
A Reconfigurable Analog Substrate for Highly
Efficient Maximum Flow Computation

Gai Liu and Zhiru Zhang
School of Electrical and Computer Engineering, Cornell University, Ithaca, NY

{gl387, zhiruz}@cornell.edu

Abstract
We present the design and analysis of a novel analog reconfigurable
substrate that enables fast and efficient computation of maximum
flow on directed graphs. The substrate is composed of memristors
and standard analog circuit components, where the on/off states of
the crossbar switches encode the graph topology. We show that
upon convergence, the steady-state voltages in the circuit capture
the solution to the maximum flow problem. We also provide tech-
niques to minimize the impacts of variability and non-ideal circuit
components on the solution quality, enabling practical implemen-
tation of the proposed substrate. Performance evaluation demon-
strates orders of magnitude improvements in speed and energy ef-
ficiency compared to a standard CPU implementation.

1. Introduction
Overcoming the performance and efficiency limitations of tradi-
tional von Neumann architecture has been one of the major themes
in the recent computing research. Exploring novel architectures and
computing paradigms becomes even more imperative as power-
limited technology scaling fails to offer the same performance im-
provement that we have seen in the past few decades [10]. This
trend is motivating researchers to investigate new technologies
and alternative models of computations to provide the next wave
of major improvements in computing. An active direction of re-
search seeks to improve performance and energy efficiency through
domain-/application-specific hardware customization using spe-
cialized accelerators such as ASICs, FPGAs, and GPGPUs [6].
Parallel to this direction, more disruptive computing paradigms are
being examined, including approximate computing [14, 22], neu-
romorphic computing [23], and quantum computing [19]. These
disruptive computing paradigms are expected to achieve significant
improvements in performance and energy efficiency for certain do-
mains of applications compared to the traditional approaches.

In this work we investigate using a physics-based analog com-
puting system as an unconventional approach to an important opti-
mization problem — the maximum flow (max-flow) problem. The
max-flow problem is one of the most pervasive optimization prob-
lems in applications such as transportation [27], Internet traffic
scheduling [29], VLSI CAD [7], and many other emerging applica-
tions including computer vision [4] and data mining [11]. These
emerging applications often deal with large-scale graphs, which
need to be analyzed under ever-demanding performance and en-
ergy efficiency requirements. Needless to say, a new method that
solves the max-flow problem efficiently in both time and energy
consumption would be of great interest to the CAD community as
well as the field of computing in general. However, the max-flow
problem has been shown to be computationally demanding [13]
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and difficult to parallelize [12]. To this end, we propose a recon-
figurable analog substrate composed of traditional analog devices
including resistors, diodes and operational amplifiers (op-amps), as
well as an emerging device called memristor. The substrate encodes
graph topology using the on/off states of the memristor switches,
and leverages Kirchhoff’s circuit laws to enforce flow constraints,
which are represented in the form of circuit node voltage values.
The max-flow objective, defined as the net flow out of the source
vertex, is then driven to its maximum value. Upon convergence,
the steady-state node voltages represent the solution to the max-
flow problem. We note that in practice, the solutions obtained from
the substrate are often approximations to the original problems due
to process variation and non-ideal circuit components. We address
this problem by proposing techniques to mitigate the influence on
the solution quality due to the non-ideal factors. We summarize our
contributions as follows:

1. We present the first study of a reconfigurable analog substrate
that efficiently solves max-flow problems.

2. We prove that the proposed substrate optimally solves the max-
flow problem under ideal assumptions.

3. We analyze the influence of non-ideal circuit components and
process variation on the solution quality, and propose tech-
niques to mitigate the impact of these non-ideal factors.

The rest of the paper is structured as follows: Section 2 de-
scribes the circuit mechanism of our substrate; Section 3 introduces
the reconfigurable crossbar architecture; Section 4 discusses the
implementation details of the substrate; Section 5 provides the per-
formance evaluation of our proposal; Section 6 reviews the related
work and the paper concludes in Section 7.

2. Computing Max-flow using Analog Circuit
The max-flow problem we are interested in solving is stated as
follows: Given a directed graph1 G = (V,E) with n = |V |
vertices and m = |E| edges, we distinguish two vertices, a source
vertex s and sink vertex t, and assign each edge e a nonzero integral
capacity ce. A s − t flow is a function f : E → R such that for
every vertex ni other than s and t, the flow coming into ni is equal
to the flow going out of ni, and 0 ≤ f(e) ≤ ce for all e ∈ E.
The value |f | of a s− t flow is defined to be the net flow out of the
source vertex. The max-flow problem asks for finding a feasible
s− t flow in G of the maximum value.

