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ABSTRACT

The increasing popularity of compute acceleration for emerging
domains such as artificial intelligence and computer vision has
led to the growing need for domain-specific accelerators, often
implemented as specialized processors that execute a set of domain-
optimized instructions. The ability to rapidly explore (1) various
possibilities of the customized instruction set, and (2) its corre-
sponding micro-architectural features is critical to achieve the best
quality-of-results (QoRs). However, this ability is frequently hin-
dered by the manual design process at the register transfer level
(RTL). Such an RTL-based methodology is often expensive and slow
to react when the design specifications change at the instruction-set
level and/or micro-architectural level.

We address this deficiency in domain-specific processor design
with ASSIST, a behavior-level synthesis framework for RISC-V pro-
cessors. From an untimed functional instruction set description,
ASSIST generates a spectrum of RISC-V processors implementing
varying micro-architectural design choices, which enables effective
tradeoffs between different QoR metrics. We demonstrate the auto-
matic synthesis of more than 60 in-order processor implementations
with varying pipeline structures from the RISC-V 32I instruction
set, some of which dominate the manually optimized counterparts
in the area-performance Pareto frontier. In addition, we propose an
autotuning-based approach for optimizing the implementations un-
der a given performance constraint and the technology target. We
further present case studies of synthesizing various custom instruc-
tion extensions and customized instruction sets for cryptography
and machine learning applications.

1 INTRODUCTION

The end of Dennard scaling has led to a rapid growth of hard-
ware accelerators to meet the ever more stringent performance and
energy requirements [4, 8]. While traditional hardware specializa-
tion primarily focused on fixed-function circuits, programmable
accelerators in the form of domain-specific microprocessors are
becoming increasingly popular (e.g., the Pixel visual core [21],
Google TPU [13] and Microsoft’s Catapult project [18]). Such pro-
grammable accelerators deliver superior performance than the
general-purpose processors while still maintaining software pro-
grammability. Additionally, the advent of open-sourced ISAs further
catalyzes the rise of programmable accelerators. Such open-sourced
ISAs, most notably the RISC-V ISA [3], enable standardized and ex-
tensible frameworks for fast deployment of low-cost, customizable
processors.

When design these programmable accelerators, the traditional
register-transfer-level (RTL) methodology is time consuming and
error prone. Designers must wrestle with low-level hardware de-
scription languages to explore the large design space of the accel-
erators, which is particularly challenging due to the formidably
high cost of implementing and verifying multiple ISA-level and
micro-architectural level design choices at the register transfer
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level. This work focuses on productive hardware specialization
for programmable architectures. We propose ASSIST!, a synthesis
framework for generating high-quality and customizable RISC-V
processors from functional instruction set specifications. Contrary
to configurable cores (e.g., Xtensa [11] and FabScalar [6]), where the
structure of the processor pipeline is restricted to a few pre-defined
configurations, ASSIST generates a large set of design points with
varying pipeline structures and optimized hazard resolution mech-
anisms.

The focus of this work is not on the automatic synthesis of
sophisticated micro-architectural level mechanisms; instead, we
target the fast generation of domain-specific RISC-V cores with
user-defined instruction extensions. We limit the scope to synthe-
sizing single-issue, in-order, pipelined processors; potential micro-
architectural level extensions are discussed in Section 6. Our major
technical contributions are:

+ We design an embedded domain-specific language in Python
for specifying the functional instruction set.

We propose synthesis techniques to automatically infer resource-
efficient datapath implementations from the user-defined in-
struction set, and generate the optimal forwarding and hazard
resolution logic.

We present an autotuning-based design space explorer which
automatically optimizes the pipeline microarchitecture based
on QoR metrics of the design space.

We demonstrate the automatic synthesis of more than 60 pro-
cessor implementations from the single source of the RISC-V
32I instruction set architecture, some of which outperform
widely-used manual designs.

We study the synthesis of RISC-V processors with custom in-
struction extensions for cryptography and machine learning
applications, which achieves up to 9X performance improve-
ments over the baseline general-purpose RISC-V processors.
The rest of the paper is organized as follows: Section 2 motivates our
approach; Section 3 describes the synthesis techniques in ASSIST;
Section 4 details experimental results; Section 5 discusses the related
work, followed by conclusions in Section 6.

