saturation or a specified timeout, the
resulting e-graph compactly encodes a vast set of equivalent
expressions for the input program, facilitating fast exploration
of Pareto-optimal design points.

With the state-of-the-art open-source equality saturation tool
called egg [7], this technique has been successfully applied in
linear algebra [8], tensor computation, DSP compilation [9], and

floating-point arithmetic [10], [11], among other areas, using
rule-based rewriting. In the rest of this paper, we introduce
a few recent efforts that apply equality saturation to datapath
synthesis, and outline the opportunities for future work in both
datapath and logic synthesis using this approach.

II. CASE STUDIES

Recent studies have shown that equality saturation, particu-
larly with the egg framework, is a promising technique for
achieving scalable Pareto-optimal design space exploration
and facilitating domain-specific or cross-domain optimizations.
This section examines recent research that employs equality
saturation to optimize datapaths, in the contexts of both RTL
synthesis and high-level synthesis (HLS).

Coward et al. have proposed a new approach for optimizing
RTL designs by representing them as data-flow graphs and
utilizing e-graphs and equality saturation techniques [12]. The
authors introduce a set of rewrites that enable efficient design
space exploration and an automated method for optimizing
architectures based on bitwidth parameters. They also quantify
the noise floor in logic synthesis results to understand the limits
of theoretical cost metrics. The results demonstrate that the auto-
mated rewriting technique can match the performance of skilled
hardware engineers, while generating different architectures for
various bitwidth designs that reflect bitwidth-dependent trade-
offs. Additionally, the authors discuss potential future directions,
such as expanding to floating-point operations, enhancing
automated design verification, and tackling scalability limits
through intelligent design space search procedures.

In their subsequent work [11], Coward et al. present a
novel theory that enhances hardware design optimization
by introducing the ASSUME operator to the e-graph for
constraint-aware datapath optimization. This operator encodes
sub-domain equivalences and takes two operands — an e-
class containing equivalent expressions to evaluate, and a set
of e-classes containing expressions that represent conditions
assumed to be true during evaluation. The incorporation of
ASSUME into e-graphs enables the representation of multiple
equivalence relations, thereby allowing for the exploitation
of branch-specific optimizations and the computation of tight
approximations to intermediate signals. This new extension
expands the applicability of equality saturation to a broader
range of datapath optimization techniques.

IMpress [13], the first work to optimize large integer
multiplication in HLS by performing equality saturation
over many decomposition rules, produces various equivalent



expressions of integer multipliers with different hardware
costs while avoiding the phase ordering problem. Although
the e-graph is constructed to be as compact as possible, it
contains a tremendous number of expressions which makes
optimal extraction a nontrivial task. For example, decomposing
a 2048-bit multiplication using 25 rewrite rules results in
an e-graph with 645,935 nodes, corresponding to 1.59e6179
expressions. To address this challenge, IMpress builds a cost
model that accurately estimates the resource utilization of any
multiplication expression contained in the e-graph and offers
ILP-based constrained and multi-objective extraction strategies
tailored to optimize and balance the utilization of different
FPGA resource types. IMpress has shown its effectiveness
in exploring the Pareto frontier in multiple cryptography
applications, resulting in up to 33% better utilization of a
large FPGA device.

III. OPPORTUNITIES

As demonstrated in the previous section, equality saturation
presents a multitude of opportunities for enhancing datapath
optimization in both RTL synthesis and HLS. We also posit
that this method can be applied to various conventional and
emerging logic synthesis challenges. In this section, we suggest
several potential directions for exploration.

Current logic synthesis methods rely on graph-level trans-
formations using directed acyclic graph (DAG) representations
of Boolean networks [14]. Local optimizations are limited by
Boolean algebraic transformations, while global transformations
can be identified using formal methods like SAT and BDDs,
but scalability issues arise. Equality saturation’s rule-based
rewriting and e-graph compactness offer three avenues to
improve QoRs, runtime, and integration challenges.

(1) Can equality saturation offer more efficient and compact
representations for global rewriting? By representing transfor-
mations that go beyond individual decomposition rules like
Shannon expansion in BDDs [15] and Reed-Muller in FDDs,
equality saturation can potentially exceed the current Pareto
frontier on QoRs produced by existing methods. Additionally,
it surpasses basic local structural hashing like AIGs while
remaining a manageable size. One potential direction for
exploration is whether equality saturation can establish a
new (semi-)global DAG-aware rewriting engine with formal
equivalence checking.

(2) Can equality saturation facilitate the coupling of word-
level and Boolean synthesis? As a rule-based rewriting engine,
equality saturation has the potential to explore modularized
domains during the rewriting process. This involves combining
word-level rules with Boolean algebra, which may reveal
new optimization opportunities in both logic and datapath
optimizations. Traditionally, these optimizations are applied
separately, resulting in suboptimal solutions, or combined at the
Boolean level, which requires high computational complexity
[16]. Given the extensibility of equality saturation tools such
as egg, it is possible to efficiently handle such multi-domain
synthesis tasks. Moreover, the synthesis process could be further

optimized using new abstraction operators, such as the recently
introduced ASSUME operator [11].

(3) Can equality saturation facilitate the adoption of conven-
tional synthesis techniques in emerging technologies such as
quantum computing? There is a considerable overlap between
emerging synthesis techniques and conventional state-of-the-art
approaches. Equality saturation can effectively repurpose state-
of-the-art methods by tailoring them to specific domains for new
application areas. Moreover, it can be integrated into existing
design tools and workflows, enabling a seamless transition to
new synthesis paradigms.
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