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Abstract—Circuit stability (sensitivity) analysis aims to esti-
mate the overall performance impact of variations in under-
lying design parameters, such as gate sizes and capacitance.
This process is challenging because it often requires numerous
time-consuming circuit simulations. In contrast, graph neural
networks (GNNs) have shown remarkable effectiveness and effi-
ciency in tackling several chip design automation issues, includ-
ing circuit timing predictions, parasitic prediction, gate sizing,
and device placement. This paper introduces a novel approach
called CirSTAG, which utilizes GNNs to analyze the stability
(robustness) of modern integrated circuits (ICs). CirSTAG is
grounded in a spectral framework that examines the stability of
GNNs by leveraging input/output graph-based manifolds. When
two adjacent nodes on the input manifold are mapped (through
a GNN model) to two remote nodes (data samples) on the
output manifold, this indicates a significant mapping distortion
(DMD) and consequently poor GNN stability. CirSTAG calculates
a stability score equivalent to the local Lipschitz constant for
each node and edge, considering both graph structure and node
feature perturbations. This enables the identification of the most
critical (sensitive) circuit elements that could significantly impact
circuit performance. Our empirical evaluations across various
timing prediction tasks with realistic circuit designs demonstrate
that CirSTAG can accurately estimate the stability of each
circuit element under diverse parameter variations. This offers
a scalable method for assessing the stability of large integrated
circuit designs.

I. INTRODUCTION

Stability analysis is crucial in the design and optimization of
Very Large Scale Integration (VLSI) circuits, ensuring reliable
performance under perturbations such as design parameter
changes (e.g., transistor sizing), process and temperature vari-
ations, and supply voltage fluctuations [1]. Assessing circuit
stability is essential to prevent unintended behaviors like oscil-
lations or unpredictable outputs, which can adversely impact
the functionality and reliability of integrated circuits (ICs).
Moreover, stability analysis guides circuit optimization tasks,
such as gate sizing for timing and power optimization [21],
by identifying the most unstable circuit nodes that, when
modified, can significantly improve overall performance. How-
ever, existing stability analysis methods often require numer-
ous repeated circuit simulations after perturbing underlying

parameters, becoming prohibitively expensive for large-scale
designs.

Graph Neural Networks (GNNs) have emerged as powerful
tools in machine learning, particularly for graph-structured
data [26], [32]. By integrating graph structures and node
features, GNNs produce low-dimensional embedding vectors
that preserve graph structural information [16]. They have been
successfully applied in various real-world applications, includ-
ing recommendation systems [14], traffic flow prediction [29],
device placement [23], and VLSI timing prediction [17].

In this work, we present CirSTAG, a novel framework to
quantify the stability of circuit networks leveraging GNNs. For
a pre-trained GNN model that mimics the behaviors of a fam-
ily of circuit designs (e.g., pre-routing slack prediction [17]),
CirSTAG assesses circuit stability by estimating the impact of
potential input perturbations (e.g., graph topology and node
feature modifications) on the GNN’s output. Specifically, if
two nearby circuit nodes on the input graph are mapped to dis-
tant embedding vectors by the GNN, it indicates a substantial
distance mapping distortion (DMD) and poor circuit stability.
To address this, we propose an efficient spectral framework
for quantifying DMDs of GNNs on input/output graph-based
manifolds. We also introduce a stability score for each node
(or edge) computed based on the DMD estimation, which is
equivalent to the local Lipschitz constant of the GNN model.

CirSTAG enjoys near-linear runtime complexity and is
compatible with various GNN architectures due to its data-
centric nature. Experimental results demonstrate CirSTAG’s
capability to gauge individual node stability within diverse
GNN models for realistic circuit designs.

Our key contributions are summarized as follows:
• To the best of our knowledge, we introduce the first

spectral framework for analyzing circuit stability by
evaluating node-level stability in GNNs, achieved by
measuring the DMD of adjacent nodes using input/output
graph-based manifolds.

