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Abstract - Many high-level description languages, such as 
C/C++ or Java, lack the capability to specify the bitwidth 
information for variables and operations. Synthesis from these 
specifications without bitwidth analysis may introduce wasted 
resources. Furthermore, conventional high-level synthesis 
techniques usually focus on uniform-width resources, thus 
they cannot obtain the full resource savings even with bitwidth 
information. This work develops a bitwidth-aware synthesis 
flow, including bitwidth analysis, scheduling and binding, and 
register allocation and binding, to exploit the multi-bitwidth 
nature of operations and variables for area-efficient designs. 
We also develop lower bound estimation to evaluate the 
efficiency of our proposed solutions for register allocation and 
binding. The flow is implemented in the MCAS synthesis 
system [11]. Experimental results show that our proposed 
bitwidth-aware synthesis flow reduces area by 36% and 
wire-length by 52% on average compared to the 
uniform-width MCAS flow, while achieving the same 
performance. 
  

I. Introduction 
 

The gap between design productivity and complexity continues to 
grow larger. According to [4], the increasing rates for VLSI 
complexity and design productivity are 58% and 21% per year, 
respectively. This large gap must be shortened to satisfy the 
time-to-market and design cost requirements. Using high-level 
languages is one of the most promising solutions for improving 
design productivity by raising the level of abstraction. Alleviating 
the design complexity and producing high-quality products are the 
two key points for making high-level languages successful and 
accepted by designers. 
Recent system-level languages from academia or industry, such as 
SystemC [3] and SpecC [2], can specify variables and operations 
with arbitrary bitwidths. However, traditional high-level languages 
such as C/C++ only provide computation types with restricted 
lengths, e.g., an 8/16/32/64 bitwidth. Experimental results show 
that there are 40% redundant bits on average in a set of benchmark 
programs written in C [21]. Applying the bitwidth analysis 
technique proposed in [21] for nine real-life benchmarks from [20], 
we obtained similar results showing that there is a 36% 
redundancy for operations and 21% for variables. 
Potential hardware resource cost can be reduced if these redundant 
bits are identified. Empirical relations between area usage and 
bitwidth for multipliers and adders can be found in [12]. An 
adder’s area is proportional to its input bitwidth, and a multiplier’s 
area is proportional to the product of its two input bitwidths. In 
practice, we obtained similar results in Altera’s Stratix FPGA 
devices: a 16-bit adder uses 17 logic elements, and a 32-bit adder 
uses 35; for 16×16- and 32×32-bit multipliers, the logic element 
usages are 380 and 1325 respectively. For other resource types 
such as registers and multiplexers, we can reasonably assume a 
linear relationship between area and bitwidth. Wiring cost, which 

is even more expensive in nanometer technologies, will also be 
saved, thanks to the reduction of the operation bits. 
In RTL languages, explicitly declared bitwidths are used for 
variables, registers, functional units (FU), and data buses to reduce 
area and power. However, specifying bitwidths explicitly for 
hardware designs starting from a traditional algorithmic 
description is time consuming. An ideal design flow is the one that 
can automatically analyze bitwidths for variables and operations to 
alleviate the designer’s burden and reduce the opportunity for 
errors. 
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Figure 1. Two scheduling and binding solutions of 

multi-bitwidth operations. 
Furthermore, even after the precise bitwidth information is 
available, most conventional synthesis methods focus only on the 
uniform bitwidth resources, and cannot take full advantage of the 
bitwidth information. To obtain good quality-of-result, awareness 
of the bitwidth information should be added into the high-level 
synthesis flow. We will use an example to illustrate the 
inefficiency of the traditional approach. Figure 1 shows two 
scheduling and FU binding solutions for a same data flow graph 
(DFG). Nodes represent operations (additions or multiplications), 
and edges represent data dependence. The required minimum 
operation bitwidth is annotated on each node. The required latency 
is 8 cycles, and the execution times for adders and multipliers are 
1 and 3 clock cycles, respectively. Note that operations bound to 
the same FU are colored in the same way. For each solution, two 
adders and two multipliers are required. However, FUs for (b) cost 
less area due to smaller bitwidths, 30% saving for adders and 31% 
for multipliers. From this example, we learn that scheduling and 
binding without considering the bitwidth information may produce 
sub-optimal results. Because of the great impact on area, and thus 
on power, connection, and clock period, optimization by 
exploiting bitwidths of variables and operations becomes one 
important issue in high-level synthesis. 
Recently, several techniques have been proposed for bitwidth 
optimization in architecture and high-level synthesis. 
Constantinides [12] formulated the scheduling and FU binding 
problem as an ILP, and proposed an iterative solution in [13]. 
However, the proposed binding solution, which selects the clique 
with the maximum ratio of clique size and clique cost, is not 
suitable for register binding. The work in [17] uses the 
force-directed scheduling to balance the number of bits per cycle 



