
Cypress: VLSI-Inspired PCB Placement with GPU Acceleration
Niansong Zhang∗
nz264@cornell.edu
Cornell University
Ithaca, NY, USA

Anthony Agnesina
aagnesina@nvidia.com
NVIDIA Corporation
Atlanta, GA, USA

Noor Shbat
nshbat@nvidia.com
NVIDIA Corporation

Yokneam, Israel

Yuval Leader
leader@nvidia.com
NVIDIA Corporation

Yokneam, Israel

Zhiru Zhang
zhiruz@cornell.edu
Cornell University
Ithaca, NY, USA

Haoxing Ren
haoxingr@nvidia.com
NVIDIA Corporation
Austin, TX, USA

Abstract
The scale of printed circuit board (PCB) designs has increased sig-
nificantly, with modern commercial designs featuring more than
10,000 components. However, the placement process heavily re-
lies on manual efforts that take weeks to complete, highlighting
the need for automated PCB placement methods. The challenges
of PCB placement arise from its flexible design space and limited
routing resources. Existing automated PCB placement tools have
achieved limited success in quality and scalability. In contrast, very
large-scale integration (VLSI) placement methods have proven to
be scalable for designs with millions of cells and delivering high-
quality results. Therefore, we propose Cypress, a scalable, GPU-
accelerated PCB placementmethod inspired by VLSI. It incorporates
tailored cost functions, constraint handling, and optimized tech-
niques adapted for PCB layouts. In addition, there is an increasing
demand for realistic and open-source benchmarks to (1) enable
meaningful comparisons between tools and (2) establish perfor-
mance baselines to track progress in PCB placement technology.
To address this gap, we present a PCB benchmark suite synthesized
from real commercial designs. We evaluate our method against
state-of-the-art commercial and academic PCB placement tools
with the benchmark suite. Our approach demonstrates a 1–5.9×
higher routability on the proposed benchmarks. For fully routed
designs, Cypress achieves 1–19.7× shorter routed track lengths.
With GPU acceleration, Cypress delivers up to 492.3× speedup in
run time. Finally, we demonstrate scalability to real commercial
designs, a capability unmatched by existing tools.

CCS Concepts
• Hardware → PCB design and layout; Placement; Design
databases for EDA.

∗This work was conducted during an internship at NVIDIA.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
ISPD ’25, Austin, TX, USA.
© 2025 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-1293-7/25/03
https://doi.org/10.1145/3698364.3705346

Keywords
Printed Circuit Board; Placement; Routing; GPU Acceleration
ACM Reference Format:
Niansong Zhang, Anthony Agnesina, Noor Shbat, Yuval Leader, Zhiru
Zhang, and Haoxing Ren. 2025. Cypress: VLSI-Inspired PCB Placement with
GPU Acceleration. In Proceedings of the 2025 International Symposium on
Physical Design (ISPD ’25), March 16–19, 2025, Austin, TX, USA. ACM, New
York, NY, USA, 11 pages. https://doi.org/10.1145/3698364.3705346

1 Introduction
PCB placement and routing (PnR) is typically carried out manually
by PCB layout engineers. However, with the increasing integration
density and scale of PCB design, this manual process takes many
weeks. Approximately 50% of the total PCB design time is spent on
component placement [37], making it a significant bottleneck in the
design process. Despite decades of research on design automation,
the industry has yet to adopt automated PCB placement tools widely.
An important reason is that existing PCB placement tools struggle
with large-scale designs and achieve limited placement quality.
For example, the state-of-the-art commercial PCB PnR solution
Quilter [37] takes 2.6 hours to layout a design with 176 components.
RePlace [8] fails to find a routable placement for multilayer PCB
designs with components of diverse sizes [7].

The challenge of PCB PnR lies in its complex design space and
limited routing resources [30]. Unlike VLSI, PCB placement has a
flexible design space with diverse-sized components that can be
rotated and placed on both sides of the board. The shape of the PCB
board and the components are often irregular. VLSI routing utilizes
rectilinear single nets with many small vias across numerous rout-
ing layers, while PCBs employ bus-level traces that allow greater
freedom in angles but typically use fewer routing layers.

In contrast, VLSI placement methods are widely used in standard
cell IC designs and mixed-size system-on-chip (SoC) designs. Ana-
lytical methods such as mPL6 [3], NTUplace [4, 5, 20], ePlace [31–
33] formulate placement as a mathematical optimization problem.
DREAMPlace-based methods [14, 25, 27, 28] leverage gradient de-
scent, modern machine learning optimizers, and GPU acceleration
to accelerate placement and improve solution quality. These VLSI
placement algorithms have been proven to be scalable for designs
with millions of cells and deliver high-quality results. Therefore,
we propose Cypress 1, a VLSI-inspired PCB placement approach
with tailored cost functions, constraint handling, and optimization
1Cypress and the PCB placement benchmark suite is open-source and available at
https://github.com/NVlabs/Cypress.

https://doi.org/10.1145/3698364.3705346
https://doi.org/10.1145/3698364.3705346
https://github.com/NVlabs/Cypress

ISPD ’25, March 16–19, 2025, Austin, TX, USA. Zhang et al.

techniques to improve both the design quality and the scalability.
Although VLSI-inspired methods enhance scalability and place-
ment quality, there is no single solution for PCB placement. Critical
components, such as those for high-current or high-speed signals,
often require careful manual placement and routing. Our work
focuses on a fast placement routine for noncritical components,
helping designers accelerate the iterative process needed to meet
performance requirements and design constraints.

We also highlight the lack of high-quality benchmarks for the
PCB placement problem. To enable meaningful comparisons be-
tween tools and establish a performance baseline, we introduce
a realistic open-source PCB placement benchmark consisting of
10 synthesized designs with noncritical components. These bench-
marks are derived from commercial PCB designs and insight into
how engineers approach manual PCB layout. Finally, we evaluate
Cypress against state-of-the-art PCB placement tools from industry,
open source projects, and academia, using both proposed bench-
marks and large-scale commercial PCB designs.

We summarize our contributions as follows:

• Tailored cost functions for PCB placement. Our method in-
troduces a novel problem formulation tailored specifically for
PCB placement, incorporating orientation-aware wirelength, den-
sity, and net crossing. This formulation addresses the unique
challenges of PCB design, enabling more accurate evaluation and
optimization in real-world scenarios.
• Scalability. Cypress efficiently handles large-scale PCB designs
with GPU acceleration. Evaluation results show up to 492.3× run
time improvement over the current state-of-the-art solutions.
• Open source benchmark. We propose a synthesized PCB place-
ment benchmark suite based on real PCB designs as well as
related tools to visualize and interface with commercial and open-
source EDA tools.
• Evaluation on real commercial designs. Cypress is evaluated
on industrial PCB designs with thousands of components. These
tests confirm the practicality and effectiveness of our methods
across realistic sizes and complexities.

2 Related Work
The automation of PCB placement intersects several disciplines,
including electronic design automation (EDA), optimization algo-
rithms, and machine learning. This section reviews related litera-
ture that has contributed to the development of techniques in these
areas, with a particular focus on PCB and VLSI placement.

2.0.1 Adapted VLSI Placement Algorithms. VLSI placement research
has produced numerous algorithms to optimize component layouts
to minimize wirelength, delay, and other metrics. Techniques such
as simulated annealing [13, 16, 34], genetic algorithms [17, 23, 42],
particle swarm optimization [6, 40], and more recently, deep learn-
ing approaches [2, 41], have been adapted to address the PCB place-
ment problem. However, their practical use is hindered by scalability
challenges and a failure to account for PCB designs’ unique flexi-
bility, such as component rotation, dual-sided placement, and the
need to accommodate larger, more irregular components. Directly
applying VLSI placement algorithms to the PCB domain proves

ineffective: the standard RePlace algorithm [8] struggles to pro-
duce suitable solutions for multi-layer designs with components of
diverse sizes and shapes [7].

2.0.2 PCB Placement Specialization. Several works have intro-
duced PCB-specific cost functions and methods for handling con-
straints. For instance, NS-Place [7] addresses PCB routability by
formulating the problem as separating net convex hulls, a formula-
tion closely related to support vector machines (SVM). Additionally,
some efforts have focused on managing component rotation. Hsu
et al. [18] extend the log-sum-exp differentiable wirelength model
to account for arbitrary component rotation, while Lin et al. [26]
refine this approach by defining a mapping function that translates
arbitrary rotations into valid orientations.