2 MOTIVATIONS FROM EXISTING C-BASED
HIGH-LEVEL SYNTHESIS TOOLS

C-based high-level synthesis (HLS) is a popular approach to gen-
erate RTL hardware designs from software descriptions [9]. Such
HLS tools generally first parse the input software program into
a control-data flow graph (CDFG), then apply hardware-specific
transformations to synthesize the hardware datapath and the corre-
sponding control logic, typically in the form of finite state machines
(FSMs). While this approach is efficient for fixed-function circuits,
it often leads to sub-optimal designs when targeting programmable
architectures.

As a case study, we synthesize the MIPS processor design from
the CHStone HLS benchmark suite [12] using a state-of-the-art
commercial HLS tool [20]. Figure 1 shows the code snippet of the C
code used as the input to the HLS tool. We make the following ob-
servations from the quality-of-results (QoR) of the HLS-synthesized
design:

+ Sub-optimal initiation interval. Existing HLS tools usually

rely on compile-time dependency analysis to infer the lowest

LASSIST stands for architectural synthesis system for instruction set targets.
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while (pc != @) {
#pragma HLS pipeline
ins = imem[IADDR (pc)]; pc = pc + 4; op = ins >> 26;
switch (op) {
case R:
funct = ins & @x3f; shamt = (ins >> 6) & 0x1f;
rd = (ins >> 11) & ox1f; rt = (ins >> 16) & oOx1f;
rs = (ins >> 21) & ox1f;
switch (funct) {
case ADDU: regl[rd] = reglrs] + reglrt]; break;
/* additional funct omitted x/
} break;
case JAL:
tgtadr = ins & Ox3ffffff; reg[31] = pc;
pc = tgtadr << 2; break;
/* additional cases omitted */
default:
address = ins & Oxffff;
rt = (ins >> 16) & ox1f; rs = (ins >> 21) & ox1f;
switch (op) {
case LUI: reglrt] = address << 16; break;
/* additional op omitted */
default: pc = @; break;
} break;
3

Figure 1: Code snippet of the MIPS processor bench-
mark [12] for high-level synthesis.

achievable initiation interval that guarantees functional cor-
rectness. However, compile-time analysis is inherently conser-
vative, which can potentially prevent the synthesized designs

from achieving the best pipeline throughput. In this example,

the HLS synthesized design achieved an initiation interval

of four due to the loop-carried dependency on the program

counter pc.

Inefficient datapath implementation. Different instructions
specified using case statements are compiled into different ba-
sic blocks of the CDFG. Current HLS tools have insufficient

support for exploring the intricate tradeoff between the num-
ber of functional units and the complexity of multiplexer net-
works. Consequently, HLS tools tend to allocate duplicated

resources even though the operations can share the same re-
source. In this study, the HLS tool allocates two 32-bit physical

multipliers for the signed and unsigned multiplication oper-
ations, respectively, while only one multiplier is needed in a

resource-efficient implementation.

Complex FSM control logic. The HLS tool generates a 7-
state FSM to control the pipeline execution, leading to addi-
tional resource usage. Compared to an optimized processor

implementation without explicit control FSM, the FSM logic

in the HLS generated design incurs additional resource usage

and increases cycle time.

3 ASSIST TECHNIQUES

ASSIST combines domain-specific language design with intelligent
synthesis algorithms to enable efficient processor implementation.
There are three major components in the ASSIST synthesis frame-
work: (1) The instruction specification interface (Section 3.1) em-
ploys an architecture description language (ADL) embedded in
Python to allow designers to explicitly specify the functional be-
havior of the instructions. (2) The architectural synthesis engine
(Section 3.2) generates an optimized datapath and control logic
based on the information from the ADL. (3) The pipelining schedule
autotuner (Section 3.3) autotunes the pipeline schedule to optimize
the QoR of the final design.

Figure 2 provides a high-level view of the ASSIST synthesis flow.
The architectural synthesis engine takes the instruction set spec-
ification as well as a pipeline schedule describing the number of
stages and locations of the pipeline registers, and generates the
microprocessor implementation in the form of a Chisel RTL. The
design QoR is then measured by RTL simulation (using representa-
tive benchmarks) and physical implementation. These measured
QoR metrics are used in turn as the input to the pipeline schedule
autotuner to iteratively optimize the pipeline schedule.
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Figure 2: The overall flow of ASSIST.