for additive operations. One limitation is that this method can only 
be applied to additive operations. In addition, the resulting 
controller may have unaffordable cost due to the large number of 
small adders. The work in [5] proposes an iterative scheduling 
method for a data flow graph with bitwidth information. Complete 
allocation and binding of FUs and registers are performed to 
obtain cost for each feasible scheduling. Because of the large 
search space, the scheduling may be extremely slow. There are 
other techniques proposed to optimize a datapath using bitwidth 
information from the architecture point of view [6] [9]. However, 
none of the previous works on high-level synthesis consider 
interconnect delay for bitwidth-aware scheduling, or study the 
multiple bitwidth register allocation and binding thoroughly.  
In this paper we propose a complete bitwidth-aware high-level 
synthesis flow from a behavioral C description to a RTL VHDL 
implementation based on the MCAS synthesis system [11]. MCAS 
is an architectural synthesis system on top of a recently proposed 
Regular Distributed Register (RDR) micro-architecture [10]. In 
this paper, our goal is to minimize the total bitwidth for FUs and 
registers while maintaining the performance. Specifically, we 
propose a simultaneous scheduling and binding to minimize the 
total bitwidth of FUs with consideration of interconnect delay. For 
register allocation and binding, we transform it into a minimum 
weighted-interval-graph coloring problem and propose an efficient 
heuristic solution. The results approach the lower bound with only 
a 0.05% gap presented. Experimental results show that our 
synthesis flow can achieve a significant amount of savings in 
terms of area and wire-length. 
We will present the overall bitwidth-aware synthesis flow and 
define the problem to be solved in Section II. Section III 
introduces the simultaneous scheduling and binding algorithms. 
Section IV presents the detailed lower-bound estimation and 
heuristic solution for the register allocation and binding. Section V 
shows experimental results and Section VI concludes this paper. 
 

II. Bitwidth-Aware Synthesis Flow 
 

In Figure 2 we illustrate the proposed bitwidth-aware high-level 
synthesis flow, which is composed of four steps. First, a 
behavioral description in C is transformed into the Machine-SUIF 
[19] intermediate representation. After compilation optimizations, 
such as dead code elimination and peep-hole optimization are 
applied, the bitwidth analysis is performed as a stand-alone 
Machine-SUIF pass. The goal of the bitwidth analysis is to 
automatically decide the minimum bitwidth for each variable and 
operation while retaining the program correctness. We adopt the 
bitwidth analysis method introduced in [21] which uses constants, 
array indices and computation to decide the minimum bitwidth. 
The output is a DFG annotated with bitwidth information.  
In the second step, the MCAS architectural synthesis system is 
utilized to perform scheduling, binding and placement. MCAS is a 
synthesis system targeting RDR micro-architecture, which is an 
integrated architectural and synthesis solution for multi-cycle 
on-chip communication. A RDR chip is divided into an array of 
islands. The size of each island is chosen such that all intra-island 
communications can be performed in a single clock cycle, and the 
inter-island communications take multiple cycles. Its regularity 
facilitates the predictability of interconnect delays at early design 
stages. The output of this step is a scheduled and bound DFG with 
placement information. In this step, clock period and clock cycles 
are traded off to optimize speed performance, while bitwidth 
information is not explored. 