2.0.3 Machine Learning in PCB Placement. The application of ma-
chine learning to PCB placement is relatively recent. Several ap-
proaches have attempted to use neural networks and reinforcement
learning to predict more optimal placements [15]. These methods
aim to capture the tacit knowledge of experienced designers and
translate it into actionable placement strategies. Notably, some
frameworks introduce learnable multi-objective cost models that
adapt to the specificities of each PCB project, offering a promising
avenue for managing the complex trade-offs involved in placement
decisions [1].

2.0.4 Commercial and Open Source PCB Placement Tools. Sev-
eral automated PCB placement tools exist in both commercial and
open-source domains. Cadence Allegro X AI employs a decision-
making approach to PCB placement, utilizing Monte Carlo Tree
Search (MCTS) to solve placement challenges [21, 24]. However, this
method is typically constrained to smaller designs due to substantial
computational and memory demands. Quilter [37] uses reinforce-
ment learning to explore the design space, performing placement
and routing simultaneously. Its current capabilities support boards
with fewer than 1,000 pins, 100 components, 10% density, 500MHz
signals, and 2A currents. Moreover, generating design candidates
can take up to several hours. In the open-source community, the
OpenROAD Project offers a simulated annealing-based PCB placer
(SA-PCB) that supports component rotation [10].

3 Preliminaries
In this section, we introduce key concepts and workflows relevant
to modern PCB design and the state-of-the-art placement algorithm.

3.1 Commercial PCB Design
In the modern commercial PCB design process, the workflow begins
with schematic capture, where engineers create a circuit diagram
that defines the electrical connections between components. Then
follows part selection, where suitable components are chosen based
on performance, cost, and availability. The design is then translated
into a netlist, a data structure that lists all the connections between
components. After the schematic is complete, the physical design
phase begins. Here, components are placed on the PCB layout,
and their positions must satisfy a variety of constraints, including
electrical performance, signal integrity, thermal management, and
mechanical considerations. PCB components can be rotated during
placement. However, they cannot be rotated to arbitrary angles;

Cypress: VLSI-Inspired PCB Placement with GPU Acceleration ISPD ’25, March 16–19, 2025, Austin, TX, USA.

Table 1: Notations

Notation Description Notation Description
𝐸 Set of nets x, y Components center locations
𝜽 Components orientations Θ = {𝑜1, 𝑜2, ..., 𝑜𝑛} Set of legal orientations (ordered)
𝑐 Component 𝑐 (𝑥𝑐 , 𝑦𝑐 , 𝜃𝑐) Center location/orientation of 𝑐
𝑣𝑘 Pin 𝑘 (𝑥off

𝑘
, 𝑦off

𝑘
) Offsets of 𝑣𝑘 from (𝑥𝑐 , 𝑦𝑐)

WL, NC Wirelength, Net Crossing D Density
𝜆𝐷 Density weight 𝜆𝑁𝐶 Net crossing weight
Px,y Preconditioner for x, y P𝝅 Preconditioner for orientation

instead, they can only be rotated to a set of legal orientations, such
as 90, 180, or 270 degrees.

Once the initial layout is completed, the design undergoes rout-
ing, where traces are drawn to connect the components according
to the netlist. This is followed by Design Rule Checks (DRCs) to
ensure that the layout adheres to manufacturing requirements and
standards. Throughout the process, the design must go through
multiple rounds of peer review and verification to address poten-
tial issues related to signal integrity, power delivery, and thermal
performance. A key bottleneck in this flow is the placement phase,
which can consume around 50% of the overall design time [37].
Optimizing component placement is critical as it directly impacts
the ease and quality of routing, subsequently the overall design
performance, and manufacturability of the PCB.

3.2 DREAMPlace
DREAMPlace builds upon the ePlace [33] and RePlace [8] algo-
rithms by leveraging GPU acceleration to achieve high-quality
global placement results. DREAMPlace frames the global placement
task as a wirelength minimization problem with density penalties.
This problem is solved by classical optimization methods, such as
gradient descent, applied to a nonlinear, unconstrained formulation:

min
x,y

∑︁
𝑒∈𝐸

𝑤𝑒 WL(𝑒; x, y) + 𝜆D(x, y), (1)

where 𝐸 represents the set of nets, while (x, y) denote the cell
coordinates. The term WL(𝑒 ; x, y) is a smoothed approximation of
the half-perimeter wirelength (HPWL) for each net 𝑒 , and D(x, y)
is a smoothed density function, modeled as the potential energy in
an electrostatic system where cells act as charges. The density is
computed by solving Poisson’s equation through spectral methods,
specifically using a two-dimensional fast Fourier transform (FFT).
Net weights𝑤𝑒 can account for timing constraints. Additionally, a
Lagrange multiplier 𝜆 is gradually increased to prevent cell overlaps.
DREAMPlace calculates wirelength and density gradients through
GPU-accelerated algorithms, utilizing the PyTorch framework to
achieve efficient computation.

4 Cypress Framework
Our framework models PCB placement as a multi-objective op-
timization problem, solved through a gradient descent approach.
To optimize for routability, we introduce PCB-specific cost func-
tions tailored to the problem’s unique constraints. In addition, the
framework employs Bayesian optimization to effectively explore
the parameter space, leading to improved solution quality. The
notation is listed in Table 1.

4.1 Problem Formulation
We focus on placing surface-mounted, noncritical components on a
rectilinear PCB’s top and bottom layers/sides. The framework takes
a PCB netlist with pre-assigned layers as input. Some components,
such as mechanical or high-speed, high-current critical elements,
are fixed in place, and pre-routed high-speed traces can also be
included as placement blockages if needed. Components can be of
any shape and can be placed anywhere on the assigned layer as
long as they meet spacing constraints. The goal is to assign each
component 𝑐 a coordinate (𝑥𝑐 , 𝑦𝑐) and a legal orientation 𝜃𝑐 to
maximize routability. While routability is the prominent goal of
PCB placement, we will realize it through optimizing the multiple
proxies presented later (i.e., wirelength, net crossing, and density).

4.2 PCB-Specific Cost Functions
PCB placement differs from mixed-size VLSI placement in several
key ways. First, PCB components can be placed anywhere on a
layer, unlike standard cell placement in VLSI, which is constrained
by fixed rows and sites. Second, PCBs have far fewer routing re-
sources. While VLSI benefits from multiple stacked metal layers,
often making routing a 3D problem, PCB routing is restricted to
a much more limited 2D space, making it significantly harder to
route crossing nets. Finally, PCB components can rotate to any legal
orientation, a flexibility not typically considered in VLSI placement.
To this end, we propose the following PCB-specific cost functions
to maximize routability.

4.2.1 Net Crossing. To address the challenge of limited routing
resources in PCBs, we define a metric called net crossing to capture
routing conflicts on the same copper layer.

Source

Sink 2

Sink 3

Net Track

Src-Sink Pairs

Sink 1

L1

L2

𝑥!, 𝑦!

𝑥", 𝑦"
𝑥#, 𝑦#

𝑥$, 𝑦$

(a) Net as pin pairs (b) Pin pair crossing

Figure 1: Net crossing definition — First, we represent a multi-
pin net as a set of line segments. Each line segment starts
from the source pin and ends at the sink pin. The net cross-
ing is then defined as the sum of all pin pairs’ line segment
crossing.

Fig. 1 illustrates the definition of net crossing.We first decompose
each multi-pin net into pin pairs. As described in Algorithm 1, this
transformation converts a multi-pin net into a list of pin pairs. Each
pair connects the source pin to one of the sink pins with a line
segment, as shown in Fig. 1(a). At the placement stage, a net is
defined as the electrical connection between a source pin and its
sink pins, without any information about the net’s topology. The
source-sink pin pair model serves as a general representation of

ISPD ’25, March 16–19, 2025, Austin, TX, USA. Zhang et al.

