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Abstract

This paper addresses the complex issue of
resource-constrained scheduling, an NP-hard
problem that spans critical areas including chip
design and high-performance computing. Tradi-
tional scheduling methods often stumble over scal-
ability and applicability challenges. We propose
a novel approach using a differentiable combina-
torial scheduling framework, utilizing Gumbel-
Softmax differentiable sampling technique. This
new technical allows for a fully differentiable
formulation of linear programming (LP) based
scheduling, extending its application to a broader
range of LP formulations. To encode inequality
constraints for scheduling tasks, we introduce con-
strained Gumbel Trick, which adeptly encodes
arbitrary inequality constraints. Consequently,
our method facilitates an efficient and scalable
scheduling via gradient descent without the need
for training data. Comparative evaluations on
both synthetic and real-world benchmarks high-
light our capability to significantly improve the
optimization efficiency of scheduling, surpassing
state-of-the-art solutions offered by commercial
and open-source solvers such as CPLEX, Gurobi,
and CP-SAT in the majority of the designs.

1. Introduction
Nowadays, the computer-aided scheduling techniques have
been widely used in various tasks, such as computing (Cong
& Zhang, 2006; Floudas & Lin, 2005; Davis & Burns, 2011;
Dhall & Liu, 1978; Steiner et al., 2022; Kathail, 2020; Babu
et al., 2021), operations research (Kolisch & Sprecher, 1997;
Laborie et al., 2018; Hartmann & Briskorn, 2022), auto-
mated systems (Booth et al., 2016a;b; Schmitt & Stuetz,
2016; Tran et al., 2017), transportation (Cappart & Schaus,
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2017; Gedik et al., 2017; Kinable et al., 2016). Schedul-
ing plays a crucial role in optimizing time, resources, and
productivity, leading to better outcomes and improved effi-
ciency. For example, in the context of computing systems,
scheduling is a critical step in computing systems, ensuring
optimal performance in hardware synthesis by efficiently al-
locating resources and timing, and in compilers by determin-
ing the sequence of operations to optimize code execution
and resource usage.

However, resource- or time-constrained scheduling is a
known NP-hard problem. Despite an extensive body of prior
research and development on either exact or heuristic-based
scheduling methods, contemporary scheduling approaches
still have major limitations:

(1) Unfavorable speed-quality trade-off: Many con-
strained scheduling problems can be solved exactly us-
ing integer linear programming (ILP) (Hwang et al., 1991;
Floudas & Lin, 2005; Steiner et al., 2022; Yin et al., 2022),
satisfiability (SAT) (Steiner, 2010; Zhang et al., 2004;
Coelho & Vanhoucke, 2011), or constraint programming
(CP) formulations (Christofides et al., 1987; Laborie et al.,
2018; Baptiste et al., 2001; Cesta et al., 2002). However,
these approaches suffer from limited scalability. Conversely,
popular heuristic methods (Ahn et al., 2020; Paulin &
Knight, 1989; Graham, 1969; Blum & Roli, 2003; Brucker
et al., 1998) often yield suboptimal results while achieving
feasible run times. Notably, a heuristic method based on
system of difference constraints (SDC) provides an efficient
formulation to encode a rich set of scheduling constraints
in SDC and expresses the optimization objective in a lin-
ear function that can be solved as an LP problem (Cong &
Zhang, 2006; Dai et al., 2018).

(2) Insufficient utilization of modern parallel computing
devices: Existing scheduling algorithms and solvers are
primarily designed for single-threaded CPU execution and
are unable to exploit modern parallel computing devices
like GPUs (Sanders & Kandrot, 2010) and TPUs (Jouppi
et al., 2017).

Recently, machine learning (ML) has been used for com-
binatorial scheduling for compiler and hardware synthesis
to improve its runtime efficiency and explore the expanded
decision space (Bengio et al., 2021; Yu et al., 2018; Yu &
Zhang, 2019; Neto et al., 2022; Wu et al., 2023). There are
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mainly two categories: imitation learning (Baltean-Lugojan
et al., 2018; Gasse et al., 2019; Gagrani et al., 2022; Wang
et al., 2023), where the policy is learned through supervised
targets while suffering from difficult data collection and
poor model generalizability; reinforcement learning (Mas-
cia et al., 2014; Karapetyan et al., 2017; Chen & Shen,
2019; Yin et al., 2023; Yin & Yu, 2023; Yu, 2020; Neto
et al., 2022), where the policy is learned from the rewards
and potential to outperform the current policy with new dis-
coveries while suffering from limited problem scalability
and significant runtime overhead.