• We construct proper graph-based manifolds for estimat-
ing DMDs by exploiting probabilistic graphical models
(PGMs) and spectral graph embedding, preserving key
structural properties of the given graph dataset.



• CirSTAG has near-linear time complexity and is agnos-
tic to GNN models and node label information. Our
empirical results validate that our approach provides
a scalable method for assessing individual node (gate)
stability in pre-routing timing prediction [17] and reverse
engineering of realistic circuit designs [4].

The rest of the paper is organized as follows. In Section II,
we provide background on concepts related to DMD and
PGM. Section III offers an overview of the proposed CirSTAG
framework. In Section IV, we introduce the technical details
of CirSTAG, including its algorithm flow and complexity.
In Section V, we present experimental results evaluating the
performance of CirSTAG on stability analysis tasks using
real-world VLSI design benchmarks. Finally, we conclude the
paper in Section VI.

II. BACKGROUND

A. Applications of GNNs in Electronic Design Automation

GNNs have demonstrated significant potential in Electronic
Design Automation (EDA), revolutionizing tasks ranging from
circuit design to verification by modeling complex relation-
ships within electronic circuits.

In circuit analysis, GNNs enable efficient modeling and
simulation of large-scale circuits, leading to accurate predic-
tions of circuit behavior under various conditions [3]. For
optimization, they facilitate the identification of optimal circuit
configurations [24]. GNNs also aid in fault detection and
diagnosis by pinpointing potential faults within electronic
systems and suggesting corrective measures, thus improving
reliability and reducing maintenance costs [7].

In layout and routing, GNNs manage the complexity of
modern integrated circuits by optimizing layouts for better
performance and lower power consumption while ensuring
fabrication constraints are met [23]. Additionally, they have
been applied to timing analysis, predicting arrival times and
slack at timing endpoints, enhancing the efficiency and accu-
racy of EDA processes [17].

Furthermore, GNNs have emerged as transformative tools
in circuit reverse engineering and security. By deciphering
relationships between circuit components, GNNs facilitate the
extraction and reconstruction of circuit functionalities from
physical layouts. This capability is crucial for understanding
proprietary designs, detecting unauthorized alterations, and
ensuring compliance with intellectual property laws. Recent
advancements demonstrate that GNNs can accurately identify
sub-circuits and their functionalities, advancing the field of
hardware security and trust [4], [28].

B. Manifold-Based Stability Analysis of ML Models

The stability of the ML model refers to its ability to produce
consistent outputs despite small variations or noise in the
input [25]. Let F denote an ML model that operates on input
X to yield output Y , i.e., Y = F (X). The stability of F can
be evaluated by measuring distortions in the mapping between
low-dimensional input and output manifolds. Specifically, the
distance mapping distortion (DMD) metric quantifies distance
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Black-Box Evaluation of Adversarial Robustness

▪ Our method (SPADE) leverages mappings on the manifolds [1]
– The Distance Mapping Distortion (DMD) of samples p and q:

[1] W. Cheng, et al. SPADE: A Spectral Method for Black-Box Adversarial Robustness Evaluation. ICML’21
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Fig. 1: Distance mapping distortions on manifolds [8]

distortions between graph-based manifolds [8], as illustrated
in Fig. 1. For two input data samples p and q, the DMD metric
δF (p, q) is defined as the ratio of the distance dY (p, q) on the
output manifold GY = (V,EY ) to the distance dX(p, q) on
the input manifold GX = (V,EX):

δF (p, q)
def
=

dY (p, q)

dX(p, q)
. (1)

Evaluating DMD between pairs of data samples helps
determine the stability of the ML model. If two data samples
that are close on the input manifold are mapped to distant
points on the output manifold (i.e., δF (p, q) is large), this
indicates a large local Lipschitz constant and poor stability
of the model near those samples.