Algorithm 1: Transform Multi-Pin Nets to Pin-Pair Model

Input: 𝑁𝑒𝑡𝑠 // A list of multi-pin nets. Each net

𝑁𝑖 = (𝑠𝑜𝑢𝑟𝑐𝑒𝑖 , 𝑆𝑖𝑛𝑘𝑠𝑖)
Output: 𝑃𝑖𝑛𝑃𝑎𝑖𝑟𝑠 // A list of pin pairs representing

the nets

1 𝑃𝑖𝑛𝑃𝑎𝑖𝑟𝑠 ← ∅ // Initialize the output list

2 foreach 𝑁𝑖 ∈ 𝑁𝑒𝑡𝑠 do
3 𝑠𝑜𝑢𝑟𝑐𝑒 ← 𝑁𝑖 .𝑠𝑜𝑢𝑟𝑐𝑒 // Extract the source pin

4 foreach 𝑠𝑖𝑛𝑘 ∈ 𝑁𝑖 .𝑆𝑖𝑛𝑘𝑠 do
// Add the pin pair to the list

5 𝑃𝑖𝑛𝑃𝑎𝑖𝑟𝑠 ← 𝑃𝑖𝑛𝑃𝑎𝑖𝑟𝑠 ∪ { (𝑠𝑜𝑢𝑟𝑐𝑒, 𝑠𝑖𝑛𝑘) }
6 end
7 end
8 return 𝑃𝑖𝑛𝑃𝑎𝑖𝑟𝑠

both manual and automated routing approaches. Then, a crossing
score is defined between two line segments on the same layer. As
an example, we define the crossing for a pair of line segments 𝐿1
and 𝐿2 as depicted in Fig. 1(b). First, we express 𝐿1 and 𝐿2 in the
first degree Bézier form:

𝐿1 =

[
𝑥1
𝑦1

]
+ 𝑡

[
𝑥2 − 𝑥1
𝑦2 − 𝑦1

]
, 𝐿2 =

[
𝑥3
𝑦3

]
+ 𝑢

[
𝑥4 − 𝑥3
𝑦4 − 𝑦3

]
(2)

where (𝑥𝑖 , 𝑦𝑖) is the coordinate of pin 𝑣𝑖 , 𝑡 and 𝑢 are Bézier param-
eters defined as follows:

𝑡 =
(𝑥1 − 𝑥3) (𝑦3 − 𝑦4) − (𝑦1 − 𝑦3) (𝑥3 − 𝑥4)
(𝑥1 − 𝑥2) (𝑦3 − 𝑦4) − (𝑦1 − 𝑦2) (𝑥3 − 𝑥4) + 𝜖

𝑢 = − (𝑥1 − 𝑥2) (𝑦1 − 𝑦3) − (𝑦1 − 𝑦2) (𝑥1 − 𝑥3)
(𝑥1 − 𝑥2) (𝑦3 − 𝑦4) − (𝑦1 − 𝑦2) (𝑥3 − 𝑥4) + 𝜖

(3)

where we introduce a small value 𝜖 to prevent division by zero,
such as when 𝐿1 and 𝐿2 are parallel. There is an intersection of 𝐿1
and 𝐿2 if 0 ≤ 𝑡 ≤ 1 and 0 ≤ 𝑢 ≤ 1 simultaneously. We apply a
bell-shaped function similar to the one in the density function of
NTUPlace3 [5] to obtain a smooth cost function:

Crossing(𝐿1, 𝐿2) = 𝐵(𝑡 − 0.5)𝐵(𝑢 − 0.5) (4)
where 𝐵 is the bell-shaped function defined as follows:

𝐵(𝑥) =

1 − 𝜈𝑥2, 0 ≤ |𝑥 | ≤ 0.5
𝜇 (|𝑥 | − 𝜎)2 , 0.5 ≤ |𝑥 | ≤ 1
0, |𝑥 | ≥ 1.

(5)

𝜈 , 𝜇, 𝜎 are tunable parameters subject to 1−0.25𝜈 = 𝜇 (0.5−𝜎)2. The
cost in (4) will be strictly positive when segments cross, serving
as penalty. Finally, the net crossing NC for the entire design is the
sum of all crossings between pairs of line segments on the same
layer, i.e., NC =

∑
(𝑖, 𝑗) Crossing(𝐿𝑖 , 𝐿𝑗) where 𝐿𝑖 and 𝐿𝑗 are on the

same layer. The layer of two line segments can be determined based
on their pins: if all four pins of the segments belong to the same
layer, the segments are considered to be on the same layer. Note
that crossings are only calculated for line segments on the same
layer, as segments on different layers do not physically intersect and
therefore do not pose a conflict in routing resources. In practice,

this can be computed very fast in parallel on GPUs despite the
quadratic complexity.

(a) Net crossing (b) Net convex hull

Figure 2: The net crossing provides a more accurate routing
model than the convex hull. The two nets (green and blue)
do not have a routing resource conflict in our net crossing
definition. However, the net convex hull model inaccurately
identifies a conflict between them.

NS-Place [7] developed a concept similar to net crossing by sep-
arating the convex hulls of nets, resulting in a problem formulation
that closely resembles a support vector machine (SVM). We argue
that the net convex hull model is too restrictive — no overlap be-
tween convex hulls implies zero net crossings — and less accurate
than our net crossing model. As shown in Fig. 2, the two nets are
represented as pin pairs in Fig. 2(a) and convex hulls in Fig. 2(b).
When calculating net crossings in Fig. 2(a), the result is 0, which
is accurate because the two nets do not have a routing resource
conflict. However, in the convex hull model, overlap between con-
vex hulls indicates a routing conflict, which is inaccurate. The pin
pair-based approach better reflects how routers handle nets in PCB
designs.

(a) No routing conflict (b) Routing conflict present

Figure 3: Two net pairs with different source pins (marked in
red) butwith the same congestion score fromRUDY. (a) shows
no routing conflict, while (b) presents a routing conflict.

In VLSI placement, the RUDY model [38] is widely used to es-
timate routing congestion, a typical proxy for routability. RUDY
is calculated based on the available routing resources in a rout-
ing g-cell and its overlap with the net’s bounding box. This model
works well for VLSI routing because VLSI designs have grid-based
rectilinear routing systems with many metal layers, and routers
generally aim to route each net within the bounding box enclos-
ing all its pins. Multi-pin nets are also routed with a unique tree,
and not independent source-sink connections. Thus, RUDY is less
effective for PCBs, which have fewer metal layers, and where the
specific connections between pin pairs play a much larger role
and can be realized with more freedom (i.e., no grid and possible

Cypress: VLSI-Inspired PCB Placement with GPU Acceleration ISPD ’25, March 16–19, 2025, Austin, TX, USA.

angled routing). Fig. 3 illustrates this: two cases with identical rout-
ing congestion RUDY scores show one with a routing conflict and
one without, highlighting that RUDY is a flawed model for PCB
routability.

4.2.2 Orientation-aware Wirelength Model. Given PCB compo-
nents’ large and diverse sizes, their orientations can significantly
impact placement quality, especially in terms of wirelength. We
extend the differentiable log-sum-exp (LSE) wirelength model [36]
to consider legal orientations. WL(x, y, 𝜽) is the total wirelength
for all nets with components rotations 𝜽 considered:

WL(x, y, 𝜽) = ∑
𝑒∈𝐸 𝛾

(
log

∑
𝑣𝑘 ∈𝑒 exp

(
𝑥𝑘
𝛾

)
+ log∑𝑣𝑘 ∈𝑒 exp

(
−𝑥𝑘𝛾

)
+ log∑𝑣𝑘 ∈𝑒 exp

(
𝑦𝑘
𝛾

)
+ log∑𝑣𝑘 ∈𝑒 exp

(
− 𝑦𝑘

𝛾

))
,

where (𝑥𝑘 , 𝑦𝑘) is the coordinate of pin 𝑣𝑘 :

𝑥𝑘 = 𝑥𝑐 + 𝑥off𝑘 cos𝜃𝑐 − 𝑦off𝑘 sin𝜃𝑐 ,

𝑦𝑘 = 𝑦𝑐 + 𝑥off𝑘 sin𝜃𝑐 − 𝑦off𝑘 cos𝜃𝑐 ,
(6)

subject to 𝜃𝑐 ∈ Θ. Parameter 𝛾 is a smoothness parameter that
controls the HPWL approximation accuracy (as→ 0). We relax the
categorical choice of a legal orientation to a softmax over all choices
using the Gumbel-Softmax reparameterization technique [19]. This
produces an 𝑛-dimensional sample vector 𝜿 , where 𝑛 = |Θ|, and
each element is defined as:

𝜅𝑖 =
exp ((log (𝜋𝑖) + 𝑔𝑖) /𝜏)∑𝑛
𝑗=1 exp

((
log

(
𝜋 𝑗

)
+ 𝑔 𝑗

)
/𝜏
) for 𝑖 = 1, . . . , 𝑛. (7)

In Eq. 7, 𝑔𝑖 are i.i.d samples drawn from Gumbel(0, 1), and 𝜏 is
the softmax temperature. With this approach, the task of choos-
ing a legal orientation is relaxed to learning the continuous class
probability 𝜋 [19]. During the orientation optimization, we use the
continuous approximation of 𝜃𝑐 , defined as 𝜃𝑐 =

∑𝑛
𝑖=0 𝑜𝑖 · 𝜅𝑖 . After

the orientation optimization, we determine the legal orientation
choice as 𝑘 = argmax𝑖 [𝑔𝑖 + log (𝜋𝑖)], and subsequently select the
legal orientation as 𝜃𝑐 = 𝑜𝑘 .