3.1 Instruction Specification Interface

The embedded ADL used in the instruction specification interface
is the key to enable efficient datapath implementation. To designers,
the semantics of the ADL is rich enough to support a large range
of operations; it also allows the designers to concisely describe
changes to the instruction set (e.g., removing expensive instructions
from the base instruction set, or changing the semantics of custom
instructions) at the behavior level without worrying about the
low-level implementation details. In the meantime, the language
constructs are specially designed such that many important micro-
architectural level design decisions can be inferred from the ADL.
To achieve these goals, our ADL is constructed around the notion
of micro-operations (micro-ops), which are atomic operations used
to formulate the more complex behavior in a complete instruction.
def execute_add():

create_inst('ADD'); tmp = add(rs1, rs2)

assign(tmp, rd); inc_pc()

def execute_beq():
create_inst('BEQ'); tmp = cmp_ne(rsi1, rs2)
update_pc_with_pred(tmp, pc, imm_b)

def execute_1b():
create_inst('LB'); addr = add(rs1, imm_i)
mem_read(addr, 1, rd, SIGNED); inc_pc()

def execute_simd_add():
create_inst('SIMD_ADD')
def kernel():

rs1_1 = bit_range(rs1, 15, 0); rs1_h = bit_range(rs1, 31, 16)
rs2_1 = bit_range(rs2, 15, 0); rs2_h = bit_range(rs2, 31, 16)
sum_l = add(rs1_1, rs2_1); sum_h = add(rsi_h, rs2_h)

sum_val = bit_concat(sum_h, sum_1)

return sum_val
sum_val = compute_kernel(kernel, rs1, rs2)
assign(sum_val, rd); inc_pc()

Figure 3: Examples of instruction specifications in ASSIST.

Figure 3 gives three examples of specifying the RISC-V 32I in-
structions in the ADL: add, beq, and 1b. In addition, the simd_add
instruction, which implements two independent 16-bit additions,
is used to demonstrate how customized instructions are defined.
Following the RISC-V ISA specification, we allow each instruction
to take at most two input operands, and to produce at most one
output operand. In Figure 3, rs1, rs2, rd, imm_i, and imm_b are
user-defined constructs representing the register specifiers and
immediate fields, respectively. Micro-ops such as create_inst,
add, bit_range, and mem_read are used to compose a sequence of
actions or function calls (e.g., the kernel function in instruction
simd_add) that operate on the input operands, and generate the
output operand and/or update the architectural state. The output
bitwidths of the arithmetic and logic type micro-ops are automati-
cally inferred from their input operands. Table 1 details the available
micro-ops in the current version of ASSIST.

The benefits of using micro-ops are twofold. Firstly, it helps
create a clear datapath-control split where the semantics of the



Table 1: Micro-ops in the instruction specification interface.

Function Description

create_inst Create instruction with name and encoding
inc_pc Increment PC to the next word

update_pc Update the value of PC with address
update_pc_with_pred  Update PC if pred is true; otherwise inc_pc
add, sub, xor, or, and Arithmetic operations

slt/sltu Set true if less than (signed/unsigned)
sl Logical left shift

srl, sra Logical/arithmetic right shift
bit_range Select bit slice of certain range

bit_concat Concatenate two bit slices

select Select true or false branch based on condition
cmp_(eq/ne) True if operands are equal/not equal
cmp_(It/ge/gt)_(s/u) Signed/unsigned comparisons
mem_read/write Read/write certain bytes from/to memory
assign Assign operand to another value

micro-ops indicate whether one micro-op should be implemented
in the datapath or the control logic. For example, compute type
micro-ops such as add and bit_range are intuitively mapped to
datapath, while control type micro-ops such as update_pc are as-
signed to the control logic. Secondly, the use of pre-defined micro-
ops streamlines the resource sharing among different instructions.
That is, since different instructions are executed at different time
stamps in a microprocessor pipeline, the micro-ops used in multiple
instructions can be shared in the datapath, while the dedicated
control logic (Section 3.2.2) resolves structural hazards.

3.2 Architectural Synthesis Engine

The architectural synthesis engine translates the instruction set
specification into the processor implementation in RTL, which
involves two major steps. (1) Datapath synthesis populates the
pre-defined combinational functional units using instruction-set-
specific information. Pipeline registers are then inserted between
the functional units based on the pipeline schedule (either from the
autotuner detailed in Section 3.3, or manually provided). (2) The
control logic is inferred, which resolves data and control hazards
through data forwarding, pipeline stalling, and control speculation.