C. Graph Topology Learning via PGM

Given M samples of N -dimensional vectors stored in a data
matrix X ∈ RN×M , recent graph topology learning meth-
ods [11]–[13] estimate the graph structure (specifically, the
Laplacian matrix L) from X to achieve two main objectives:
(1) Signal Smoothness over the Graph: This can be quan-
tified by the matrix trace Tr(X⊤LX) [18]. (2) Sparsity of
the Estimated Graph Topology: Encouraging sparsity leads
to simpler and more interpretable graph structures. Consider a
random vector x ∼ N (0,Σ) with probability density function:

f(x) =
exp

(
− 1

2x
⊤Σ−1x

)
(2π)N/2 det(Σ)1/2

∝ det(Θ)1/2 exp

(
−1

2
x⊤Θx

)
,

(2)
where Σ = E[xx⊤] ≻ 0 is the covariance matrix, and
Θ = Σ−1 is the precision matrix (inverse covariance matrix).
When the sample covariance matrix S is obtained from M
i.i.d. samples X = [x1, . . . , xM ] drawn from N (0,Σ), each
element Θi,j of the precision matrix encodes the condi-
tional dependence between variables Xi and Xj . Specifically,
Θi,j = 0 implies that variables Xi and Xj are conditionally
independent, given the rest.

The maximum likelihood estimation (MLE) of the precision
matrix Θ (i.e., learning the Probabilistic Graphical Model)
can be formulated as the following convex optimization prob-
lem [12], [19]:

max
Θ

F (Θ) = log det(Θ)− 1

M
Tr(X⊤ΘX), (3)

subject to Θ = L+ 1
σ2 I , where L is a valid graph Laplacian

matrix, I is the identity matrix, and σ2 > 0 is a prior feature
variance.
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Fig. 2: The proposed GNN-based circuit stability analysis framework (CirSTAG) and its applications.

III. OVERVIEW OF CIRSTAG

To quantify the stability of an ML model, the DMD metric
has been introduced [8] to provide an effective measure
of how an ML model distorts pairwise distances between
data samples. However, applying DMD to GNNs presents
several challenges. DMD assumes that both input and output
data can be well-represented by low-dimensional graph-based
manifolds [8]. While this assumption typically holds for GNN
outputs (i.e., node embedding vectors), it often does not for
input circuit graphs, which may reside in relatively high-
dimensional spaces. As shown in Fig. 4, directly using the
original circuit networks (graphs) as the input manifold fails
to accurately predict circuit delay stability under node feature
(e.g., capacitance) perturbations.

Fig. 2 presents an overview of the proposed CirSTAG
framework and its applications in design automation tasks.
Our methodology consists of three distinct phases:

1) Phase 1: We construct an input embedding matrix by
employing spectral graph embedding to retain the orig-
inal graph’s structural characteristics. We also obtain an
output embedding matrix generated by the GNN model.

2) Phase 2: We create low-dimensional input and output
graph-based manifolds using a highly scalable PGM
construction algorithm.

3) Phase 3: We quantify node stability by computing DMDs
that encapsulate the mappings (via GNNs) between the
input and output graph-based manifolds.

In the following sections, we delve into the specifics of our
CirSTAG framework.

IV. METHODOLOGY

A. Phase 1: Input/Output Embedding Matrices Construction

a) Nonlinear Dimensionality Reduction of the Input
Graph: To reduce the dimensionality of the input graph for

manifold construction, we employ a nonlinear dimensionality
reduction approach inspired by the Laplacian Eigenmap algo-
rithm [5]. The key idea is to construct a graph-based manifold
from the high-dimensional data and then map each data sample
(node) into a low-dimensional representation using the first
few Laplacian eigenvectors. Specifically, given a graph with
adjacency matrix A and degree matrix D, we compute the
normalized graph Laplacian matrix Lnorm = I −D− 1

2AD− 1
2 ,

where I is the identity matrix. We then obtain the top M
smallest eigenvalues λ̃1, λ̃2, . . . , λ̃M and their corresponding
eigenvectors ũ1, ũ2, . . . , ũM of Lnorm. We construct the input
spectral embedding matrix to encapsulate key structural char-
acteristics of the graph [10]:

UM =

[√
|1− λ̃1| ũ1, . . . ,

√
|1− λ̃M | ũM

]
. (4)

This embedding matrix UM effectively reduces the dimension-
ality of the input graph while preserving its essential structural
properties. In the next phase, we will use UM to construct the
input graph-based manifold via graph topology learning.

b) Output Embedding from GNNs: Since the outputs of
GNNs are typically low-dimensional node embeddings, we
directly use the node embeddings generated by the GNN as the
output embedding matrix. This output embedding matrix will
similarly be transformed into an output graph-based manifold
through graph topology learning in the subsequent phase.
B. Phase 2: Constructing Graph-Based Manifolds via PGMs

In this phase, we construct the input and output graph-based
manifolds using the embedding matrices obtained in Phase
1. This process is motivated by a recent PGM-based graph
topology learning framework (SGL) [15], [30]. However, the
original SGL framework requires numerous iterations to con-
verge, leading to superlinear runtime complexity. To enhance
scalability, we introduce an efficient spectral sparsification
scheme for learning PGMs. Consider a weighted undirected



graph G = (V,E,w), with edge weights w ∈ RV
≥0 and

|V | = N . The Laplacian matrix L of G can be expressed
as:

L =
∑

(p,q)∈E

wp,qep,qe
⊤
p,q, (5)

where ep,q = ep − eq , wp,q is the weight of edge (p, q),
and ep ∈ RN is the standard basis vector with a 1 at the
p-th entry. We aim to solve the following convex optimization
problem [12]:

max
Θ

: F (Θ) = F1 −
1

M
F2

F1 = log det(Θ) =

N∑
i=1

log(λi +
1

σ2
)

F2 = Tr(X⊤ΘX) =
Tr(X⊤X)

σ2
+

∑
(p,q)∈E

wp,q∥X⊤ep,q∥22

(6)

where Θ = L + 1
σ2 I , λi are the Laplacian eigenvalues, and

X ∈ RN×M is the input data matrix equal to the spectral
embedding matrix UM from (4). To maximize F (Θ), we
compute the partial derivatives with respect to wp,q [30]:

∂F1

∂wp,q
= Reff

p,q,

∂F2

∂wp,q
= Ddata

p,q = ∥X⊤ep,q∥22 =
1

wp,q
,

(7)

where Reff
p,q is the effective resistance between nodes p and

q, and Ddata
p,q is the ℓ2 distance between their data vectors.

Based on these gradients, we propose to prune non-critical
edges from an initial dense graph by considering the spectral
distortion metric [15]:

ηp,q =
Reff

p,q

Ddata
p,q

= wp,qR
eff
p,q. (8)

Edges with low effective resistance but large data distance
(i.e., small ηp,q) are pruned. This strategy effectively maxi-
mizes F2 without significantly decreasing F1, allowing us to
construct PGMs via spectral graph sparsification.

a) Initial Dense Graph Construction: Given the low-
dimensional nature of the data from Phase 1, we efficiently
construct the initial dense graph using the k-nearest neighbor
(kNN) algorithm [22], which has computational complexity
O(|V | log |V |).

b) PGM Refinement via Spectral Sparsification: To re-
fine the PGM, we apply spectral graph sparsification using a
short-cycle decomposition scheme [9]. This method partitions
the graph into disjoint cycles by removing a fixed number
of edges, ensuring cycles are bounded in length. Recent al-
gorithms (Lemma 1) combine short-cycle decomposition with
low-stretch spanning trees (LSSTs) to preserve the spectral
properties of the original graph [20].

Lemma 1: Spectral sparsification of an unweighted, undi-
rected graph G with Laplacian LG can be achieved using
a short-cycle decomposition algorithm, yielding a sparsified
graph H with Laplacian LH such that for all real vectors x,
x⊤LGx ≈ x⊤LHx [9].