In the third step, bitwidth-aware re-scheduling and re-binding is 
performed to minimize area cost of FUs with consideration of 
interconnect delay obtained from placement information. And 
bitwidth-aware register allocation and binding is performed to 
minimize area cost of registers. After the corresponding datapath 
and controller are generated in the last step, the whole RTL design 
is written into the output VHDL files. 
In the following sections we will present the bitwidth-aware 
high-level synthesis of the third step in detail. The multiple 
bitwidth scheduling and binding problem is formulated as 
follows: 
Given: (1) A DFG annotated with bitwidths, (2) a time constraint, 
(3) placement information of functional units, and (4) a resource 
IP library, where each resource type has arbitrary bitwidth 
configurations, each of which is associated with an area cost. 
Objective: Schedule and bind the DFG into the library with 
consideration of interconnect delay from placement and without 
violating the time constraint, such that the final area of the 
required resources is minimized. 
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Figure 2. The proposed bitwidth-aware synthesis flow. 

With a target design frequency, the time constraint becomes a 
number constraint of clock cycles (or control steps), and the 
execution time of operations is represented by cycle numbers. In 
this work, we set the target clock period as 5ns in MCAS system. 
We assume a unified latency for a functional unit type, in 
particular, 1 cycle for adders and 3 cycles for multipliers. To 
simplify the presentation of the problems, we assume all the IPs 
are non-pipelined, and IPs with the same type have a same latency 
regardless of bitwidth configurations. However, the approaches we 
proposed in this paper can be easily extended to handle pipelined 
IPs or IPs with various latencies for different bitwidth 
configurations. 
Since the area of an IP is a function of its bitwidth (Section I), in 
this paper we focus on minimizing the total bitwidth for each kind 
of resource, which can directly lead to minimized area. We solve 
the multi-bitwidth scheduling and binding problem in two phases. 
First, we try to schedule and bind the operations to minimize FUs. 
Register allocation and binding are then performed on the 
scheduled DFG to minimize the total bitwidth of required registers. 
Since the bitwidth for FUs and registers is reduced, the wirelength 
is optimized accordingly. 
 

III. Scheduling and Binding 
 

In this section we first introduce the lower-bound estimation of FU 
bitwidth for a DFG. The lower-bound-based simultaneous 



scheduling and binding are then presented. Through the 
scheduling and binding sub-task, we will consider the interconnect 
delay obtained from placement information given by MCAS. 
 
A. Preliminaries 
In a DFG after bitwidth analysis, each operation is annotated with 
the information of required input/output bitwidths. The 
input-width constraint indicates a bitwidth requirement for a FU to 
perform the operation correctly, and the output-width constraint 
enforces a register with enough bitwidth to hold the result value. 
Only two types of operations, addition and multiplication (ADD 
and MUL, for short), are considered in this work. We assume each 
operation o has a single output with bitwidth b0, and two inputs 
with bitwidth pair (b1, b2). It is clear that the bitwidth of a variable 
produced by operation o is b0.  
A multiplier can be configured as b1≠b2, but the wider input 
dominates the cost of the implementation. For an adder, a general 
interface restriction of a conventional IP library requires that the 
inputs must have the same bitwidths. Therefore, we only consider 
the larger bitwidth as the bitwidth of an operation for both 
multiplication and addition, and define the bitwidth of operation o 
as b(o) = max{b1, b2}, where o has input bitwidth pair (b1, b2).  
 
B. Lower-Bound Estimation of FUs 
Previous research on the FU lower-bound estimation only focuses 
on the number of FUs [7] [8] [14] [18] [22]. In this section we will 
introduce a lower-bound estimation for the total bitwidth of FUs 
with various bitwidth. In particular, our solution extends the 
technique of [18] to support multi-bitwidth FUs. The bitwidth 
lower bound is the maximum of the minimum resource 
requirement for each interval. 
The minimum resource requirement for an interval is calculated in 
two steps. First, ASAP(o) and ALAP(o), the as-soon-as-possible 
and as-late-as-possible control steps of operation o are computed 
for a DFG under time constraint T. If operation o is unscheduled, 
ASAP(o) and ALAP(o) correspond to the earliest and latest feasible 
control step, respectively. Otherwise, ASAP(o) and ALAP(o) are 
both equal to the scheduled control step. For a time interval [p, 
q]⊆[1, T], the minimum overlap between operation o and the 
interval is denoted as λ(o, p, q) and calculated as follows: 
λ(o, p, q) = min{| [ASAP(o), ASAP(o)+exe(o)]∩[p, q] |,  

| [ALAP(o), ALAP(o)+exe(o)]∩[p, q] |}, 
where exe(o) stands for the required execution time of o.  
After the calculation of overlap numbers, we insert λ(o, p, q) 
copies of b(o) into the bitwidth list of [p, q], denoted by Lf (p, q), 
where f is the type of operation o, either ADD or MUL. 
Figure 3 shows the ASAP and ALAP schedules for Figure 1 under 
the time constraint T = 8. The overlap between the multiplications, 
a, b, c and d, and interval [4, 7] can be calculated as  