In this work, we introduce a scalable approach to differ-
entiable combinatorial scheduling based on SDC formula-
tions employing Gumbel-Softmax (Jang et al., 2016) for
the differentiation of scheduling variables and crafting con-
straints as differentiable distributions for variable discretiza-
tion. In contrast to existing learning-based approaches,
this allows for the customization of objective functions,
as well as models the optimization problem of scheduling
as a stochastic optimization problem that can be optimized
without training and labeled data collection. As a result,
our approach introduces an auto-differentiation process for
solving combinatorial scheduling without model training.
This new approach distinguishes itself from conventional
methods by its ability to scale global optimization through
parallel computing resources. Moreover, the proposed
technique seamlessly integrates with existing ML frame-
works like PyTorch, ensuring fast and practical implementa-
tion. Our experimental results demonstrate significant im-
provements in optimization efficiency over state-of-the-art
(SOTA) methods solved with commercial solvers CPLEX
(IBM, 2023), Gurobi (Gurobi Optimization, LLC, 2023) and
open-source CP-SAT solver (Perron & Didier; Perron et al.,
2023). Our experimental setups and implementations are
available at https://github.com/Yu-Maryland/
Differentiable_Scheduler_ICML24.

2. Preliminary
2.1. Scheduling and Problem Formulation

Scheduling is one of the most extensively studied combina-
torial problems with a wide range of real-world applications.
This work focuses on scheduling a dataflow graph, with
the input represented as a directed acyclic graph (DAG)
G(V,E). In the domain of computing systems, these graphs
consist of nodes V , representing tasks that execute specific
computations such as arithmetic, logical operations, or ML
operators. The edges E represent the flow of data between
these nodes. Additional cost metrics can be associated with
the nodes and/or edges of the graph in the form of weights.
Moreover, a set of scheduling constraints, such as timing
constraints and resource constraints, are often specified as
part of the formulation, depending on the target schedul-

ing problem. The goal of the optimization is to generate
a schedule S = s0, s1, ...si, i ≤ |V |, where si represents
the scheduled stage of node vi, in order to satisfy the given
constraints while minimizing or maximizing an objective
which is a function of S.

The targeted scheduling in this work is defined as follows:
Given a DAG G(V,E), where V is the list of nodes to be
scheduled, each associated with a per-node resource cost,
and E are weighted edges capturing dependency constraints
and edge costs. Latency L is the time-to-completion for
the entire graph, representing the time between the initi-
ation and completion of the computational task captured
by the DAG. The objective is to optimize the schedule
w.r.t the dependency constraints under a given latency L
while minimizing the cost. In other words, we are solving a
latency-constrained min-resource scheduling.

System of Difference Constraint (SDC) – An SDC is a
system of difference constraints in the integer difference
form, denoted as xi − xj ≤ cij , where cij is an inte-
ger constant, and xi and xj are discrete variables. SDC
scheduling has been deployed in multiple commercial and
open-source high-level synthesis (HLS) tools, such as AMD
Xilinx Vivado/Vitis HLS (Kathail, 2020; Cong et al., 2011)
and Google XLS (Babu et al., 2021). An SDC is feasible
if there exists a solution that satisfies all inequalities in the
system. Due to the restrictive form of these constraints,
the underlying constraint matrix of SDC is totally unimodu-
lar (Camion, 1965), enabling the problem (feasibility checks
or optimization) to be solvable in polynomial time with LP
solving while ensuring integral solutions. These constraints
can be incorporated with a linear objective to formulate an
optimization problem, which is leveraged in this work to
handle the dependency constraints (Section 3).

v0 v1 v2

v3

v4

v5

s0 − s4 ≤ 0
s1 − s3 ≤ 0
s2 − s3 ≤ 0
s3 − s4 ≤ 0
s4 − s5 ≤ 0

Dependence
constraints

l0

l1
Objective 
functions

Peak memory
Communication

Figure 1: Example of SDC-based scheduling — (left) A
DFG with two schedule stages l0 and l1 with latency L = 3;
(right) Dependence constraints and objective functions in-
cluding peak memory minimization and inter-stage commu-
nication minimization (the blue crosses)

We illustrate the SDC-based scheduling formulation with
a simple data flow graph (DFG) in Figure 1. To manage
the dependencies, SDC establishes a difference constraint
for each data edge from operation i to operation j within
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the DFG, denoted as si − sj ≤ 0. In our example, since
there is an edge from node v0 to node v4, SDC introduces
the difference constraint s0 − s4 ≤ 0, ensuring that v4
is scheduled no earlier than v0. Similar constraints are
formulated for other data-dependent edges. In this work,
we leverage SDC formulation with a new technique that
implements a fully differentiable SDC to handle dependency
constraints in scheduling.