3.2.1 Datapath Synthesis

ASSIST abstracts the datapath of RISC-V processors into the fron-
tend and backend, both of which are further decomposed into
finer-grain functional units. These functional units are logically
separated building blocks of the processor datapath, which are pre-
defined and parameterized templates to be instantiated with the
information from the input instruction set.

Datapath frontend. The (a) instruction fetch unit calculates the
next PC value based on the different modes of branch and jump
instructions inferred from the instruction set specification, specif-
ically from the update_pc micro-op. The (b) instruction decoder
generates decoded register addresses and immediate fields from
the instruction encoding based on the user’s annotation. The (c)
register read module instantiates the register file, and reads out
the register values based on the register source addresses from the
decoder. In addition, the forwarding path leading to the register file
is handled in this module by introducing a multiplexer after the
register output, which selects either the data from the register or
the forwarding path selected by the forwarding control logic.

Datapath backend. The (d) branching unit computes the predica-
tion whether a branch is taken, and calculates the corresponding
branch target based on the compare type micro-ops and the ad-
dressing operations in the instruction set. The (e) ALU operand
select logic chooses the correct operand sources for each instruction.
In addition, it handles the forwarding path from ALU output or
writeback module to the inputs of the ALU with a multiplexer at the
output of the operand select module. The (f) ALU logic executes the
various arithmetic operations in the instruction set defined using
the compute type micro-ops. The ALU datapath is implemented by
fusing the common micro-ops across different instructions. This
is achieved by finding the minimum cover of all the used compute
type micro-ops across the instructions. The control logic selects

the correct multiplexer signals based on the instruction decoder.
Such an approach naturally maximizes resource sharing within
the ALU, since the minimum cover guarantees that no duplicated
implementations of the micro-ops exist in the ALU datapath. The
(g) memory request and register writeback module handles memory
requests and responses using a latency-insensitive interface. The
writeback multiplexer selects the source for writing back to the
register file based on the register assignment micro-op.

Instruction
fetch unit

Instruction Register
decoder read

Branching | |
ranching ALU operqnd ALU logic
unit select logic

Memory request and /
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Figure 4: Datapath functional units and their data dependen-
cies.

Pipelining. These seven datapath functional units (from a to g)
constitute a data flow graph with edges representing data depen-
dency between the functional units. Figure 4 sketches such data de-
pendencies between the functional units. Pipelining is the process
of adding schedule information to this data flow graph by grouping
the functional units into different pipeline stages. A pipeline sched-
ule is a vector specifying the position of each functional unit in the
pipeline. For instance, a pipeline schedule of [1111111] represents
a combinational datapath with all seven functional units sched-
uled in stage one. The pipeline schedule, [1234567], is a highly
pipelined design with each functional unit occupying a separate
pipeline stage. Given an input pipeline schedule, the architectural
synthesis engine analyzes the use-define relationship among the
functional units, and automatically inserts pipeline registers to relay
data across pipeline boundaries. ASSIST also supports pipelining
within a functional unit, which is typically needed within the ALU
logic if long delay paths exist due to complex custom instructions.
We support pipelining a functional unit by adding pipeline reg-
isters to the front of the functional unit, and enabling retiming
in the downstream logic synthesis tool. With cycle time target-
ing retiming, the locations of the registers within a combinational
module are automatically optimized to achieve the optimal clock
frequency [14].

3.2.2 Control Logic Generation

It is often challenging, even in manual designs, to devise the optimal
set of pipeline control signals that maximize the pipeline through-
put while ensuring the correct pipeline execution. ASSIST solves
this problem by proposing a set of rule-based techniques to auto-
matically generate the pipeline forwarding, speculation, stalling,
and squash signals. For data hazards, the pipeline control logic
enables data forwarding whenever possible, and stalls the pipeline
if necessary. For control hazards, the pipeline control logic issues
pipeline squash signal when a branch is mis-predicted, and resumes
the execution from the correct branch target. Specifically, the for-
warding control logic is responsible for determining the select signal
of the forwarding multiplexers. For each of the possible forwarding
paths in the datapath, ASSIST generates a control signal that acti-
vates the forwarding path if the register writeback address matches
that of the data consuming instruction(s). The data hazard stall logic
stalls the pipeline by inserting bubbles into the pipeline whenever
a data hazard cannot be resolved by forwarding. For branches that
are mistakenly predicted, the pipeline squash logic is asserted
to squash all instructions in the mis-predicted path.