λ(a18*6, 4, 7) = 1, λ(b24*16, 4, 7) = 2,  
λ(c32*16, 4, 7) = 1, λ(d16*4, 4, 7) = 1. 

Based on the results, the bitwidth list of interval [4, 7] for the 
multiplications is LMUL(4, 7) = {18, 24, 24, 32, 16}. 
In the second step, the required minimum FU bitwidth is 
calculated for each interval. For a constructed bitwidth list Lf (p, q) 
of interval [p, q] for operation type f, the bitwidths are sorted in 
non-increasing order. It is easy to understand that the required 
minimum number of the FUs of type f during this interval is nf (p, 
q) = |Lf (p, q)| / (q-p+1).  
The sorted list Lf (p, q) is then partitioned into nf (p, q) sub-lists of 
size q-p+1 each, except that the last sub-list might be smaller. We 

choose the largest one (i.e, the first one) from these sub-lists to 
form a dominant bitwidth list Df (p, q), which contains the required 
bitwidths of FUs to execute the operations during interval [p, q].  
For the example in Figure 3, LMUL(4, 7) will be partitioned to 
sub-lists {32, 24, 24, 28} and {16}. The dominant bitwidth list 
DMUL(4, 7) = {32, 16} indicates that the DFG in Figure 3 needs at 
least two multipliers of bitwidths 32 and 16. 
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Figure 3. An illustration of the lower-bound calculation. 
Theorem 1: With the dominant bitwidth lists for all intervals 
within [1, T], the lower bound of the required bitwidths for each 
instance of operation type f is 

( )( ){ }{ }1
max , k

f fp q T
D p qζ

≤ ≤ ≤
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where Df (p, q)(k) denotes the kth element of Df (p, q), and Df (p, q)(k) 
= 0 if k>|Df (p, q)|.        � 
This formula is based on the fact that the maximum of the kth 
bitwidth of all dominant bitwidth lists is the minimum required 
bitwidth for the kth instance of FUs of type f. The time complexity 
will be O(T2(n+nlog(n))). 
After the bitwidth lower bound is computed for each instance of 
all operation types, we have weighted-area lower-bound Φ of a 
DFG as follows: 
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where α is a ratio weight of multiplier area over adder area, and 
ζf

(i) is the ith element of ζf. Due to the fact that the area of a 
multiplier is proportional to the product of its two input bitwidths 
(Section I), we use the square of bitwidth to represent the area cost 
for multipliers. Since the minimum overlaps, bitwidth lists, 
dominant bitwidth lists, and ζf are all decided by the current 
scheduling status S of the DFG, the weighted-area lower bound is 
also a function of S, denoted as Φ(S). We will use this weighted- 
area lower bound technique in the following scheduling algorithm. 
 
C. Scheduling and Binding Algorithm 
Based on the lower bound computation stated above, simultaneous 
scheduling and binding are performed to minimize the total 
bitwidth of required FUs with consideration of interconnect delay 
and without violating time constraint. 
The basic idea is to schedule an operation at a control step such 
that the resulted weighted-area lower bound is kept as small as 
possible. In each step, suppose S is the current scheduling status, 
recording the control steps for scheduled operations and feasible 
control steps for un-scheduled operations, and S’ is the updated 
scheduling status of S if an unscheduled operation o had been 
scheduled to control step c, we define 