Constraint Programming (CP) – CP is a paradigm for
solving combinatorial problems and is an effective method
for addressing scheduling problems by allowing both dis-
crete variables and non-linear constraints (Laborie et al.,
2018). Unlike LP, which focuses on optimizing a linear ob-
jective function and requires constraints to be linear, CP is
based on feasibility (finding a feasible solution) rather than
optimization (finding an optimal solution). It focuses on the
constraints and variables rather than the objective function,
which leads to its superiority in managing complex and log-
ical constraints. This makes it ideal for loosely constrained
discrete sequencing problems with disjunctive constraints.
For example, CP is used to solve the problem of execution
time minimization of compute graphs subject to a memory
budget (Laborie et al., 2018; Bartan et al., 2023). However,
while CP provides significant flexibility and powerful con-
straint satisfaction capabilities, it can also face challenges
with scalability and efficiency.

Learning-based Scheduling – ML approaches have been
explored for combinatorial scheduling, particularly in com-
piler optimization and hardware synthesis, to enhance the
Pareto frontier of runtime and quality. Topoformer (Gagrani
et al., 2022) introduces a novel attention-based graph neural
network architecture for topological ordering, focusing on
learning embeddings for graph nodes. While Topoformer
has provided significant insights and demonstrated poten-
tial in leveraging ML for scheduling, its generalizability
and scalability heavily depend on the availability and vol-
ume of data. Conversely, reinforcement learning (RL) with
graph learning-based schedulers (Chen & Shen, 2019; Yin
et al., 2023; Yin & Yu, 2023) aims to improve scalability
and generalizability by learning from action rewards, thus
eliminating the need for extensive data collection and model
generalization required by supervised learning. However,
these RL-based approaches still face challenges related to
problem scalability, generalizability, and substantial runtime
overhead in training.

Heuristic scheduling algorithms Heuristic scheduling al-
gorithms (Ahn et al., 2020; Graham, 1969; Paulin & Knight,
1989; Blum & Roli, 2003) play a critical role in scheduling
as well. Notable examples include list scheduling (Graham,
1969), a greedy algorithm that prioritizes tasks based on a
predefined order, and force-directed scheduling (Paulin &

Knight, 1989), which aims to balance tasks and resources it-
eratively to achieve latency-constrained, minimum-resource
scheduling. In addition, stochastic heuristic methods such
as evolutionary algorithms (Blum & Roli, 2003; Wall, 1996)
and simulated annealing (Van Laarhoven et al., 1992) are
particularly effective in escaping local optima in complex
scheduling spaces. While heuristic approaches mostly focus
on finding feasible solutions at low runtime costs, they often
fall short of reaching the optimal solution.

2.2. Gumbel-Softmax

Gumbel-Softmax is a continuous distribution on the sim-
plex which can be used to approximate discrete samples
(Maddison et al., 2016; Jang et al., 2016; Gumbel, 1954).
With Gumbel-Softmax, discrete samples can be differen-
tiable and their parameter gradients can be easily computed
with standard backpropagation. Let z be the discrete sample
with one-hot representation with k dimensions and its class
probabilities are defined as p1, p2, ..., pk. Then, according
to the Gumbel-Max trick proposed by (Gumbel, 1954), the
discrete sample z can be presented by:

z = one hot(argmax
i

[gi + logpi]) (1)

where gi are i.i.d samples drawn from Gumbel(0, 1). Then,
we can use the differentiable approximation Softmax to
approximate the one-hot representation for z, i.e., ∇pz ≈
∇py:

yi =
exp((log(pi) + gi)/τ)∑k
i=1 exp((log(pi) + gi)/τ)

(2)

where i = 1, 2, ..., k. The softmax temperature τ is in-
troduced to modify the distributions over discrete levels.
Softmax distributions will become more discrete and iden-
tical to one-hot encoded discrete distribution as τ → 0,
while at higher temperatures, the distribution becomes more
uniform as τ → ∞ (Jang et al., 2016). Gumbel-Softmax
distributions have a well-defined gradient ∂y

∂p w.r.t the class
probability p. When we replace discrete levels with Gumbel-
Softmax distribution depending on its class probability, we
are able to use backpropagation to compute gradients.