3.3 Pipeline Schedule Autotuner

It is generally difficult to obtain accurate QoR estimates at the
pre-RTL synthesis stage for several reasons: (1) the synthesized
processor pipeline contains complex control logic that complicates



static timing analysis, which usually cannot be accurately predicted
without detailed implementation. (2) multiple supported technology
targets make timing pre-characterization expensive and inflexible
for new technology targets. (3) many important QoR metrics such
as execution time and area are often workload dependent, and
are significantly impacted by scheduling. Such metrics cannot be
accurately determined statically. The pipeline schedule autotuner
iteratively invokes the downstream CAD tool to obtain more accu-
rate QoR estimates and uses the information to guide an intelligent
autotuning-based design space exploration. Specifically, ASSIST
integrates OpenTuner [1] as the autotuning engine. OpenTuner
is an iterative meta-heuristic based autotuning framework, which
maintains an ensemble of search techniques. At each iteration,
OpenTuner uses the multi-armed bandit algorithm to select one
of the search techniques for proposing the new design point to

explore.
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Figure 5: Flow chart of the autotuning process.
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Figure 5 illustrates the overall autotuning process in ASSIST.
Starting with an initial pipeline schedule, the architectural synthe-
sis engine generates the RTL implementation, and uses the CAD
implementation tool to measure its QoR. The design point, together
with the measured QoR, is fed into the autotuner. The autotuner
then proposes and evaluates a new pipeline schedule. This process
iterates until reaching the desired QoR or a pre-determined runtime
budget. In addition to optimizing for a single objective, the pipeline
schedule autotuner also supports a constrained optimization tar-
get, where design points that fail the user-specified constraints are
immediately discarded during the search process. The best pipeline
schedule found during the autotuning process is returned as the
final pipeline schedule.

4 EXPERIMENTAL RESULTS

We first present the result of the design space of ASSIST-generated
designs targeting the RISC-V 321 ISA. We then study the cycle time
constrained performance optimization using the pipeline schedule
autotuner, followed by discussions on integrating instruction and
data memories to the processor pipeline. Finally, we present case
studies of supporting custom instruction extensions and domain-
specific instruction set in ASSIST.

4.1 Design Space Exploration

ASSIST can be used to synthesize and evaluate a large number of
design points for a given instruction set target by enumerating
the feasible pipeline schedules. We benchmark the QoR of the de-
sign points found by ASSIST against three manually optimized
designs in the Sodor Processor Collection [7]. The Sodor Processor
Collection provides the optimized implementations of 1-, 3-, and
5-stage single-issue, in-order processors of the RISC-V 321 ISA. In
this experiment, we use ASSIST to enumerate 64 design points with
different pipeline schedules ranging from a combinational datapath
to a 7-stage pipelined implementation. For the Virtex-7 FPGA target,
we implement both the manual designs and the ASSIST-generated

Table 2: Top three designs with different optimization tar-
gets using a 32nm ASIC technology library — Top-3: the top-
three designs with the highest QoR of the corresponding target;
Base: manual 1-, 2-, 5-stage design; CT: clock period in nanosecond
after implementation; Area: design area in ym?; RT: total runtime
in millisecond over seven kernels.

Schedule CT  Area RT

Base-1 091 47908  0.625
Base-2 0.34 52202  0.267
Base-5 032 51706  0.292

1112233 0.33 54530  0.330
1223344 0.33 56320  0.362
1223334 0.33 53956  0.301

Optimization target

Cycle time

1111111 090 48964 0.618
Area 1222222 036 51692  0.283
1122222 038 51874  0.298

1111222 036 53283  0.247
Execution time 1111122 0.38 53587  0.261
1112222 034 52281 0.267

designs using Vivado version 2017.1. For the ASIC target, we imple-
ment the designs using Synopsys Design Compiler and IC Compiler
II version 2016.12 targeting a 32nm technology library.

Figure 6 plots the three-dimensional design space of the QoR of
the implemented designs in terms of area, cycle time and execution
time. The total execution time is measured as the runtime for com-
pleting a set of seven representative benchmarks from the RISC-V
benchmark suite, which include sorting algorithms, sparse matrix
computation, recursive algorithms, and so on. The red square dots
in Figure 6 represent the three manual designs, while the blue dots
represent the ASSIST synthesized designs. Table 2 zooms in to the
top-3 designs found by ASSIST for optimizing cycle time, area and
execution time, respectively. We observe that: (1) while the major-
ity of the ASSIST-generated design points have poor QoR, some
of the ASSIST-synthesized designs can match or even exceed the
QoR of the manual designs when considering a single optimiza-
tion target such as cycle time or total execution time; (2) certain
ASSIST-synthesized designs appear on the Pareto frontier of the
three-dimensional QoR tradeoff curve, which shows that ASSIST
can effectively explore the design space and discover promising
design points with varying QoR characteristics.