Extending prior work, we introduce a novel low-resistance-
diameter (LRD) decomposition scheme to handle weighted
graphs by restricting cycle lengths measured via effective
resistance. Our method efficiently computes the effective re-
sistance of each edge and uses a multilevel framework [2] to
decompose the graph into cycles bounded by a given effective
resistance threshold.

C. Phase 3: Stability Analysis on the Manifolds

To quantify the stability of the ML model, we utilize the
DMD (as defined by equation (1)) [8], which measures how
the model distorts pairwise distances between data samples.
While geodesic distances are natural choices for dX and
dY , computing all-pairs geodesic distances is computationally
prohibitive for large graphs [27]. To address this, we adopt
the effective resistance distance [6], which can be efficiently
computed and captures global graph structure. Suppose the
input X is mapped to output Y by Y = F (X). Let LX and
LY denote the Laplacian matrices of the input and output man-
ifolds GX and GY , respectively. Recent theoretical results [8]
allow us to assess node stability using the largest generalized
eigenvalues and corresponding eigenvectors of L+

Y LX . We
compute the weighted eigensubspace matrix Vs ∈ RN×s:
Vs =

[
v1
√
ζ1, . . . , vs

√
ζs
]
, where ζ1 ≥ ζ2 ≥ · · · ≥ ζs

are the largest s eigenvalues of L+
Y LX , and v1, v2, . . . , vs

are the corresponding eigenvectors. Using Vs, we embed the
input graph GX , associating each node with an s-dimensional
vector. The stability of an edge (p, q) ∈ EX is quantified by
the embedding distance between its end nodes: ∥V ⊤

s ep,q∥22,
where ep,q = ep− eq , and ep is the standard basis vector. The
stability score of a node p is estimated as:

ScoreF (p) def
=

1

|NX(p)|
∑

qi∈NX(p)

(
∥V ⊤

s ep,qi∥22
)

∝ 1

|NX(p)|
∑

qi∈NX(p)

(
δF (p, qi)

)3
,

(9)

where NX(p) denotes the set of neighbors of node p in GX .
This node stability score serves as a surrogate for the local
Lipschitz constant ∥∇F (p)∥ under the manifold setting [8].

D. Runtime Complexity

For spectral graph embedding, we can exploit fast multi-
level eigensolvers that allow computing the first c Laplacian
eigenvectors in nearly-linear time O(c|V |) without loss of
accuracy [31]. Then, the k-nearest neighbor algorithm [22]
computational complexity is O(|V | log |V |). Sparsification via
short-cycle decomposition has O(|V |dm) time complexity.
By leveraging fast Laplacian solvers [31], all nodes’ stability
scores can be computed with O(|E|), where the V /E denotes
the number of nodes/edges, d is the average degree of the
matrix, and m is the order of Krylov subspace. The proposed
CirSTAG algorithm flow is shown in Algorithm 1.



Algorithm 1 The algorithm flow of CirSTAG
Input: Input graph G, output Y
Output: Node stability scores in (9).
1: UN ← compute weighted spectral embedding(G)
2: kNN dense graph← construct kNN graph(UN )
3: input PGM ← sparse graph(kNN dense graph)
4: kNN dense graph Y ← construct kNN graph(Y )
5: output PGM ← sparse graph(kNN dense graph Y )
6: LX ← compute laplacian(input PGM)
7: LY ← compute laplacian(output PGM)
8: VN ← calculate generalized eigenvectors(LY , LX)
9: for each node p in GX do

10: Compute its stability score by:

Score(p) = 1

|NX(p)|
∑

qi∈NX (p)