Gumbel-Softmax provides solutions for the differentiation
of discrete scheduling and discrete design space explorations
in neural architecture search and quantization tasks (Wu
et al., 2019; 2018; He et al., 2020; Fu et al., 2021a;b; Baevski
et al., 2019). For instance, (Wang et al., 2023) leverages
the Gumbel trick as well as Sinkhorn iterations for combi-
natorial optimization and utilizes Sinkhorn to implement
the problem constraints. However, the study of constrained
discrete search and optimization through sampling methods,
such as the Gumbel-Softmax, has not been extensively ex-
plored, which is particularly critical in scheduling and many
other combinatorial optimization problems.
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3. Approach
We propose a novel differentiable approach that compactly
encodes our targeted scheduling problem defined in Section
2.1, which can also be applied to a variety of important
scheduling problems on dataflow graphs. Specifically, our
method is capable of modeling (1) scheduling constraints in
the SDC form and (2) an objective function for resource/cost
minimization, both in a differentiable manner. We further
introduce a novel constrained Gumbel Trick, enabling highly
parallelizable scheduling optimization through a sampling-
based process with gradient descent.

The remainder of this section will describe the formula-
tion of the targeted scheduling problem in the SDC form,
detailing the (1) definition of the search space, (2) mod-
eling of dependencies, and (3) cost metrics (optimization
objectives). Afterward, we will present our differentiable
approach, aligning it with these three key components.

3.1. Differentiable SDC

With our latency-constrained min-resource scheduling prob-
lem, we intend to schedule the node set V on L scheduling
stages while minimizing the cost objectives defined in Sec-
tion 3.2. Note that we allow node chaining, which means
two dependent nodes can be scheduled in the same stage,
but a node cannot be scheduled earlier than its predecessor.

As mentioned earlier, a critical aspect of scheduling is honor-
ing the dependencies between nodes, which can be specified
using SDC. Specifically, these dependencies are translated
into integer linear inequalities, which ensure that the re-
sulting schedule adheres to the necessary precedence and
resource constraints, maintaining the integrity of the data
flow. Specifically, the inequality constraints can be summa-
rized w.r.t the edges E,

∀e(i, j) ∈ E : si − sj ≤ cij (3)

where e(i, j) denotes an edge that connects node i to node
j. The term si and sj are the schedule variables for nodes i
and j, respectively. Given that we operate under a latency
constraint L, all schedule variables follow constraint ≤ L.
To fully encode the scheduling problem as a differentiable
model, our approach first addresses the vectorization of
the search space, i.e., the vectorization of SDC variables,
and then handles the integer inequality constraints with
differentiable modeling.

3.1.1. SEARCH SPACE VECTORIZATION

Given latency constraint L, a vector p in RL represents the
probability vector of the scheduling decision −→s for a given
node, and the sampled decision −→s is generated via hard
Gumbel-Softmax −→s = GS(p). As Equation 1 indicates, −→s
is a one-hot vector, which contains a single ‘1’ in its tth

coordinate and zeros elsewhere, indicating the variable is
scheduled at the scheduling stage t, while p represents the
probability distribution of t falling into [0, L − 1]. There-
fore, for any scheduled variable vectorized as p in RL, its
corresponding integer solution space can be defined as t
∈ [0, L− 1] and L is the latency upper bound.

Therefore, in the context of an SDC-encoded schedule, the
solution values for each variable can be defined within its
vector representation, i.e., −→si ∈ RL, with argmax(−→si ) ∈
[0, L − 1]. The search space can be fully vectorized by
defining all the schedule variables in SDC forms and captur-
ing their dependencies in SDC. Given a DAG G(V,E), our
differentiable approach will first define the schedule vari-
ables in vector representation, for all −→si ∈ RL, i ∈ V . This
vectorization establishes a bijection between each integer
value and its corresponding one-hot vector. Considering
all schedule variables, the search space can be effectively
represented by the tensor product of these one-hot vectors.
As a result, the total optimizable parameters are in R|V |×L.

3.1.2. DIFFERENTIABLE MODELING OF INEQUALITY
CONSTRAINTS

The next critical step is to ensure the dependency constraints
are met using the proposed approach. Specifically, our
differentiable scheduling aims to incorporate the depen-
dency constraints defined in E as input, following the in-
teger inequalities constraints in SDC, shown in Equation
3. To encode these inequalities in a differentiable manner,
we utilize the cumulative sum (cumsum) function. For a
schedule variable represented as a one-hot vector −→si , the
transformation using cumsum yields cumsum(−→si ), con-
verting −→si into its cumulative sum representation. Gener-
ally, the cumulative sum of a vector v = [v0, v1, ..., vn] is
v′ = [v0, v0 + v1, ...,

∑n
i=0 vi]. For one-hot vectors, this

transformation indicates the feasible space for subsequent
Gumbel-softmax sampling operations.

Given an integer inequality constraint si − sj ≤ cij , we
express it in vector form as −→si

cij−−→ −→sj , where −→si is the sam-
pled discrete solution of si, and we define a transformation
T≤ : Rn × R→ Rn for the ”≤” constraint, where +̂ is an
operator that rolls the ’1’ to the right in the one-hot vector
by |cij | position(s):

T≤(
−→si , cij) = cumsum(−→si +̂|cij |) (4)

This transformation T≤(
−→si , cij) effectively constrains the

solution space for sj , represented as −→sj . Note that non-zero
cij can be used to capture additional timing constraints.