The advantage over the manually optimized designs is not be-
cause ASSIST can come up with better micro-architecture for a
particular pipeline schedule; It is rather because ASSIST facilitates
the automatic exploration of processor pipelines with various micro-
architectural design choices, and uncovers promising design points
under the specific technology target.

4.2 Constrained Performance Optimization

We use the pipeline schedule autotuner to find optimized pipeline
schedules that minimizes the total execution time (the runtime
for finishing the seven RISC-V benchmarks) under cycle time con-
straints. Table 3 summarizes the optimization results targeting the
Virtex-7 FPGA. To minimize the effect of randomness, we repeat 100
independent experiments for each value of the constraint, where
each experiment is allocated an autotuning runtime budget of ex-
ploring 16 design points. The runtime of the ASSIST synthesis flow
is negligible when compared to the long runtime of the CAD im-
plementation tool. The Occ. column in the tables represents the
number of occurrences that the specific design point was found dur-
ing the autotuning process across 100 runs. The pipeline schedule
autotuner finds design points with a shorter execution time than the
manual designs while satisfying the cycle time constraint, showing
the pipeline schedule autotuner can effectively navigate through
the design space and identify promising design points satisfying
the user-defined constraints and objective.

4.3 Instruction and Data Memories

While ASSIST does not directly synthesize the instruction and
data memories, it is designed such that the generated processor
pipelines can be easily integrated with various types of memories



Virtex-7 FPGA

9500 9500
9000 . 9000 .
8500 8500
= o = L]
& 8000 ) e = 8000 ® o8
+ . + s H
5 7500 @ * 5 7500 io.:o. e’ b
L)
= UL I I =B O ol )
7000 " . 7000 e
L] L]
6500 6500
6000 6000
4 5 6 7 8 9 10 4 5 6 7 8 9 10 11

Cycle time (ns) Total execution time (ms)

32nm ASIC
63000 63000
61000 : 61000 R e
()
59000 e 59000 %gee o
~ e ~ ge
& 57000 4 57000 ot 8% o0
g (] £ o
3 3 L )
£ 55000 = 55000 °
o 23
Z 53000 B. Z 53000 ‘::‘0
51000 51000
49000 ° 49000 °
n n
47000 47000
0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 02 03 04 05 06 07

Cycle time (ns) Total execution time (ms)

Figure 6: Design space of synthesized pipeline processors targeting the Virtex-7 FPGA — blue dots are designs generated from
ASSIST with one to seven pipeline stages. Red dots are the three manually optimized 1-, 2-, and 5-stage designs from [7].

Table 3: Cycle time constraint runtime optimization target-
ing Virtex-7 FPGA — T: cycle time constraint in nanosecond;
Base: manual 2- and 5-stage designs; Occ.: occurrence of the spe-
cific designs found during 100 experiment runs; CT: clock period in
nanosecond; RT: total runtime in millisecond over seven kernels;
LUT: number of lookup tables; FF: number of flip-flops.

Schedule  Occ. CT RT LUT FF

Base-2 6.62 5202 4571 2460

Base-5 531 4.838 4701 2794

[1112222] 41 540 4.237 4850 2539

T=7.0 [1111111] 17 6.50 4.466 4300 2350
[1112223] 11 5.25 4.271 4465 2707
[1112233] 24 486 4859 4915 2750

T=5.0 [1112333] 14 486 4.859 5013 2747
[1112334] 11 495 5160 4295 2915

and caches. We study integrating ASSIST pipelines with scratchpad
memories as instruction and data memories on the Virtex-7 FPGA.
The scratchpad memories are designed as parameterized RTL tem-
plates, which are incorporated to the processor pipelines during
the optimization process and implemented in the downstream CAD
flow. The instruction and data scratchpads are set to 64 words and
128 words for this specific experiment, respectively. Table 4 shows
the QoR of the top-3 designs with instruction and data memories
found using the pipeline schedule autotuner targeting cycle time
minimization with an autotuning runtime budget of exploring 16
design points. We observe that ASSIST generated designs achieve
better cycle time than the manually-optimized designs at the cost
of small increase in resource usage. This is primarily because the
autotuning process optimizes the processor pipeline and the mem-
ory subsystem in a holistic way, while the manual designs do not
have the physical-level timing information at the design stage.