Algorithm 2: Cypress— Bilevel Placement Optimization

1 Create an initial placement parameterized by (x, y,𝝅)
2 Obtain the global placement loss function L defined in (8).
3 while not converged do
4 1. Update positions x, y by descending ∇L while freezing 𝝅 ,

using Px,y as gradient preconditioner;
5 2. Update class probabilities 𝝅 by descending ∇L while

freezing x, y, using P𝝅 as gradient preconditioner;

6 Derive final placement by (x, y,𝝅)
7 Legalize placement.

With the continuous relaxation, the optimization problem be-
comes jointly optimizing the component coordinates (x, y) and
the component orientations 𝜽 . Analogous to neural architecture
search using gradient descent [29], we apply a bilevel optimization
process [9], described in Algorithm 2.

4.2.3 Density. We follow the density model of DREAMPlace [27]
which models components as electric charges, density as potential
energy, and density gradient as electric field. The electric potential
and field distribution is obtained by solving Poisson’s equation
from the charge density distribution via spectral methods with a
two-dimensional fast Fourier transform (FFT). We define the den-
sity as D(x, y, 𝜽). Our modifications are specific to the PCB domain:
(1) The inclusion of 𝜽 remains consistent with the DREAMPlace
formulation, as components are first rotated, which potentially
swaps the height and width of a component when calculating the
density map, (2) Additionally, to account for the two-sided nature
of PCBs, we construct separate density maps for each side, ensur-
ing an accurate representation of the overall density. Note that in
our formulation, the side assigned to each component is predeter-
mined by the designer’s choice, and we leave as future work its
optimization.

4.2.4 Cost Function. To put everything together, the following
equation is the combined cost function we solve with gradient
descent:

L(x, y, 𝜽) = WL(x, y, 𝜽) + 𝜆𝐷 D(x, y, 𝜽) + 𝜆𝑁𝐶 NC(x, y, 𝜽) (8)

where 𝜆𝐷 , 𝜆𝑁𝐶 are the weights of the density and the net cross-
ing, respectively. At the beginning of the placement process, all
components are positioned at an initial starting point, minimizing
wirelength due to overlap. We then progressively increase the La-
grange multiplier 𝜆𝐷 for the density term to spread the components
and reach a minimal energy state at the end of global placement.
We adopt the dynamic density schedule introduced in DREAMPlace
3.0 [14], where the density weight is exponentially increased, con-
trolled by a density factor bounded within predefined lower and
upper limits. Simultaneously, the weight of the net crossing term,
𝜆𝑁𝐶 , gradually increases to reduce net crossings as components are
distributed. We apply a static linear schedule for the net crossing
weight: 𝜆𝑡+1

𝑁𝐶
= 𝜆𝑡

𝑁𝐶
+ 𝜂, with 𝜂 being a tunable parameter.

4.3 Preconditioning
We observed that the varying sizes of PCB components can lead
to slow convergence or even divergence during optimization. To
address this, we apply divergence-aware gradient precondition-
ing [14]. The second-order derivative of the wirelength objective is
estimated based on the pin count of each component [32], while
the second-order derivative of the density term is approximated by
the component area [27, 32], forming the diagonal of the Hessian
matrix. We found no preconditioning term was needed in practice
for the net crossing, given that the wirelength preconditioning
term can account for it. The precondition operator for updating the
positions x, y is then defined as follows:

Px,y = min
(
1,
(
∇2WL(x, y, 𝜽) + 𝛽𝜆𝐷∇2 D (x, y, 𝜽)

)−1)
= min

(
1, (# pin(c) + 𝛽𝜆𝐷 area(c))−1

) (9)

where # pin(·) is the number of pins of a component, and area(·)
its area. We initialize 𝛽 to 1 and linearly increase it with each
iteration. This gradual increase in 𝛽 reduces the movement of larger

ISPD ’25, March 16–19, 2025, Austin, TX, USA. Zhang et al.

components in the later stages of the optimization process. For
orientation updates, since class probabilities are only updated by
gradients from wirelength and net crossings, we omit the second
term of the preconditioning operation for the density calculation:

P𝝅 = min
(
1, # pin(c)−1

)
. (10)

4.4 Legalization
We build upon the approach used in DREAMPlace [27] to imple-
ment legalization as an operation. Unlike DREAMPlace, our method
legalizes the two PCB sides separately, ensuring that components
on the same side do not overlap. The process begins with a Tetris-
like procedure inspired by NTUplace3 [5], followed by Abacus
row-based legalization [39]. The process begins with a Tetris-like
procedure inspired by NTUplace3 [5], followed by Abacus row-
based legalization [39]. This step is performed after transferring
placement from GPU to CPU, where legalization is executed en-
tirely on a single CPU thread in just a few seconds, even for large
designs with tens of thousands of components.

4.5 Constraint Handling
Cypress supports two types of constraints commonly encountered
in PCB design: spacing constraints, which enforce a minimum
distance between components, and fixed-component constraints,
which account for pre-placed or immovable components.

4.5.1 Spacing Constraints. To enforce spacing constraints, Cypress
employs the macro halo technique introduced in AutoDMP [1].
This technique temporarily enlarges the effective footprint of each
component during placement, creating a virtual buffer that prevents
overlap. Once placement and legalization are complete, the halos
are removed, and the components revert to their original sizes while
maintaining the required spacing.

4.5.2 Fixed Components. In many PCB designs, certain compo-
nents are pre-placed and must remain fixed due to mechanical
constraints or performance requirements, such as high-speed or
high-current elements. For fixed components, Cypress takes their
positions and orientations into account when calculating the wire-
length, density, and net crossing, as well as during legalization,
while their positions and orientations are held constant by exclud-
ing them from the parameter update steps. To mitigate the potential
routing challenges posed by fixed components, Cypress optimizes
the placement of movable components to improve routability and
minimize wirelength by considering the positions of fixed compo-
nents in the loss function. This ensures that movable components
adapt to the constraints imposed by pre-placed obstacles, achieving
high routability and short wirelength.

For components with partial constraints, Cypress allows selec-
tive updates. For instance, the optimization can fix the position
(x, y) while adjusting the orientation 𝝅 , or vice versa. This flexibil-
ity is achieved by masking updates to specific parameters, enabling
fine-grained control over placement adjustments.

4.6 Design Space Exploration
DREAMPlace-based placers enable placement optimization with
the latest gradient optimizers, such as Adam and Nesterov. How-
ever, this opens up a search space for the optimizer parameters,
such as learning rate, weight decay, etc. In addition, the initial
placement location also affects the final solution quality. Therefore,
we follow AutoDMP [1] to use multi-objective Bayesian optimiza-
tion (MOTPE) for parameter space exploration. Table 2 lists the
parameter space we will tune in our experiments.

Table 2: Parameter space of Cypress

Parameter Search Range
horiz. initial position [0.2, 0.8](%)
vertical initial position [0.2, 0.8](%)
init. density weight [1e-6, 1.0]

target density [0.1, 1.0]
init. net crossing weight [1e-6, 1.0]

LogSumExp init. 𝛾 [0.1, 0.5]
init. learning rate [1e-4, 1e-2]

optimizer {Adam, Nesterov}

The design space exploration process can run in parallel across
multiple GPUs. The MOTPE algorithm searches for Pareto-optimal
points along the axes of wirelength (HPWL), net crossing, and den-
sity, effectively exploring the trade-offs between multiple objectives
to produce placements with high routability.

5 PCB Placement Benchmark
We develop a PCB benchmark suite based on realistic commercial
designs to facilitate comparison between PCB placement tools and
establish a meaningful baseline. The suite consists of two sets: a
small open-source set containing PCB designs with 41 to 476 com-
ponents, and a larger set with 5,118 to 6,628 components. Detailed
statistics are provided in Table 3, #movable refers to the number of
movable components.

5.1 Benchmark Synthesis Method
Existing PCB placement tools have limited scalability. For example,
Quilter has a 95% success rate for designs with less than 500 pins
and 100 components [37]. Therefore, we need to synthesize a bench-
mark suite of designs with 10s–100s of components to facilitate
meaningful comparison between tools. Additionally, we consider
how PCB engineers approach placement for larger designs. They of-
ten start by performing local placement on a subset of components
off-canvas, then position the group on the main board. These com-
ponent groups are typically chosen based on functionality, such as
placing a GPIO expander alongside its connected components. Such
practice makes small but realistic test cases particularly important
for industry.