Example – We illustrate the differentiable integer inequality
modeling using the constraint s0 − s1 ≤ 0, with s0, s1 ∈
R3. Let the initial sampling of −→s0 be [0, 1, 0], such that
s0 evaluates to ‘1‘. Then, T≤ evaluates to [0, 1, 1], which
implies that if s0 = 1, s1 can only be sampled as 1 or 2,
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which can be confirmed by the original integer inequality
constraint. If additional timing constraint is given, e.g.,
cij = −1, T≤ will be evaluated to [0, 0, 1] by rolling T≤ to
the right by one position, which results in s1 = 2 to satisfies
the additional timing constraint.

Therefore, we introduce the constrained Gumbel Trick, en-
abling our model to handle inequality constraints. We use
T≤ in conjunction with Gumbel distribution sampling to
ensure that the sampling always satisfies the constraints:

y′i =
exp((log(pi) + gi)/τ)∑
j exp((log(pj) + gj)/τ)

·T≤, g ∼ Gumbel(0, 1)

(5)

Lemma 3.1. For the inequalities si−sj ≤ cij , the transfor-
mation T≤ ensures any sampled vector space for sj satisfies
the inequality.

Proof. Consider any arbitrary constraint si− sj ≤ cij . The
transformation T≤ applied to −→si restricts the feasible vector
space for −→sj . Any vector −→sj sampled from this space will
satisfy the inequality when converted back to integer values
via the bijection.

3.2. Optimization Process and Objectives

Targeting latency-constrained min-resource scheduling, the
optimization process aims to search for the best possible
scheduling solutions with the given latency and dependency
constraints, guided by a loss function that minimizes re-
source costs.

3.2.1. OPTIMIZATION PROCESS

As discussed in Section 3.1, the latency constraint is mod-
eled via our vectorization process of schedule variables,
and the dependency constraints are ensured via differen-
tiable inequality modeling. The core of this process is the
constrained Gumbel Trick, where we employ vectorized rep-
resentations of scheduling decisions. Firstly, we calculate
the logits for each scheduling decision, then we incorporate
these logits into the GS function with our constraint trans-
formations to obtain the sampling probabilities. The process
can be mathematically formulated as follows:

Let −→s be the vector representation of a schedule variable.
We make use of the GS function with the constrained Gum-
bel Trick in Equation 5 to obtain the sampling probability:

P = GS(T≤(
−→s , c); τ), (6)

where P ∈ RL and P i ∈ [0, 1] for each i ∈ [0, L − 1]
with L being the scheduling depth upper bound. Here, T≤
represents the transformation for inequality constraints and
GS(·; τ) is the GS function with temperature τ .

The probability of selecting a scheduling solution can be
calculated by considering both the conditional probabili-
ties under the constraints and the overall probability of the
solution being feasible. For a scheduling solution k, the
probability P (i) for a node i can be computed as:

P (i) = P (i|k) · P (k) (7)
= P (i|k) · p(cl(i)) (8)

where P (i|k) is the conditional probability of choosing node
i given the scheduling solution k, and p(cl(i)) represents
the probability of the scheduling class cl(i) being feasible
under the given constraints.

3.2.2. DIFFERENTIABLE COST MODELS

Finally, we introduce a differentiable loss function that inte-
grates the target objectives. As discussed in Section 2.1, we
target the scheduling problem of minimizing two cost objec-
tives associated with the nodes and edges of the graph in the
form of weights: 1) maximum memory resource utilization
calculated with weights of the nodes, and 2) cross-stage
communication cost with the weights of the edges.

Specifically, we illustrate the two targeted optimization ob-
jectives and metrics using the example in Figure 1. Consid-
ering a schedule where v0, v1, and v2 execute in the first
stage, while v5 executes in the last stage, the communica-
tion cost is then calculated as the sum of all data transferred
between stages I0 and I1. As for the memory cost, peak
memory refers to the maximum memory used across all
stages. Note that the cost metrics can be assessed uniquely
w.r.t a given schedule.

To enable parallelizable optimization using gradient descent
w.r.t the target objectives, we integrate a differentiable cost
function L based on the scheduling result. To minimize
memory usage under a latency constraint, we define the
memory loss function Le, which includes the entropy of
scheduled nodes over L stages:

Le = −
L−1∑
i=0

Ni

M
log

Ni

M
(9)

where Ni represents the memory of all nodes at the i-th
stage, and M is the total memory of all nodes. Assuming
uniform memory requirements for each node, Ni is equiva-
lent to the number of nodes at the i-th stage, and M = |V |,
the total node count. Minimizing Le aims to evenly dis-
tribute the required memory across stages, which correlates
to minimizing the peak memory resource cost. The effective-
ness of this entropy-based approach for scheduling resource
minimization is originally proven in (Wang et al., 2010).