LB(S, o, c) = Φ(S’). 
This metric indicates the impact of the scheduling step on the 
potential resource requirements, which is estimated as the 



weighted-area lower bound. We first choose a pair (o, c) with 
minimum LB(S, o, c). FU binding is then performed to decide 
whether operation o can be scheduled at step c finally. If there is 
an available FU f at step c, o will be scheduled and bound. 
Otherwise, the next pair of (o, c) with minimum LB(S, o, c) among 
the remaining operations and steps will be considered. The 
checking rule for binding o to f is that data dependence is 
maintained between o and its scheduled and bound predecessors 
and successors with consideration of interconnect delay. 
Specifically, for a predecessor p of o, which is scheduled at cp and 
bound to fp, the following expression needs to hold true to keep the 
data dependence: 

cp+exe(p)+delay(f, fp) ≤ c, 
where delay(f, fp) is the interconnect delay between FU f and fp 
obtained from the placement information as determined by MCAS 
(step 2 in our flow). Similar expressions are checked for 
successors. The iterative choosing process will guide the algorithm 
to minimize the area of required resources.  
In the algorithm implementation, we apply two methods to reduce 
the lower-bound updating time and operation selecting time 
without sacrificing solution quality. The first is to update bitwidth 
lists incrementally, which is the base for lower-bound calculation 
and is in the inner loop of our scheduling algorithm. 
Theorem 2: Given a DFG and a scheduling status S. After one or 
more unscheduled operations are scheduled and the scheduling 
status becomes S’, the new minimum overlap number λ’(o, p, q) 
under S’ is no less than λ(o, p, q) under S, for any operation o and 
interval [p, q]. 
Proof: When o is scheduled to any control step between ASAP(o) 
and ALAP(o), the overlap number with [p, q] is no less than that 
when o is scheduled to ASAP(o) or ALAP(o) [18]. After the 
scheduling status is updated, regardless of whether o is scheduled 
or not, the new feasible lifetime [ASAP’(o), ALAP’(o)] is a subset 
of the old one [ASAP(o), ALAP(o)]. Combining the previous 
definition of minimum overlap, we have the conclusion that λ’(o, 
p, q)≥λ(o, p, q).   � 
According to Theorem 2, each time the scheduling status is 
updated, the bitwidth list L’f (p, q) can be obtained by adding λ’(o, 
p, q)-λ(o, p, q) copies of b(o) into Lf (p, q). Since the feasible 
lifetime may not change for some operations, only those 
operations whose feasible lifetimes are changed need to be 
checked to update Lf (p, q). Furthermore, only those bitwidth lists 
which are indeed updated need to be checked to recalculate the 
new weighted-area lower bound Φ. 
Theorem 3: Given a DFG and a scheduling status S. After one or 
more unscheduled operations are scheduled and the scheduling 
status becomes S’, the new weighted-area lower bound Φ(S’) is no 
less than Φ(S). 
Proof: After one or more operations are scheduled, the new 
overlap result L’f (p, q) is a superset of Lf (p, q), which is inferred 
by Theorem 2. From the computation of Φ shown in the previous 
section, it is straightforward that the new lower bound Φ(S’) is no 
less than Φ(S).      � 
Based on Theorem 3, since Φ(S’) is no less than Φ(S), Φ(S) is the 
lower bound of LB(S, o, c) over all o and c. When one LB(S, o, c) 
is equal to Φ(S), o must be one of the operations that have the least 
value of LB. We can skip the computation of LB for the remaining 
unscheduled operations, schedule o to control step c, and enter the 
next scheduling iteration. 

 
IV. Register Allocation and Binding 

In a traditional high-level synthesis flow, register allocation aims 
to decide the required registers, and binding is defined as the 
explicit mapping from variables to register instances. For variables 
with multiple bitwidths, it is natural to combine the allocation and 
binding together to improve the solution quality. We propose a 
weighted-interval-graph coloring algorithm to cope with these two 
tasks simultaneously. In our synthesis flow, we perform register 
allocation and binding after the simultaneous scheduling and 
binding. We assume that optimizations for other resources, such as 
ports and multiplexers, can be performed afterward. 
 