(
∥V ⊤

s ep,qi∥
2
2

)
11: end for

V. EXPERIMENTAL RESULTS

To demonstrate the capability of CirSTAG for stability
analysis in EDA applications, we present two case studies
using high-accuracy GNN models: (A) Circuit Timing Predic-
tion [17] and (B) Circuit Functional Reverse Engineering [4].
The effectiveness of CirSTAG relies on accurate predictions
from the GNN models, which serve as black-box simulators
for their respective tasks. Accurate embeddings ensure that
the computed DMDs reflect true circuit behavior, allowing
CirSTAG to capture performance variations due to node fea-
ture or topology perturbations. In Case Study (A), the GNN
predicts signal arrival times (delays) at each circuit node,
focusing on node feature perturbations. In Case Study (B),
we examine the impact of topology perturbations on the
cosine similarity of embeddings and the F1 macro score for
multi-task classification of sub-circuits. These studies validate
our methodology by assessing node stability under different
perturbations.

Fig. 3: Circuit delay variations (with dimension reduction).

A. Stability Analysis of Circuit Delays under Node Feature
Perturbations

In this case study, we analyze circuit delay stability con-
sidering node feature (pin capacitance) perturbations using
datasets and a GNN model from [17]. The GNN predicts
pre-routing static timing analysis (STA) results, interpreting
graphs where nodes represent cell pins and edges represent

Fig. 4: Circuit delay variations(without dimension reduction).

net connections and internal cell connections. We selected nine
circuit datasets with the highest R2 scores (96.88% to 99.22%)
to ensure accurate GNN predictions. The GNN then predicted
arrival times at primary output pins, and we computed the
relative output change compared to unperturbed data. Nodes
representing output pins were excluded, as they do not di-
rectly affect internal timing dynamics. Table I summarizes the
relative changes in arrival time predictions. The results con-
sistently show that perturbing unstable nodes leads to higher
average and maximum relative changes compared to stable
nodes, indicating greater sensitivity to capacitance changes.
Increasing the scaling factor from 5 to 10 nearly doubles
the relative change. However, increasing the percentage of
perturbed nodes from 5% to 15% does not proportionally
increase the relative change for unstable nodes, suggesting
that the most unstable nodes contribute more significantly to
variability. Fig. 3 illustrates the distribution of relative changes
when perturbing the top 10% of nodes with a scaling factor
of 10, highlighting the contrast between unstable and stable
nodes.

Ablation Study of CirSTAG We conducted an ablation
study by omitting the graph dimensionality reduction stage
in CirSTAG. As shown in Fig. 4, the distribution of relative
changes becomes more random without dimension reduction,
implying that this stage is crucial for accurate instability
ranking.

Scalability Analysis of CirSTAG Fig. 5 shows the runtime
of CirSTAG across the nine benchmarks of varying com-
plexity. CirSTAG demonstrates near-linear runtime, efficiently
handling large circuit designs.

B. Stability Analysis under Circuit Topology Perturbations

In this case study, we investigate topology perturbations
to demonstrate that CirSTAG effectively captures topology-
related stability in functional reverse engineering tasks. We
utilize datasets and a GNN model from [4], which employs a
Graph Attention Network (GAT) for sub-circuit identification
and labeling, achieving an accuracy of 98.87% on the intercon-
nected dataset. In this model, graphs are derived from netlists,
with nodes representing gates and edges depicting gate con-
nections. Node features include surrounding gate information,
detailing Boolean functionalities from gate inputs in the local
neighborhood. Direct topology perturbations could mismatch



TABLE I: Comparison of average and maximum relative change (%) in arrival time prediction at primary output pin. Results
for unstable and stable nodes are presented separately, denoted as ’unstable/stable’.

benchemark

Circuit stability analysis by CirSTAG with a GNN-based pre-routing timing analysis tool [17]
scale factor = 5× scale factor = 10×

node perturb 5% node perturb 10% node perturb 15% node perturb 5% node perturb 10% node perturb 15%
mean max mean max mean max mean max mean max mean max

BM64 0.0915/
0.0006
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0.0414
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0.0005
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0.0414

0.1563/
0.0005
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0.0414

0.2057/
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0.0934
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0.0012
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0.0934