Furthermore, to account for the minimization of commu-
nication cost, we add Lc into the loss functions. In this
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Dependency 
applied 

(a) Initialization (b) Dependency constrained scheduling (c) GS-enabled differentiable optimization

Differentiable 
Optimization p5_1:[0.2, 0.4, 0.4]

T5_1:[0, 0, 1]
S5_2:[0, 0, 1]

Figure 2: The implementation overview of our differentiable scheduling. p indicates the probability vector for each node
during GS-enabled differentiable optimization; T indicates the dependency constraints from the predecessors S indicates
the scheduled stage for the node. (a) The search space vectorization and GS initialization. (b) The legal scheduling after
applying the dependency constraints. (c) The scheduling is optimized with GS-enabled differentiable optimization.

context, we simply formulate the communication cost as the
mean of total cost over all the inter-stages, i.e.,

Lc =
1∑|E|−1

b=0 cb

L−2∑
i=0

mi (10)

where mi is the accumulated communication cost for all
edges on each inter-stage i, cb is the communication cost
introduced by edge eb. The final loss is then defined as

L = λLe + Lc (11)

where λ is a customizable input used to adjust the optimiza-
tion ratio between the two objectives.

Implementation The overview of the differentiable
scheduling optimization is shown in Figure 2. First, each
schedule variable (per node) is initialized with the vector-
ized search space. More concretely, given 3 available stages,
we use 3-dimensional vectors that are made differentiable
with GS (Figure 2(a)). Note that, the primary input nodes
(v0, v1 and v2) are initialized with the distribution biased to
the first stages in GS. Then, the constraints T are applied to
the initialized p to produce the legal one-hot scheduling S.
For example, for v5, even though the first stage shows the
highest probability in p5 0, its feasible search space is con-
strained by its predecessors v4 and v3 with T5 0 = [0, 1, 1]
and the legal scheduling is then selected within the feasible
space with the highest probability, i.e., the second stage. In
each optimization iteration, in the forward path, the loss
function is computed by the legal one-hot scheduling S to
guarantee its legalization, and the scheduling is optimized
with the backward propagation through the probability vec-
tor p in GS to make it differentiable. By updating the proba-
bility vector p, the one-hot vector−→s for variable scheduling
given by −→s = GS(p) will be updated accordingly in the next
iteration to realize the differentiable iterative optimization.

We illustrate the training process of our approach in Algo-
rithm 1 for a given graph G(V,E) with a latency bound

Algorithm 1 Differentiable Scheduling

Require: Graph G(V,E); Targeted latency L
1: for each n ∈ V do
2: Wn ← Initialize(L)
3: W ←W ∪ {Wn}
4: end for
5: for i = 1 to num epochs do
6: Si ← [ ]
7: for each node t in TopologicalOrder(V ) do
8: GS ← GumbelSoftmax(W i

t )
9: GSEt

← ApplyConstraints(GS,Et)
10: Si

t ← ExtractOneHot(GSEt )
11: Si ← Si ∪ {Si

t}
12: end for
13: L ← L(Si);∇W i ← ∇L(W i)
14: W i+1 ← UpdateParameters(W i,∇W i, η)
15: end for

L. Initially, the weights Wn are initialized for each node
n ∈ V and collectively stored in W . The algorithm pro-
ceeds for a specified number of epochs. In each epoch, an
empty schedule Si is created. The nodes are processed in
a topological order. For each node t, a Gumbel-Softmax
distribution is computed using the current weights W i

t . Con-
straints specific to the edges Et which start from node t are
applied to this distribution by constrained Gumbel Trick,
and a one-hot encoded vector is extracted to represent the
schedule of node t, which is then added to the schedule Si.
The loss L is computed based on the current schedule Si,
and the gradient∇W i of the loss w.r.t. the weights is calcu-
lated. Finally, the weights are updated using the computed
gradient and a learning rate η, resulting in updated weights
W i+1 for the next epoch. After training all epochs, a final
schedule S is output by the algorithm.