Based on this observation, we synthesize 10 small PCB designs
small-1 to small-10. The benchmark data includes component
shapes, layer assignment, pin positions, net connections. These
designs are based on functional group of commercial PCB designs,
including Ethernet IC controller, power controller, GPIO expander,
CPLDs. Fig. 4 shows four examples of small benchmarks. Light

Cypress: VLSI-Inspired PCB Placement with GPU Acceleration ISPD ’25, March 16–19, 2025, Austin, TX, USA.

Table 3: PCB Benchmark Suite Statistics

#components #movable #pins #nets
small-1 57 57 167 85
small-2 240 240 612 84
small-3 63 63 156 51
small-4 43 43 129 82
small-5 41 41 105 49
small-6 46 46 85 26
small-7 50 50 153 95
small-8 115 115 5334 199
small-9 476 476 2212 1513
small-10 136 136 582 403
big-1 6589 1714 18140 5620
big-2 6537 1918 21824 7190
big-3 5118 1293 11618 2914
big-4 6542 1922 21893 7166
big-5 6628 2152 20838 6937

(a) small-1 (b) small-2

(c) small-4 (d) small-7

Figure 4: Examples from the small PCB benchmark suite.

green indicates components on the top layer, deep green represents
components on the bottom layer, and black lines depict connections
between pins.

5.2 Proprietary Benchmarks
To evaluate the scalability of our approach, we included five large
benchmarks big-1 to big-5 based on real commercial PCB designs.
While these designs will not be part of the open-source bench-
mark, they are used exclusively for evaluating our tool. These fully
realized commercial designs feature pre-placed VDD, high-speed
signals, and ASICs. It is important to note that existing PCB place-
ment tools cannot handle designs of this scale, highlighting the
challenges our approach seeks to address.

5.3 PCB Intermediate Representation
PCB data formats are fragmented across different EDA tools. For
instance, KiCAD uses its own formats for PCB and schematics [22],
some placement tools rely on the Bookshelf format [35], and au-
torouters like Freerouting accept the Specctra DSN format [12]. To
address this fragmentation, we develop and open-source a YAML-
based PCB intermediate representation (IR) along with translation
tools to interface with KiCAD, IDF (Intermediate Dataformat), and
Bookshelf formats, as well as visualization toolkits. The PCB IR
captures component, pin, and net information in a format that is
portable, extensible, and easy to visualize, facilitating cross-platform
compatibility.

6 Experiments
The Cypress framework builds upon AutoDMP [1] and DREAM-
Place [14, 25, 27, 28], with PCB-specific cost functions implemented
as CUDA kernels and custom PyTorch operators. We evaluate Cy-
press on the proposed benchmarks, comparing it against three
baseline tools from academia, the open-source community, and
commercial solutions. To assess the scalability of Cypress, we also
test it on real commercial designs. The three baseline tools are:
(1) NS-Place [7], a state-of-the-art academic PCB placement tool
that uses a net separation formulation to optimize routability by
separating the convex hull of nets. It applies mixed-integer lin-
ear programming (MILP) for legalization. We obtain the NS-Place
implementation source code from GitHub2. Furthermore, we in-
troduce an enhanced NS-Place baseline, termed NS-Place+, which
replaces theMILP legalizationwith Cypress’s legalization algorithm
described in Section 4.4, as MILP demonstrates suboptimal perfor-
mance. (2) SA-PCB [10], an open-source tool from OpenROAD
based on simulated annealing which supports double-sided designs
and component rotation. (3) Quilter [37], a commercial solution
that employs reinforcement learning to automate PCB placement
and routing. We evaluate the placement solutions using several key
metrics: wirelength (HPWL), net crossing, routability, and routed
track length. To assess routability and routed track length, we uti-
lize FreeRouting v1.9.0 [12], an open-source PCB autorouter. For
all designs, we assume the board has two free copper layers for
routing. Routability is defined as the ratio of successfully routed
pin pairs to the total number of pin pairs reported by FreeRouting.

The reported run times are based on the following setup: Cypress
was executed on an NVIDIA V100 GPU, while NS-Place and SA-PCB
were run on an Intel Xeon 2.2GHz CPU with 80GB memory. Quilter
does not run locally; designs in kicad_pcb format were submitted
to Quilter’s cloud service and proprietary server infrastructure.
The Quilter experiments were conducted using its April 04, 2024
release with the following settings: two-sided PCB and no pre-
placed components, all other configurations are set to default.

6.1 Small Benchmark Results
In addition to the baseline placement tools, we include PCB engineer
placement results as a human baseline. It is important to note that
the human baseline is derived from a larger design, where additional
constraints, such as thermal considerations, are factored in. As a
result, the placement may be more conservative in accounting for
2https://github.com/choltz95/pcb-placement

ISPD ’25, March 16–19, 2025, Austin, TX, USA. Zhang et al.

Table 4: Results of the small benchmark suite — HPWL denotes half-perimeter wirelength (lower is better), NC represents
net crossings (lower is better), RB indicates routability (higher is better), and TL denotes routed track length (lower is better).
Averages are normalized relative to SA-PCB.

SA-PCB NS-Place NS-Place+ Quilter Human Cypress
HPWL / NC RB / TL HPWL / NC RB / TL HPWL / NC RB / TL HPWL / NC RB / TL HPWL / NC RB / TL HPWL / NC RB / TL

S1 18.2K / 122.3 100.0% / 1.4K 7.9K / 82.1 60.8% / 0.4K 7.4K / 50.3 100.0% / 0.8K 2.3K / 137.4 100.0% / 0.3K 4.0K / 74.6 100.0% / 0.3K 1.6K / 46.5 100.0% / 0.2K
S2 92.6K / 172.9 100.0% / 9.0K 15.4K / 6.0 54.9% / 0.6K 60.8K / 1643.1 99.6% / 6.5K 26.2K / 79.3 100.0% / 3.2K 11.4K / 21.8 100.0% / 1.2K 6.5K / 36.1 100.0% / 1.1K
S3 11.0K / 81.0 99.0% / 1.2K 3.3K / 60.4 93.0% / 0.7K 6.7K / 96.9 100.0% / 0.8K 2.8K / 42.8 100.0% / 0.2K 3.7K / 111.0 100.0% / 0.2K 1.7K / 52.9 100.0% / 0.2K
S4 12.9K / 8.2 100.0% / 0.9K 4.8K / 0.6 17.8% / 0.1K 5.8K / 11.1 77.5% / 0.5K 4.1K / 10.0 100.0% / 0.2K 4.5K / 5.1 100.0% / 0.3K 1.8K / 6.2 100.0% / 0.2K
S5 6.0K / 23.4 91.0% / 0.6K 2.3K / 16.9 71.4% / 0.3K 6.2K / 46.8 80.4% / 0.5K 2.7K / 27.2 100.0% / 0.2K 2.3K / 17.8 100.0% / 0.2K 1.5K / 20.1 100.0% / 0.2K
S6 5.5K / 56.2 98.3% / 0.5K 3.5K / 31.3 86.4% / 0.5K 3.3K / 55.3 88.1% / 0.4K 2.0K / 41.9 100.0% / 0.1K 1.4K / 36.0 100.0% / 0.1K 0.9K / 18.4 100.0% / 0.1K
S7 11.4K / 20.7 96.6% / 0.6K 6.9K / 10.5 17.0% / 0.1K 7.2K / 17.3 61.7% / 0.6K 2.6K / 13.7 100.0% / 0.2K 2.9K / 4.5 100.0% / 0.2K 0.7K / 18.7 100.0% / 0.1K
S8 118.3K / 34.0 82.9% / 8.4K 44.0K / 31.5 63.1% / 2.7K 52.0K / 119.3 87.2% / 5.1K 21.2K / 25.6 100.0% / 2.1K 7.1K / 29.6 98.5% / 0.4K 3.7K / 9.7 100.0% / 0.4K
S9 1322.3K / 2164.7 98.6% / 23.8K - / - -% / - - / - -% / - - / - -% / - 161.5K / 1911.8 90.4% / 7.0K 25.0K / 809.3 100.0% / 3.5K
S10 131.1K / 123.7 81.5% / 7.8K 66.6K / 105.9 27.1% / 1.1K 113.1K / 157.0 86.2% / 8.5K 25.9K / 102.0 100.0% / 2.0K 16.4K / 164.6 100.0% / 1.0K 8.4K / 84.6 100.0% / 0.5K
Avg 1.0 / 1.0 1.0 / 1.0 0.38 / 0.54 0.58 / 0.21 0.64 / 3.42 0.92 / 0.78 0.22 / 0.75 1.06 / 0.28 0.13 / 0.72 1.06 / 0.13 0.07 / 0.46 1.06 / 0.1

(a) SA-PCB (97% routable) (b) NS-Place (17% routable) (c) NS-Place+ (62% routable)

(d) Quilter (100% routable) (e) Human (100% routable) (f) Cypress (100% routable)

Figure 5: Routed PCB design of benchmark small-7 placed by SA-PCB, NS-Place, NS-Place+, Quilter, Human, and Cypress. All
components are movable. Unrouted pin pairs are shown as black line segments.

nearby components, which explains why other tools achieve better
wirelength performance compared to the human baseline.