A. Problem Definition 
For a scheduled DFG with uniform bitwidths, the problem of 
minimizing the number of registers can be reduced to the 
chromatic number problem in an interval graph, which can be 
solved with the left-edge algorithm in polynomial time [16]. In the 
remainder of this paper, we denote the minimum chromatic 
number of graph G as χ(G). Considering registers with various 
bitwidths, the new problem is to minimize the total bitwidth of 
registers. 
Some definitions and concepts related to this problem are 
introduced below. Let s(a) denote the control step where variable 
a is generated, and t(a) denote the last control step where a is 
consumed by other operations. Given a scheduled DFG with 
bitwidth information, a weighted interval graph G (V, E) can be 
derived, where each vertex in V corresponds to a variable in the 
DFG and edge (a1, a2)∈E if and only if the lifetimes of the two 
corresponding variables a1 and a2 have non-trivial overlap, i.e.,  

[s(a1), t(a1)]∩[s(a2), t(a2)]≠∅. 
It is clear that two variables can be bound to a same register only if 
their lifetimes do not overlap. Therefore, a coloring scheme of G 
corresponds to a binding solution for variables. All variables with 
the same color are bound to the same register.  
Let w(v) denote the weight of vertex v, w(v) = b(a), where a is the 
corresponding variable of v. We define the weight of a vertex set V 
as W(V) = max{w(v) | v∈V}, and the weight of a graph G(V, E) as 
W(G) = W(V). Suppose that a proper coloring scheme P = {c1, 
c2,…, ck} of G(V, E) partitions V into vertex subsets V1, V2,…, and 
Vk, the weight of color ci, for 1≤i≤k, is defined as W(Vi), and the 
weight of the coloring scheme P is defined as  

Ψ(G, P) = ∑1≤i≤kW(Vi). 
From the above definitions, the bitwidth-aware register allocation 
and binding problem is equivalent to a weighted-interval-graph 
coloring problem as follows: 
Given: A weighted interval graph G(V, E). 
Objective: Find a coloring scheme P of G, such that the weight of 
the coloring scheme P, Ψ(G, P) is minimized. 
When the weights of vertices are uniform, this problem can be 
solved in polynomial time [16]. However, the complexity of the 
general problem with various weights remains unknown. In the 
following sections, a lower-bound estimation for Ψ(G, P) and a 
heuristic solution will be presented. Experimental results show 
that only a 0.05% gap is presented between the solution and lower 
bound.  
 
B. Lower-Bound Estimation of Registers 
We will use a register-sharing problem to illustrate how to 
calculate the lower bound of the weight of the coloring schemes 
for a weighted interval graph. Figure 4(a) shows the lifetimes of 
five scheduled variables, with bitwidths annotated, and Figure 4(b) 
is the derived weighted interval graph G(V, E). We first divide G 



into subgraphs according to the weights of the vertices. All 
vertices in each subgraph have the same weight. It is obvious that 
these subgraphs and their unions still keep the interval property. 
We then sort these subgraphs in the decreasing order of weights. 
For the example in Figure 4, the sorted subgraphs will be G1 = {a, 
b}, G2 = {c, e, f}, and G3 = {d}. From G1, we know that the 
number of the colors with weight 28 must be no less than χ(G1) = 
1 for any coloring scheme of G. Then for G1∪G2, the number of 
colors with weight no less than 16 must be at least χ(G1∪G2). 
Combing these two facts, we conclude that the number of colors 
with weight 16 must be at least χ(G1∪G2)-χ(G1) = 1. Similarly for 
G1∪G2∪G3, the color number with weight 5 must be no less than 
χ(G1∪G2∪G3)-χ(G1∪G2) = 1. Basing on these results, we 
conclude that the lower bound of the weight of any coloring 
scheme for this interval graph will be 28×1+16×1+5×1 = 49. 
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Figure 4. (a) Lifetimes and (b) the derived interval graph. 

Theorem 4: For any proper coloring scheme P for a weighted 
interval graph G, Ψ(G, P) ≥ L(G), where 
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where Gi, for 1≤i≤m, are the sorted subgraphs constructed in the 
aforementioned way. 
Proof: This is straightforward and correct given the definitions of 
Ψ(G, P) and L(G). The formal proof is omitted here.     � 
 