Table 4: Optimization results with scratchpad memories tar-
geting Virtex-7 FPGA — Base: manual 2- and 5-stage designs;
CT: clock period in nanosecond; RT: total runtime in millisecond
over seven kernels; LUT: number of lookup tables; FF: number of
flip-flops; BRAM: number of block RAMs.

Schedule CT RT LUT FF  BRAM
Base-2 6.90 5422 4412 2462 1
Base-5 6.41 5840 4798 2800 1

[1223333] 639 5.123 5106 2685 1

[1123333] 639 5.127 5283 2700 1

[1234444] 642 4.664 5114 2542 1

4.4 Case Studies

As detailed in Section 3, ASSIST provides a convenient interface
for designers to incorporate custom instructions and/or custom in-
struction set to the baseline RISC-V processor. We present two case
studies on instruction extensions of a single custom instruction, fol-
lowed by an additional case study of implementing a cryptographic
instruction set extending the RISC-V 32I base ISA. We target the
Virtex-7 FPGAs in these case studies; designs targeting ASICs follow
a similar process.

We start by presenting two case studies that add a single cus-
tom instruction in each case in the domains of cryptography and
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machine learning, respectively. The first case study implements
the instruction mixColumns, which computes one iteration of the
loop in the aes_mixColumns function (shown in Figure 7) in the
Advanced Encryption Standard (AES) kernel. The mixColumns in-
struction takes four 8-bit data, denoted as buf, and updates them
in-place using XOR, AND, and shift operations. By specializing the
loop body of the aes_mixColumns function (50 assembly instruc-
tions) into a single custom instruction, the dynamic instruction
count of the program significantly reduces, leading to an improved
QoR. We implement the instruction binConv in the second case
study. binConv executes a 3-by-3 binarized convolution, which is
a frequently-used kernel in binarized neural networks. Figure 8
details its original implementation. In the customized processor, the
entire procedure call to conv3x3b is replaced by a single binConv
instruction, which significantly reduces the dynamic instruction
count. Table 5 summarizes the QoR of the two custom instructions
in two separate experiments. The execution time in these two exper-
iments are measured by running the AES kernel and the binarized
convolution kernel, respectively, where the custom instructions are
incorporated into the benchmarks as inline assembly instructions.
When compared to the baseline processor, the ASSIST-synthesized
designs require significantly shorter execution time due to the large
reduction of dynamic instruction count in critical loops, at the cost
of modest increase in cycle time and resource usage.

uint8_t rj_xtime(uint8_t x) {
return (x & 0x80) ? ((x << 1) * @x1b) : (x << 1);}

void aes_mixColumns(uint8_t *buf) {
register uint8_t i, a, b, ¢, d, e;

mix : for (i = @; i <16; i +=4) {
a = buf[il]; b = buf[i + 1]; ¢ = buf[i + 2]; d = buf[i + 3];
e=a"*“b*c*d;
buf[i] *= e * rj_xtime(a*b); buf[i+1] *= e * rj_xtime(b*c);

buf[i+2] *= e * rj_xtime(c*d); buf[i+3] *= e * rj_xtime(d*a);

-

Figure 7: Code snippet of the mixColumns function.

unsigned int conv3x3b(
unsigned int buffer[BUFFER_ROWS][BUFFER_COLS],
const unsigned int conv_params_m,
const unsigned int rr, const unsigned int cc) {
unsigned int sum = @; int kr, kc;
for (kr = 0; kr < K; ++kr) {
for (kc = 0; kc < K; ++kc) {
const char bit@ = ((buffer[rr + krl[(cc + kc) / 16] &
(1 << (2 * ((cc + ke) % 16)))) > 0);
const char bitl = ((buffer[rr + krl[(cc + kc) / 16] &
(1 << (2 * ((cc + ke) % 16)) + 1)) > 0);
const char wt = (conv_params_m &
(1 << (2 - kr) * 3+ (2-kc))) >0);
char res = ((wt & bit@) != bit1);
sum += (unsigned int)res;
3}

return sum;

Figure 8: Code snippet of the binConv function.