0.3504/
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0.0000
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0.0022
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0.0001
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2.1080/
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0.0848
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1.9617/
0.0848

0.2318/
0.0030

1.9617/
0.0848

0.4620/
0.0068

3.4748/
0.1907

0.5211/
0.0068

4.6989/
0.1907

0.5250/
0.0068

4.6989/
0.1907

aes cipher 0.0753/
0.0002

0.4464/
0.0392

0.1265/
0.0002

0.5755/
0.0392

0.1665/
0.0002

0.6023/
0.0392

0.1698/
0.0005

1.0109/
0.0884
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0.0005
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0.0884
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0.0005

1.1921/
0.0884

picorv32a 0.1505/
0.0023
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0.1000

0.1540/
0.0028

0.4781/
0.1000

0.1559/
0.0033

0.4781/
0.1489

0.3383/
0.0051

1.0095/
0.2197

0.3461/
0.0062

1.0587/
0.2266

0.3501/
0.0074
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0.3304
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0.0000
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0.0003
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0.5807/
0.0572
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0.0000
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0.0006
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0.0029

0.4066/
0.0737

0.2182/
0.0043

0.4782/
0.0945

0.2254/
0.0096

0.4782/
0.2194

0.4696/
0.0065

0.9178/
0.1673

0.4949/
0.0099

1.0773/
0.2142

0.5107/
0.0217

1.0773/
0.4862

usb cdc core 0.0090/
0.0006

0.0894/
0.0321

0.0165/
0.0014

0.1550/
0.0471

0.0198/
0.0013

0.2164/
0.0460

0.0196/
0.0013

0.2031/
0.0724

0.0373/
0.0031

0.3448/
0.1057

0.0449/
0.0029

0.4879/
0.1032

TABLE II: Comparison of average F1 macro score for sub-circuit classification under different level of perturbation ratio.

benchmarks # nodes # edges
F1 macro score

0% 5% 10% 20%
Original Unstable Stable Unstable Stable Unstable Stable

add mul combine 806 1640 0.9961 0.9555 0.9961 0.9184 0.9961 0.7002 0.9961
add mul comp 926 1829 1.000 0.9702 0.9961 0.9050 0.9963 0.5960 0.9961

add mul comp sub 1161 2248 0.9864 0.9521 0.9809 0.9261 0.9774 0.8557 0.9673
add mul mix 1637 3299 0.6135 0.6044 0.6135 0.5789 0.6135 0.5323 0.6135
add mul sub 1111 2170 0.9748 0.9486 0.9712 0.9421 0.9691 0.7663 0.9656

add mul 863 1709 0.9320 0.9001 0.9320 0.8690 0.9320 0.7870 0.9320

Fig. 5: Runtime scalability of CirSTAG

node features incorporating topological data. To address this,
we perturb the topology while preserving feature relevance
by clustering selected unstable or stable nodes based on input
degrees and randomly swapping their output connections. This
ensures that input topology and features remain valid post-
perturbation. Analyzing the impact on sub-circuit classification
using the F1 macro score, shown in Table II, we observe that
as perturbation ratios increase, F1 macro scores decline more
sharply for unstable nodes than for stable nodes. This suggests

that unstable nodes, relying more on neighboring information,
are more sensitive to topology changes, while stable nodes
possess unique features supporting robust classification.

VI. CONCLUSION

We presented CirSTAG, a novel framework for quantify-
ing the stability of circuit networks using GNNs. CirSTAG
assesses circuit stability by estimating the impact of potential
input perturbations on the GNN’s output. By leveraging both
input and output graph-based manifolds, our efficient spectral
framework quantifies DMDs and assigns stability scores to
nodes and edges, equivalent to the local Lipschitz constants
of the GNN model. Empirical evaluations on pre-routing
timing prediction and functional reverse engineering tasks
demonstrate that CirSTAG effectively and scalably estimates
circuit stability under various node feature and graph topology
perturbations.
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