4. Experiment
Benchmarks and baselines Our experiments are conducted
on specialized scheduling problems in GPU-based circuit
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Figure 3: Performance comparisons with random workloads. Baseline results are SDC scheduling solved by commercial
SOTA CPLEX, Gurobi, and CP-SAT solvers.

simulation (Zhang et al., 2022). Due to the nature of
Boolean circuits and GPU runtime, the efficiency of sim-
ulation workload runtime is highly correlated with data
transfer and GPU memory usage. Specifically, (Zhang et al.,
2022) pointed out that the critical challenge in scheduling
these workloads is to minimize communication overhead
and avoid memory bandwidth bottlenecks. While the pro-
posed approach can be evaluated with classic high-level syn-
thesis benchmarks (e.g., MachSuite (Reagen et al., 2014)
and Rosseta (Zhou et al., 2018)) or neural network com-
putation graphs (Yin & Yu, 2023; Yin et al., 2023; Steiner
et al., 2022), we did not explicitly evaluate those bench-
marks due to the fact they are trivial in reaching the op-
timal using the existing SOTA solvers1. Our GPU work-
loads/graphs are derived using six designs from the EPFL
Benchmark Suite (Amarú et al., 2015), alongside base-
line SDC+LP formulation solved by the SOTA commercial
solvers, CPLEX (IBM, 2023) and Gurobi (Gurobi Opti-
mization, LLC, 2023), as well as open-source tool CP-SAT
solver (Perron & Didier). Note that these are non-traditional
GPU workloads in scheduling. We extend the benchmarks
by adding derived GPU computational graphs of simulated
technology-mapped designs using 7nm ASAP technology
library (Xu et al., 2017). Additionally, we add twelve syn-
thetic random workloads (RW), all summarized in Table 1.
We predefined the ratio of LP and the factor of our method,
settingR = λ = 100 for all EPFL designs andR = λ = 10
for all synthetic workloads, respectively. We set the targeted
latency to be L = 10 for the experiments. All experiments
were conducted using an an Intel®Xeon®Gold 6418H CPU

1See our discussion on limitations in Section 4.3.

and NVIDIA RTX™4090 GPU. A timeout of 3600 seconds
was enforced for all designs across all methods.

Table 1: Number of nodes and depths for selected designs.
*RW: Random workload. (M): Mapped.

Design |V | #Depth Design |V | #Depth
Adder 1661 258 RW1 949 15

Adder (M) 1830 89 RW2 941 16
Barrel shifter 3734 15 RW3 929 16

Barrel shifter (M) 2265 10 RW4 810 9
i2c controller 1793 23 RW5 819 8

i2c controller (M) 1221 11 RW6 829 8
Max 4019 290 RW7 4087 10

Max (M) 3493 97 RW8 4063 9
Square 18742 253 RW9 4086 8

Square (M) 18389 96 RW10 8058 9
Voter 15761 73 RW11 8192 11

Voter (M) 20058 39 RW12 8193 9

4.1. Performance Comparison

We established 11 result sampling points at intervals of 360
seconds, ranging from 0 to 3600 seconds, to implement
a consistent timeout across all designs. To ensure a fair
comparison among the three methods, we employed op-
timization progress as a normalized factor. Initially, the
objective value for all methods is set to 1.0. During op-
timization, as the tentative objective value decreases, we
capture the current best objective value at each sampling
point. This value is then expressed as a ratio relative to the
initial point, providing a normalized measure of progress.

Evaluation on Synthetic benchmarks As illustrated in
Figure 3, we grouped three workloads with similar setups
into one subfigure to highlight the similarity in optimization
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Figure 4: Performance comparisons with workloads built for EPFL benchmarks. Baseline results are SDC scheduling solved
by commercial SOTA CPLEX, Gurobi, and CP-SAT solvers.

behavior. We observe that our method is particularly effec-
tive in optimizing the scheduling solution at early stages,
regardless of graph size and density. For instance, as shown
in Figures 3a and 3b, our method converges within the initial
360 seconds for both denser workloads (RW 1-3) and less
dense workloads (RW 4-6). In contrast, CPLEX and Gurobi
barely initiate the optimization process for denser work-
loads and only achieve comparable performance for sparser
workloads. Additionally, Figures 3c and 3d show that our
method maintains a similar convergence speed within the
first 360 seconds, whereas CPLEX and Gurobi experience
nearly a 3× decrease in performance when the workload
scale increases from 5000 to 10000. Meanwhile, CP-SAT
shows its superiority in Figure 3a, but its performance de-
grades sharply and fails to produce any optimization when
solving larger and denser workloads, as shown in Figure 3c
and 3d. This demonstrates the robustness and stability of
our method in scalability.