C. Allocation and Binding Algorithm 
We use the ideas in the lower-bound calculation to solve the 
weighted-interval-graph coloring problem. Again, we use the same 
example in Figure 4(b) to illustrate the heuristic solution. 
After the weight-based partitioning and sorting of G into 
subgraphs G1 = {a, b}, G2 = {c, e, f}, and G3 = {d}, we first try to 
move vertices from Gi, for 2≤i≤3, to G1 to decrease the chromatic 
number for each Gi without increasing χ(G1). Since G2 has the 
largest weight among the three subgraphs, reducing χ(G2) is 
preferred. Noting that the chromatic number χ is equal to the 
maximum clique size for an interval graph, we always try to move 
the vertices from the maximal cliques of Gi to G1. In this way, 
χ(Gi) can be directly decreased. For G2, the only maximum clique 
is {c, e}. Moving c from G2 to G1 decreases χ(G2) by 1, but 
increase χ(G1) at the same time. However, moving e can safely 
decreases χ(G2) without increasing χ(G1). Therefore, e is chosen 
to add into G1 finally. Since no vertex in the new G’2, {c, f}，can 
be safely moved into G1, we continue to process G3. Adding d into 
G1 increases χ(G1), so no moving happens for G3. Now, 
processing on G1 is done. We then move on to process Gi, for 
2≤i≤3 in the same way.  
The final partition of G is G1 = {a, b, e}, G2 = {c, f}, and G3 = {d}, 
and the coloring scheme will be P = {{a, b, e}, {c, f}, {d}} with 
weight 49, which is equal to the lower bound calculated in the 
previous section. 
Figure 5 presents the pseudo code of the heuristic algorithm, 
weighted interval-graph coloring (IGC). The formal algorithm 
description is as follows. During the processing of subgraph Gi, 

we try to move vertices from Gj, for i+1≤j≤m, to Gi. The moving 
process consists of two phases, both of which process the 
subgraphs in the decreasing order of their weights. The first phase 
selects one vertex from each maximum clique of Gj to compose a 
vertex set S and merge it to Gi, such that the chromatic number of 
Gi will not increase. Since the cardinality of the maximum clique 
equals the chromatic number for interval graphs, decreasing the 
cardinality of all the maximum cliques in Gj will directly reduce 
the chromatic number. Therefore, taking vertex set S out from Gj 
decreases χ(Gj) by 1.  
When no operations from Gj, for i+1≤j≤m, can be moved to Gi in 
the first phase, the second moving phase is performed. Now we 
randomly select a vertex from Gj to move into Gi without 
increasing χ(Gi). The purpose of this phase is to maximize the 
utilization of colors with high weight, and thus provide further 
chances for reducing the number of colors with lower weight. 
After the operation moving is done, the conventional left-edge or 
other optimization techniques, such as connection and MUX 
minimization algorithms, can be separately applied for each new 
subgraph G’1, G’2,…, G’m’, where m’≤m. The weight for the 
coloring scheming is Σ1≤i≤m’W(G’i)⋅χ(G’i). 

 Procedure Weighted_Interval_Graph_Coloring 
Input: 

Weighted interval graph G 
Output: 

Coloring scheme of G 
 

Partition and sort G into {G1, G2,…, Gm}, with the decreasing order of the weights
for each Gi, 1 ≤ i ≤ m-1 

Compute χ(Gi) 
for each Gj, i+1 ≤ j ≤ m  

while ∃S ⊆ Gj, such that χ(Gj-S) = χ(Gj)-1 and χ(Gi∪S) = χ(Gi) 
Gi  Gi ∪ S 
Gj  Gj - S 

for each Gj, i+1 ≤ j ≤ m  
while ∃v ∈ Gj , such that χ(Gi∪{v}) = χ(Gi) 

Gi  Gi ∪ {v} 
Gj  Gj - {v} 

Coloring each new subgraph separately 
 

Figure 5. Algorithm for weighted-interval-graph coloring. 
In RDR, registers are located in each island independently. After 
register allocation and binding are done for every island, extra 
registers are inserted between different islands to achieve  
multi-cycle communication. Due to page limitation, we will not 
introduce RDR in detail. 
 

V. Experimental Results 
 

A. Register Allocation and Binding 
Table 1. Bitwidth-aware register binding. 

Designs LB Left-Edge KS[15] Weighted IGC
aircraft 1270 1402 1335 1270
chem 896 962 929 897

dir 474 487 505 474
honda 312 328 368 313

lee 216 216 232 216
mcm 689 721 691 689

pr 270 297 298 270
u5ml 1717 1892 1778 1717
wang 269 293 302 269

Ave gap 1 +6.6% +7.5% +0.05%
To evaluate the efficiency of the heuristic algorithm for coloring, 
we conducted experiments on a set of real-life benchmarks from 
[20], including several different DCT algorithms such as pr, wang, 
lee, and dir, and several DSP programs such as aircraft, mcm, 
honda, chem, and u5ml. The results, represented by the total 
bitwidth, are summarized in Table 1. The second column presents 
the lower-bound results from Section IV.B. The third column is 
the result from left-edge plus bitwidth post-processing, which is to 