Table 4 shows the PCB placement results on 10 small bench-
marks. Note that net crossings are not integers because we employ
the continuous function definition given in Eq. 4. We performed
parameter space exploration using MOTPE for 30 iterations, using
four NVIDIA V100 GPUs in parallel. The DSE for small benchmarks
took between 3.3 to 29.4 minutes, producing a Pareto frontier. We
selected the design with the lowest HPWL as the final design. Cy-
press outperforms baseline tools across several metrics. Against
SA-PCB, Cypress improves HPWL by 75% to 98.1%, averaging 89.5%,
and net crossing by 45.7% on average, with a maximum of 79.1%.
Routability improves by 1.0–1.2×, and track length is 3.6–19.7×
shorter. Compared to NS-Place, Cypress improves HPWL by 69.3%
on average, and net crossing varies from a 963% degradation to a
69.4% improvement. Routability improves by 2.7×. Cypress achieves

an average HPWL improvement of 81.5% over NS-Place+, with net
crossing ranging from an 8.4% degradation to a 97.8% improvement.
Routability increases by 1.2×. Against Quilter, Cypress improves
HPWL by 57.8% on average, and net crossing by 57.8%. Routability
remains similar, except for S9, where Quilter failed and Cypress
produced a fully routable design. Compared to human designers,
Cypress improves HPWL by 34.4–84.5%, with an average of 54.2%,
while routability remains the same and track length decreases by
1.5×.

In terms of routability, NS-Place performs poorly due to unre-
solved overlaps caused by legalization failures. NS-Place employs
MILP with the Coin-or branch and cut (CBC) solver backend [11],
with a solver time-out limit of 60 minutes. The solver timed out
for benchmarks S1, S2, S4, S5, S6, S7, S8, and S10. To enable a fair
comparison with Cypress, we introduced an additional baseline,

Cypress: VLSI-Inspired PCB Placement with GPU Acceleration ISPD ’25, March 16–19, 2025, Austin, TX, USA.

100 200 300 400
Components

102

103

104

Ru
n

Ti
m

e
(s

ec
on

ds
)

SA-PCB
NS-Place
Quilter
Cypress

Figure 6: Scalability Comparison

NS-Place+, which replaces the MILP legalizer with Cypress’s le-
galization algorithm. After resolving overlaps, NS-Place+ exhibits
a 1.7× higher wirelength and 6.3× higher net crossing. Neverthe-
less, NS-Place+ achieves a 1.6× improvement in routability due to
successful legalization.

6.1.1 Scalability. Fig. 6 illustrates the relationship between the run
time and the number of components in the design. The run time of
SA-PCB increases linearly with component count, while Quilter’s
grows exponentially. Quilter’s longer run time can be attributed
to two factors: its reinforcement learning approach, which relies
on a sample learning process, and the fact that it includes routing
within the optimization cycle. For the NS-Place group, we exclude
the MILP legalization time and report only the net convex hull
separation optimization time. This decision is due to the frequent
timeouts of the NS-Place MILP solver, whereas NS-Place+ utilizes
Cypress’s legalizer, which complets in less than one second. In
contrast, Cypress exhibits strong scalability, largely due to its GPU
acceleration. It is important to note that the reported run time in
Fig. 6 for Cypress reflects the time for a single placement job, not
the full DSE run time.

Cypress’s DSE leverages parallel workers to evaluate multiple
design candidates in parallel across multiple GPUs, enabling faster
exploration by scaling the number of GPUs. Using four NVIDIA
V100 GPUs with four workers in parallel, the DSE for benchmarks
S1, S3, S4, S5, S6, S7, and S10 completes in 200.5 to 350.7 seconds,
S9 requires 584.5 seconds, and S2 takes 1764.7 seconds.

6.1.2 Results Analysis. To compare the results of each tool, we
use the small-7 design as an example. Figure 5 illustrates the
routed PCB designs produced by SA-PCB, NS-Place, NS-Place+,
Quilter, manual results, and Cypress. We analyze the strengths and
limitations of each baseline as follows:

• SA-PCB focuses on avoiding component overlap and minimiz-
ing wirelength, but due to an improper balance between these
objectives, it often pushes components to the borders. While
this improves routability for smaller designs, this approach can
degrade routability on a larger and denser design like small-9.

• NS-Place optimizes routability by minimizing the overlaps be-
tween the net convex hulls, a very conservative but less pre-
cise model than net crossing, as discussed in Section 4.2.1. Al-
though this is very efficient for avoiding net crossings, this over-
constraining without proper balance with density and wirelength
leads to suboptimal solutions where small components cluster
into non-overlapping convex hulls, causing blockages and se-
verely reducing routability. Furthermore, NS-Place depends heav-
ily on legalization to resolve overlaps, leading to substantial
deviations between global and detailed placement stages, thus
producing unpredictable results. The MILP-based legalization
approach, moreover, lacks scalability and frequently fails, leaving
the final solution with unresolved overlaps.
• NS-Place+ incorporates Cypress’s legalization algorithm in place
of MILP, effectively resolving overlaps with a runtime of less
than one second. Consequently, eliminating overlaps results in
increased wirelength. Additionally, we observe a degradation in
net crossing after overlap removal, indicating that NS-Place’s
over-constrained net convex hull separation contributes to over-
lap issues. While overlap removal improves routability, NS-Place
still fails to achieve 100% routability in many cases.
• Quilter, a closed-source commercial placer, leverages reinforce-
ment learning and integrates a router in the optimization loop,
yielding highly routable designs. However, this comes at the cost
of long run times and limited scalability.
• The human baseline is extracted from a larger design. Conse-
quently, the placement tends to be more conservative, accounting
for nearby components, which explains why Cypress achieves
better wirelength performance than the human baseline.

Finally, Cypress highlights the significance of multi-objective
optimization. By considering wirelength, net crossing, and den-
sity simultaneously, Cypress consistently produces highly routable
designs with low wirelength.

6.2 Big Benchmark Results
We compare Cypress under various configurations on commercial
designs. A direct comparison with fully human-designed layouts is
avoided, as human designers take into account a much broader set
of constraints, making such a comparison less meaningful. Instead,
this section is framed as an ablation study.

Table 5 presents the results of Cypress on five large benchmark
circuits (B1–B5), showing HPWL and net crossing (NC) under three
configurations: wirelength and density optimization, the addition
of net crossing optimization, and the inclusion of orientation-aware
placement. We used the same parameter space exploration setup
as for the small benchmark, with runtime ranging from 143 to 318
minutes.

In B1, Cypress starts with HPWL and net crossings (NC) of
2.87M and 100.7K, respectively. Adding net crossing minimization
reduces NC to 31.4K, with HPWL increasing slightly to 3.04M.
When orientation awareness is applied, HPWL returns to 2.87M,
and NC drops further to 15.3K. For B2, Cypress produces 6.53M
HPWL and 84.1K NC initially. After net crossing minimization, NC
reduces significantly to 15.6K without affecting HPWL. Adding
orientation awareness reduces NC slightly to 15.3K, while HPWL
remains unchanged. In B3, the initial configuration yields 1.33M

ISPD ’25, March 16–19, 2025, Austin, TX, USA. Zhang et al.

(a) Human (b) Cypress

Figure 7: Placement result comparison of benchmark big-1: human v.s. Cypress. Green boxes represent components on the top
layer, blue boxes represent components on the bottom layer. Nets are omitted for clarity.

Table 5: Big benchmark suite results – HPWL denotes half-
perimeter wirelength (lower is better), NC stands for net
crossing (lower is better). Averages are normalized relative
to WL+Density.