Evaluation on EPFL Benchmarks Following the ob-
servations from the synthetic workloads, we extended our
verification to real-world designs. Similar to our previous

approach, we grouped the original design and its corre-
sponding mapped design in a single subfigure, due to their
shared graph characteristics. Consistent with our initial
observations, our method consistently exhibits a similar
convergence trend between the original and mapped de-
signs, across a range of graph densities. For instance, as
demonstrated in Figure 4b, while CPLEX and Gurobi man-
age to perform adequately on the original (sparse) designs,
they exhibit nearly a 2× performance degradation on the
mapped (dense) designs during most stages of the total time-
out period. Furthermore, with very large designs such as
those depicted in Figures 4e and 4f for Square and Voter
respectively, CPLEX and Gurobi barely initiate optimiza-
tion within the 3600 seconds timeout, whereas our method
achieves convergence to desirable points early on (within
a 360 seconds timeout). As for CP-SAT, it only achieves
comparable performance on very limited designs, as shown
in Figure 4a and 4c, which are both represented as graphs
with smaller and sparser scales. However, it fails to initiate
the optimization for the rest of the tested designs. This un-
derscores the advantages of our method in handling large
and complex scheduling cases.
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Figure 5: Loss Function Evaluation with selected Random workloads and EPFL designs.

4.2. Loss Function Evaluation

Considering that our method demonstrates consistent early
convergence across a diverse range of workloads and de-
signs, we focus our investigation on the initial 75 epochs to
illustrate the effectiveness of the formulated loss function.
Given the similarities among the workloads, only a repre-
sentative subset has been selected to accommodate page
constraints while ensuring a comprehensive analysis.

As depicted in Figure 5a, for the selected synthetic work-
loads, fast convergence of the loss function is observed
during the first 30 epochs, independent of graph size. This
rapid convergence indicates the robustness of our method
across varying data sizes. Similarly, for the selected EPFL
designs, as illustrated in Figures 5b and 5c, the convergence
pattern remains consistent, showcasing rapid convergence
within the first 75 epochs. An initial instability observed
during the first 10 epochs can be attributed to the necessity
of a warm-up phase for the Gumbel-Softmax mechanism
employed in discrete sampling by our method. This brief
period of instability is typical and expected as the model
adjusts to the discrete nature of the data. Furthermore, we
explored the impact of different weight decay settings by
transitioning from the Adam optimizer to AdamW. Upon ex-
amining Figure 5, no consistent advantage is observed in the
loss convergence trends between the two optimizers. This
observation suggests that the optimal choice of weight decay
may be design-specific, indicating further investigation.

4.3. Limitations and Discussion

While our method exhibits rapid convergence across a vari-
ety of designs, our analysis has unveiled certain limitations
for future directions. First, we note that in some specific
cases, the optimization quality achieved by our approach
falls short when compared to the benchmarks set by estab-
lished solvers such as CPLEX, Gurobi, and CP-SAT. This
discrepancy is particularly evident in designs of a smaller
scale or those characterized by sparse graph structures. This
observation suggests that our method might benefit from
enhanced strategies tailored to these specific problem char-
acteristics, possibly through refined optimization techniques

or algorithmic adjustments that better leverage the properties
of sparsity and scale.

Second, we observe that while the problem is less complex
(trivial), i.e., the problems can be solved very effectively by
solving SDC+LP models using LP/CP solvers, our approach
does not offer much advantage. Furthermore, we empirically
observe that the complexity of the targeted problem is highly
associated with the density of the graph G(V,E). As the
density of G(V,E) increases, our proposed approach will
advance further in the runtime-quality frontier.

Thirdly, our empirical findings indicate instances of ’over-
fitting’ in the loss convergence beyond certain epochs, as
illustrated in Figure 5c, which could limit the ability to
optimize the objectives. Addressing this challenge might
involve exploring advanced regularization methods or adap-
tive stopping criteria that preemptively halt training before
overfitting occurs. Furthermore, these limitations not only
highlight areas for improvement but also underscore the im-
portance of developing more nuanced optimization methods
capable of adapting to varying problem scales and complex-
ities. Future work could focus on devising novel approaches
that explicitly account for the structural characteristics of
the problem domain, thereby enhancing the robustness and
effectiveness of the method across a broader spectrum of
scheduling application scenarios.

5. Conclusion
In this work, we propose an end-to-end differentiable formu-
lation for combinatorial and scalable scheduling, utilizing
model-free dataless auto-differentiation with customized
objective functions. By harnessing GPU capabilities, our
experimental results demonstrate substantial performance
improvements over SOTA methods solved with commer-
cial and open-source solvers such as CPLEX, Gurobi, and
CP-SAT. Our limitations point towards the necessity for fur-
ther refinement, particularly in achieving more competitive
optimization outcomes and addressing overfitting issues in
loss convergence. It potentially broadens the applicability
and efficiency of our method in solving complex scheduling
problems and other discrete combinatorial problems.
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