ASSIST can also be used to synthesize domain-specific instruc-
tion sets with multiple custom instructions. In this study, we use



Table 5: QoR comparisons between the base processor and
the customized processors with instruction extensions tar-
geting Vertex-7 FPGA — Cycle time = cycle time in ns; LUT =
number of lookup tables; FF = number of flip flops; # Cycle =
number of cycles to complete the given tasks; Execution time
= execution time in microsecond; Base = RISC-V 32I processor;
AES-custom = RISC-V 32I processor + mixColumns instruction;
binConv-custom = RISC-V 32I processor + binConv instruction.

Base AES-custom Base  binConv-custom

Cycle time (ns) 4.78 4.99 (+4.2%) 4.78 5.23 (+9.4%)
LUT 4760 5308 (+11.5%) 4760 4980 (+4.6%)
FF 2912 2913 (+0.03%) 2912 2762 (-5.2%)
# Cycle 11248 5759 (-48.8%) 84987 13488 (-84.1%)
Execution time (ys) 54 29 (-46.6%) 406 71 (-82.6%)

Table 6: QoR comparisons between the base processor
and the processor with cryptographic extensions targeting
Vertex-7 FPGA— Cycle time = cycle time in ns; Cycle count =
estimated number of cycles to execute a 128-bit AES encryption
task; Execution time = runtime for a 128-bit AES encryption task
in microsecond; LUT = number of lookup tables; FF = number of
flip flops; RISC-V base = RISC-V 32I processor; RISC-V + crypto
= RISC-V 321 processor + cryptographic instruction set extension.

RISC-V base  RISC-V + crypto
Cycle time (ns) 478 5.18 (+8.4%)
Dynamic instruction count 9929 984 (-90.1%)
Execution time (us) 47.4 5.1 (9.3X faster)
UT 4760 5460 (+14.7%)

FF 2912 2686 (-7.8%)

the Cryptonite processor ISA [5] as our reference, which can ex-
press standard cryptographic algorithms such as AES, DES, MD5
and SHA in a more efficient way than general-purpose ISAs. We
implement a 32-bit version of the cryptographic ISA extension with
seven custom cryptographic instructions, which execute various
bit-level operations specialized for cryptographic algorithms. Imple-
menting the seven cryptographic instructions only required around
100 lines of code in ASSIST. Table 6 summarizes the QoR of the
ASSIST-synthesized design when compared to the baseline proces-
sor with the RISC-V 321 ISA, where we use the pipeline schedule
autotuner to optimize for cycle time. We estimate the runtime of the
cryptographic processor using the dynamic instruction count, and
observe a moderate 8.4% increase in cycle time with negligible re-
source overhead. The customized processor executes a 128-bit AES
encryption task 9.3X faster than the baseline processor, showing the
benefit of processors with domain-specific instruction extensions
synthesized from ASSIST.

5 RELATED WORK

Besides the configurable core approach discussed in Section 1, an-
other line of research enables processor synthesis from ADLs. Exam-
ples includes LISA [19], EXPRESSION [15], and T-spec/T-piper [17].
Processor synthesis using Bluespec [2] follows a similar approach
where designers describe the processor using guarded atomic action
constructs. A common requirement of these approach is that design-
ers need to manually specify the datapath and the pipeline schedule.
Automatic optimization techniques are usually not provided in ADL-
based approaches. Mokhov, et al. propose techniques to synthesize
microprocessor designs from high-level ISA specifications [16].
However, they mainly focus on supporting ISA extensions, with-
out providing techniques to automatically pipeline the synthesized
datapath. Ralf Dreesen proposes an automatic flow to generate pro-
cessor pipelines from ISA descriptions [10]. However, the proposed
technique lacks support for sharing common resources, and uses
precomputed component delay models for pipeline scheduling. The
generated designs are both significantly larger in area and slower
in frequency than the manually optimized counterparts.

6 CONCLUSIONS

We present ASSIST, a behavior-level microprocessor synthesis frame-
work for RISC-V processors from an instruction set specification.

We demonstrate the QoRs from ASSIST by exploring the design
space of RISC-V 32I processors, and presents case studies of various
instruction set extensions and customized ISAs. Further directions
include the extension to various micro-architectural features such
as sophisticated branch prediction mechanisms and the support for
superscalar execution. Additional optimization targets such as en-
ergy efficiency can also be explored by integrating power analysis
into the autotuning flow. In addition, machine learning based tech-
niques can potentially be used for fast QoR estimation to alleviate
the runtime overhead of the autotuning process.
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