WL + Density + Net Crossing + Orientation
HPWL NC HPWL NC HPWL NC

B1 2.87M 100.7K 3.04M 31.4K 2.87M 15.3K
B2 6.53M 84.1K 6.53M 15.6K 6.53M 15.3K
B3 1.33M 91.5K 1.36M 33.5K 1.33M 37.4K
B4 6.58M 78.9K 7.20M 9.7K 6.57M 16.8K
B5 5.24M 89.9K 7.25M 46.4K 6.28M 34.0K
Avg 1.0 1.0 1.13 0.31 1.05 0.27

HPWL and 91.5K NC. Net crossing minimization lowers NC to
33.5K, with a minor HPWL increase to 1.36M. However, orientation
awareness slightly increases NC to 37.4K, while HPWL returns to
1.33M. For B4, Cypress starts with 6.58M HPWL and 78.9K NC. Net
crossing minimization reduces NC to 9.7K, though HPWL rises to
7.20M. With orientation awareness, HPWL drops to 6.57M, while
NC increases slightly to 16.8K. Finally, in B5, the initial setup yields
5.24M HPWL and 89.9K NC. Minimizing net crossings reduces NC
to 46.4K but raises HPWL to 7.25M. Adding orientation awareness
improves HPWL to 6.28M and reduces NC further to 34.0K. We
observe similar trends in B1 through B5, where minimizing net
crossings increases wirelength, but adding orientation awareness
reduces HPWL again, resulting in an overall improved design.

Fig. 7 compares the human-placed large design big-1 with the
version generated by Cypress. We fixed critical components, such
as ASICs and power supply units, and allowed Cypress to place
the noncritical components, subject only to spacing constraints.
Green blocks represent components on the top layer, while blue
blocks represent components on the bottom layer. Cypress uses
bounding boxes to represent components, as shown in Fig. 7(b).
Overall, we observe similarities in clustering smaller components
between the human and Cypress placements. A notable difference

appears with the two central CPLDs: in the human design, they
are placed horizontally, while in the Cypress placement—guided
by wirelength, density, and net crossing—they are placed vertically,
though still in a symmetrical arrangement. Additionally, smaller
components have been pushed into the open spaces. Since we
did not apply keep out area constraints, this behavior is expected,
although it may not occur in real-world designs.

7 Limitations
Cypress supports spacing constraints during PCB placement but
does not yet handle height or alignment constraints. Height con-
straints (e.g., "keep-out" areas) prevent tall components from certain
regions, while alignment constraints require specific components to
be aligned. These constraints can be considered through penalties
in the objective function or through legalization, and preprocessing
can merge aligned components into single units during placement.

Cypress also does not handle critical components such as high-
current paths or high-speed signals. Instead, it focuses on fast place-
ment for noncritical components, accelerating the iterative design
process. Constraints like thermal, mechanical, and electromagnetic
factors are not formally encoded and are left for future work.

8 Conclusion
In this work, we presented a scalable, GPU-accelerated PCB place-
ment method inspired by VLSI techniques, addressing the chal-
lenges of flexible design spaces and routing constraints. Our ap-
proach outperforms state-of-the-art tools in routability, track length,
and run time, demonstrating superior scalability for large commer-
cial designs. We also introduced a synthesized benchmark suite to
support tool comparisons and track progress. The code and bench-
marks are open-sourced to advance research in PCB placement.
ACKNOWLEDGEMENTS – We gratefully acknowledge the anonymous
reviewers for their valuable feedback. We also thank Yi-Chen Lu, Chia-Tung
Ho, Mark Kilgard at NVIDIA for their insightful feedback on the initial
version of the Cypress framework. This work is supported in part by NSF
Award #2212371.

Cypress: VLSI-Inspired PCB Placement with GPU Acceleration ISPD ’25, March 16–19, 2025, Austin, TX, USA.

References
[1] Anthony Agnesina, Puranjay Rajvanshi, Tian Yang, Geraldo Pradipta, Austin

Jiao, Ben Keller, Brucek Khailany, and Haoxing Ren. 2023. AutoDMP: Automated
DREAMPlace-based Macro Placement. In Proceedings of International Symposium
on Physical Design. Association for Computing Machinery, New York, NY, USA,
149–157.

[2] Riccardo Cecchetti, Francesco de Paulis, Carlo Olivieri, Antonio Orlandi, and
Markus Buecker. 2020. Effective PCB Decoupling Optimization by Combining an
Iterative Genetic Algorithm and Machine Learning. Electronics 9, 8 (2020), 1243.

[3] Tony F Chan, Jason Cong, Joseph R Shinnerl, Kenton Sze, and Min Xie. 2006.
mPL6: Enhanced Multilevel Mixed-Size Placement. In Proceedings of International
Symposium on Physical Design. Association for Computing Machinery, New York,
NY, USA, 212–214.

[4] Tung-Chieh Chen, Tien-Chang Hsu, Zhe-Wei Jiang, and Yao-Wen Chang. 2005.
NTUplace: A Ratio Partitioning Based Placement Algorithm for Large-Scale
Mixed-Size Designs. In Proceedings of International Symposium on Physical De-
sign. Association for Computing Machinery, New York, NY, USA, 236–238.

[5] Tung-Chieh Chen, Zhe-Wei Jiang, Tien-Chang Hsu, Hsin-Chen Chen, and Yao-
Wen Chang. 2007. NTUplace3: An Analytical Placer for Large-Scale Mixed-Size
Designs. In Modern Circuit Placement: Best Practices and Results. Springer, New
York, NY, USA, 289–309.

[6] Yee-Ming Chen and Chun-Ta Lin. 2007. A Particle Swarm Optimization Approach
to Optimize Component Placement in Printed Circuit Board Assembly. The Inter-
national Journal of Advanced Manufacturing Technology 35 (2007), 610–620.

[7] Chung-Kuan Cheng, Chia-Tung Ho, and Chester Holtz. 2022. Net Separation-
Oriented Printed Circuit Board Placement via Margin Maximization. In 27th
Asia and South Pacific Design Automation Conference. IEEE, New York, NY, USA,
288–293.

[8] Chung-Kuan Cheng, Andrew B Kahng, Ilgweon Kang, and Lutong Wang. 2018.
RePlAce: Advancing Solution Quality and Routability Validation in Global Place-
ment. IEEE Transactions on Computer-Aided Design of Integrated Circuits and
Systems 38, 9 (2018), 1717–1730.

[9] Benoît Colson, Patrice Marcotte, and Gilles Savard. 2007. An Overview of Bilevel
Optimization. Annals of Operations Research 153 (2007), 235–256.

[10] The OpenROAD Project Contributors. 2024. SA-PCB: Simulated Annealing
for Printed Circuit Board Placement. https://github.com/The-OpenROAD-
Project/SA-PCB.

[11] John J. Forrest and the COIN-OR contributors. 2025. COIN-OR Branch-and-Cut
Solver (Cbc). https://github.com/coin-or/Cbc. Accessed: 2025-01-03.

[12] Freerouting Project. 2024. Freerouting: A Free Autorouter. https://github.com/
freerouting/freerouting Accessed: 2024-09-27.

[13] Charles N Frisbee. 1996. An Overview of Placement and Routing Algorithms for
PCB, VLSI and MCMDesigns with a Proposal for a newMCM Routing Algorithm.
University of Arkansas. 1 (1996), 1–51.

[14] Jiaqi Gu, Zixuan Jiang, Yibo Lin, and David Z Pan. 2020. DREAMPlace 3.0:
Multi-Electrostatics based robust VLSI placement with region constraints. In
Proceedings of International Conference on Computer-Aided Design. Association
for Computing Machinery, New York, NY, USA, 1–9.

[15] Zheming Gu, Ling Zhang, Hang Jin, Tuomin Tao, Da Li, and Er-Ping Li. 2022.
Deep Reinforcement Learning-Based Ground-Via Placement Optimization for
EMI Mitigation. IEEE Transactions on Electromagnetic Compatibility 65, 2 (2022),
564–573.

[16] Shinn-Ying Ho, Shinn-Jang Ho, Yi-Kuang Lin, and WC-C Chu. 2004. An Orthog-
onal Simulated Annealing Algorithm for Large Floorplanning Problems. IEEE
Transactions on Very Large Scale Integration (VLSI) Systems 12, 8 (2004), 874–877.

[17] William Ho and Ping Ji. 2005. A genetic algorithm to optimise the component
placement process in PCB assembly. The International Journal of Advanced
Manufacturing Technology 26 (2005), 1397–1401.