set the bitwidth of a register as the maximum bitwidth of all 
variables stored in it. The fourth column presents the results from 
the clique-partition method of [15]. The last column is the result 
given by our proposed solution. The three methods share the same 
scheduling method to generate the scheduled DFGs. The left-edge 
algorithm can produce the minimum register number, but it does 
not consider the bitwidths of variables while doing binding. KS 
noticed the bitwidth influence but it suffers from the larger number 
of registers. The results of left-edge and KS are 6.6% and 7.5% 
higher than the lower bound, while our method is only 0.05% 
higher. This shows that our lower-bound estimation and heuristic 
solution for the weighted-interval-graph coloring problem are both 
close to optimal solutions. 
 
B. Comparison of Three Flows 
Our synthesis flow is implemented in a C++/UNIX environment. 
In order to obtain the final performance results, Altera’s Quartus II 
version 2.2 0 is used to synthesize the resulting RTL VHDL onto 
the FPGA device StratixTM EP1S80F1508C6. We use the default 
compilation options in Quartus II. 
To validate our proposed bitwidth-aware synthesis flow, we set 
up three experimental synthesis flows as follows. All of them have 
the same control step constraint, and share the same backend to 
generate datapath and controllers. 

 Flow1(MCAS): MCAS generates the scheduling and binding 
results and placement information. All operations and 
variables have uniform bitwidth (32-bits). 

 Flow2(MCAS+MB-PP): Perform a bitwidth post-processing 
after Flow1 is done, which is to set the bitwidth of a FU as 
the maximum bitwidth of all operations executed on it, and 
set the bitwidth of a register as the maximum bitwidth of all 
variables stored in it. 

 Flow3(MCAS-MB): After MCAS generates the scheduling 
and binding results and placement, the lower-bound-based 
scheduling & binding and the bitwidth-aware register 
allocation and binding are performed. 

Table 2. FPGA compilation results of three synthesis flows. 
MCAS MCAS+MB-PP MCAS-MBDesign Node# LE WL(k) LE WL(k) LE WL(k)

aircraft 422 - - 10559 267 6860 181 
chem. 342 8339 247 7101 191 4814 136

dir 127 2810 91 2075 48 1135 27
honda 107 2433 77 1774 38 1124 24

lee 49 1033 54 722 35 614 25
mcm 94 2562 105 2411 83 2392 75

pr 42 1194 63 1030 45 967 38
u5ml 565 14447 396 12774 318 7143 166
wang 48 1275 73 1078 36 1050 38
Ave - 1 1 -18.1% -34.5% -36.3% -51.5%
Table 2 shows the experimental results for these three flows, 
including area results for datapath and control logic in terms of 
logic element (LE) and wire-length (WL) reported by Quartus II. 
The column “Node#” lists the node number for each benchmark. 
Flow3 reduces area and wire-length by 36.3% and 51.5% 
respectively compared to Flow1 when averaged over the 
benchmarks (excluding aircraft). When compared to Flow2, Flow3 
still reduces area and interconnect by 24.2% and 26.4%, 
respectively.  
Design aircraft fails to fit into the selected FPGA device in Flow1 
because of the large number of its I/O pins. Interestingly, with the 
same bitwidth constraints for the primary inputs, bitwidth analysis 
reduces the bitwidth requirements for the primary outputs so that 
the I/O fitting problem is resolved for the other two flows. 
 

VI. Conclusions 
 

We have presented a complete bitwidth-aware high-level synthesis 
flow based on MCAS synthesis system, including bitwidth 
analysis, simultaneous scheduling and binding, and a 
weighted-interval-graph coloring solution for register allocation 
and binding. Lower-bound calculation is used both for estimation 
of potential improvement of the existing solutions and for 
development of the heuristic algorithms. Experimental results 
show that our bitwidth-aware synthesis flow achieves significant 
reduction for area (36%) and wire-length (52%) for a set of 
benchmark designs. 
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