[18] Meng-Kai Hsu and Yao-Wen Chang. 2012. Unified Analytical Global Placement
for Large-Scale Mixed-Size Circuit Designs. IEEE Transactions on Computer-Aided
Design of Integrated Circuits and Systems 31, 9 (2012), 1366–1378.

[19] Eric Jang, Shixiang Gu, and Ben Poole. 2016. Categorical Reparameterization
with Gumbel-Softmax. arXiv preprint arXiv:1611.01144 1 (2016), 1–13.

[20] Zhe-Wei Jiang, Tung-Chieh Cheny, Tien-Chang Hsuy, Hsin-Chen Chenz, and
Yao-Wen Changyz. 2006. NTUplace2: A Hybrid Placer using Partitioning and
Analytical Techniques. In Proceedings of International Symposium on Physical
Design. Association for Computing Machinery, New York, NY, USA, 215–217.

[21] Cooper Jones. 2023. Distributed Monte Carlo Tree Search With Applications To
Chip Design. Ph. D. Dissertation. Massachusetts Institute of Technology.

[22] GR Kanagachidambaresan. 2021. Introduction to KiCad Design for Breakout and
Circuit Designs. In Role of Single Board Computers (SBCs) in Rapid IoT Prototyping.
Springer, New York, NY, USA, 165–175.

[23] LP Khoo and TK Ng. 1998. A Genetic Algorithm-Based Planning System for PCB
Component Placement. International Journal of Production Economics 54, 3 (1998),
321–332.

[24] Samuel P Kuo. 2006. PCB Design and Simulation Using Cadence Allegro 15.5. Ph. D.
Dissertation. University of Illinois at Urbana-Champaign.

[25] Peiyu Liao, Dawei Guo, Zizheng Guo, Siting Liu, Yibo Lin, and Bei Yu. 2023.
DREAMPlace 4.0: Timing-Driven Placement with Momentum-Based Net Weight-
ing and Lagrangian-Based Refinement. Transactions on Computer-Aided Design
of Integrated Circuits and Systems 42, 10 (2023), 3374–3387.

[26] Jai-Ming Lin, Tsung-Chun Tsai, and Rui-Ting Shen. 2023. Routability-Driven
Orientation-Aware Analytical Placement for System in Package. In 2023
IEEE/ACM International Conference on Computer Aided Design. IEEE, New York,
NY, USA, 1–8.

[27] Yibo Lin, Shounak Dhar, Wuxi Li, Haoxing Ren, Brucek Khailany, and David Z
Pan. 2019. DREAMPlace: Deep Learning Toolkit-Enabled GPU Acceleration for
Modern VLSI Placement. In Proceedings of Annual Design Automation Conference.
IEEE, New York, NY, USA, 1–6.

[28] Yibo Lin, David Z Pan, Haoxing Ren, and Brucek Khailany. 2020. DREAMPlace
2.0: Open-Source GPU-Accelerated Global and Detailed Placement for Large-
Scale VLSI Designs. In China Semiconductor Technology International Conference.
IEEE, New York, NY, USA, 1–4.

[29] Hanxiao Liu, Karen Simonyan, and Yiming Yang. 2018. DARTS: Differentiable
Architecture Search. arXiv preprint arXiv:1806.09055 1 (2018), 1–13.

[30] Wen-Hao Liu, Anthony Agnesina, and Haoxing Mark Ren. 2024. Challenges for
Automating PCB Layout. In Proceedings of International Symposium on Physi-
cal Design. Association for Computing Machinery, New York, NY, USA, 91–92.
doi:10.1145/3626184.3635285

[31] Jingwei Lu, Pengwen Chen, Chin-Chih Chang, Lu Sha, Dennis J-H Huang, Chin-
Chi Teng, and Chung-Kuan Cheng. 2014. ePlace: Electrostatics-Based Placement
Using Nesterov’s Method. In Proceedings of Annual Design Automation Conference.
Association for Computing Machinery, New York, NY, USA, 1–6.

[32] Jingwei Lu, Pengwen Chen, Chin-Chih Chang, Lu Sha, Dennis Jen-Hsin Huang,
Chin-Chi Teng, and Chung-Kuan Cheng. 2015. ePlace: Electrostatics-Based Place-
ment Using Fast Fourier Transform and Nesterov’s Method. Transactions on
Design Automation of Electronic Systems 20, 2 (2015), 1–34.

[33] Jingwei Lu, Hao Zhuang, Pengwen Chen, Hongliang Chang, Chin-Chih Chang,
Yiu-Chung Wong, Lu Sha, Dennis Huang, Yufeng Luo, Chin-Chi Teng, et al. 2015.
ePlace-MS: Electrostatics-Based Placement for Mixed-Size Circuits. Transactions
on Computer-Aided Design of Integrated Circuits and Systems 34, 5 (2015), 685–698.

[34] Hiroshi Murata, Kunihiro Fujiyoshi, and Mineo Kaneko. 1997. VLSI/PCB Place-
ment with Obstacles Based on Sequence-Pair. In Proceedings of International
Symposium on Physical Design. Association for Computing Machinery, New York,
NY, USA, 26–31.

[35] Gi-Joon Nam, Charles J Alpert, Paul Villarrubia, Bruce Winter, and Mehmet
Yildiz. 2005. The ISPD2005 Placement Contest and Benchmark Suite. In Proceed-
ings of International Symposium on Physical Design. Association for Computing
Machinery, New York, NY, USA, 216–220.

[36] William C Naylor, Ross Donelly, and Lu Sha. 2001. Non-Linear Optimization
System and Method for Wire Length and Delay Optimization for an Automatic
Electric Circuit Placer. US Patent 6,301,693.

[37] Quilter. 2024. Quilter Technology: Automated Circuit Board Design. https:
//www.quilter.ai/technology. Accessed: 2024-09-26.

[38] Peter Spindler and Frank M Johannes. 2007. Fast and Accurate Routing Demand
Estimation for Efficient Routability-Driven Placement. In Design, Automation &
Test in Europe Conference & Exhibition. IEEE, Association for Computing Machin-
ery, New York, NY, USA, 1–6.

[39] Peter Spindler, Ulf Schlichtmann, and Frank M Johannes. 2008. Abacus: Fast
Legalization of Standard Cell Circuits with Minimal Movement. In Proceedings of
International Symposium on Physical Design. Association for Computing Machin-
ery, New York, NY, USA, 47–53.

[40] Chun-Ho Wu, Da-Zhi Wang, Andrew Ip, Ding-Wei Wang, Ching-Yuen Chan,
and Hong-Feng Wang. 2009. A Particle Swarm Optimization Approach for Com-
ponents Placement Inspection on Printed Circuit Boards. Journal of Intelligent
Manufacturing 20 (2009), 535–549.

[41] Ling Zhang, Jack Juang, Zurab Kiguradze, Bo Pu, Shuai Jin, SongpingWu, Zhiping
Yang, Jun Fan, and Chulsoon Hwang. 2022. Fast Impedance Prediction for Power
Distribution Network Using Deep Learning. International Journal of Numerical
Modelling: Electronic Networks, Devices and Fields 35, 2 (2022), e2956.

[42] Niansong Zhang, Xiang Chen, and Nachiket Kapre. 2022. Rapidlayout: Fast
Hard Block Placement of FPGA-Optimized Systolic Arrays Using Evolutionary
Algorithm. Transactions on Reconfigurable Technology and Systems 15, 4 (2022),
1–23.

https://github.com/The-OpenROAD-Project/SA-PCB
https://github.com/The-OpenROAD-Project/SA-PCB
https://github.com/coin-or/Cbc
https://github.com/freerouting/freerouting
https://github.com/freerouting/freerouting
https://doi.org/10.1145/3626184.3635285
https://www.quilter.ai/technology
https://www.quilter.ai/technology

	Abstract
	1 Introduction
	2 Related Work
	3 Preliminaries
	3.1 Commercial PCB Design
	3.2 DREAMPlace

	4 Cypress Framework
	4.1 Problem Formulation
	4.2 PCB-Specific Cost Functions
	4.3 Preconditioning
	4.4 Legalization
	4.5 Constraint Handling
	4.6 Design Space Exploration

	5 PCB Placement Benchmark
	5.1 Benchmark Synthesis Method
	5.2 Proprietary Benchmarks
	5.3 PCB Intermediate Representation

	6 Experiments
	6.1 Small Benchmark Results
	6.2 Big Benchmark Results

	7 Limitations
	8 Conclusion
	References