The circuit used to compute max-flow is constructed in a direct
mapping manner, i.e., for every edge, there is a circuit component to
ensure edge capacity constraint; and for every node, there is another
circuit component to enforce flow conservation constraint; there is
also a circuit component for realizing the functionality of max-flow
objective function.

2.1 Edge Capacity Constraint
For each edge capacity constraints on edge xi, we create a circuit
component composed of two diodes and one voltage source, as

1 Max-flow problem on an undirected graph can be converted to an equiva-
lent problem on a directed graph by allocating two opposite edges with the
same capacity as the edge in the original undirected graph.
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Figure 1: Circuit structure for edge capacity constraint.
shown in Figure 1, where the capacity on edge xi is ci. One of
the two diodes is directly connected to the circuit node xi, with its
anode connected to ground. Ideally, the diode will turn on whenever
the voltage on circuit node xi is below zero2. Since the ideal diode
in on-state behaves like an ideal wire, the voltage on circuit node
xi will always be non-negative. Similarly, the other diode and a
voltage source of value ci enforce that the circuit node voltage at
xi never exceeds ci. Thus we have the following relation

0 ≤ Vxi ≤ ci (1)

for every node xi that corresponds to an edge xi in the original
graph, where Vxi is the voltage value on circuit node xi, and ci is
the corresponding edge capacity on edge xi.

2.2 Flow Conservation Constraint
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Figure 2: Circuit structure for flow conservation constraint.

Flow conservation constraint is enforced using the circuit in
Figure 2. For each outgoing edge yi(i = 1, 2, . . . , j) of a vertex
nt in the original graph, the corresponding circuit node yi with
voltage value Vyi is connected to node nt via a resistor; while for
each incoming edge xi(i = 1, 2, . . . , k) of the vertex nt, the corre-
sponding node of negated voltage value V

x−
i

is connected to node
nt. All positive resistors have the same resistance value r. Neg-
ative resistors −R1, . . . ,−Rk all have the same resistance value
of −r/2, and the negative resistor connected to nt has resistance
value R = r

N
, where N = j + k. We can show that the circuit in

Figure 2 indeed enforces flow conservation constraint on node nt

using Kirchhoff’s current law (KCL):
Denote the voltage value on node P in Figure 2 as VP , we have

the following relation using KCL:

Vx1 − VP

r
+
V
x−
1
− VP

r
=

VP

−R1
(2)

Since −R1 = −r/2, we have

Vx1 = −V
x−
1

(3)

Similarly, we have Vxi = −V
x−
i

for all i = 1, 2, . . . , k.
Based on KCL we also have the following relation on node nt:

k∑
i=1

V
x−
i
− Vnt

r
+

j∑
i=1

Vyi − Vnt

r
=
Vnt

−R (4)

Plug R = r
k+j

into Equation (4):
k∑

i=1

V
x−
i

+

j∑
i=1

Vyi = 0 (5)

2 Note that in practice we need to account for the turn-on voltage of the
diode by adjusting the values of the voltage sources.

Using the result from Equation (3), we obtain the following rela-

tion that satisfies flow conservation constraint:
k∑

i=1

Vxi =
j∑

i=1

Vyi .

2.3 Max-flow Objective
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Figure 3: Circuit structure for implementing max-flow objective.

The objective function is implemented using the circuit in Fig-
ure 3, where all the positive resistors have the same resistance value
of r. Intuitively, Vflow will drive the node voltages as large as pos-
sible, subject to the capacity and conservation constraints. As a re-
sult, the steady-state voltages of the circuit nodes reflect the max-
imum possible flow through the network that does not violate the
requirements of the constraints. In the next section, we derive the
steady-state solution of the circuit using basic circuit theorems, and
show that the steady-state node voltages represent the solution for
the max-flow problem. We will first prove that the value of s − t
flow will strictly increase as Vflow increases by showing that the
constructed resistor network is passive. Combining this fact with
the flow conservation constraint and edge capacity constraint de-
rived in Sections 2.1 and 2.2, we can show the optimality of the
circuit solution.

2.4 Optimality of Circuit Solution
We first show that the resistor network in the max-flow circuit is
passive, i.e., the equivalent resistance of the resistor network is
positive. Figure 4a shows a generic circuit for solving the max-
flow problem, where nodes x1 to xt are the subset of nodes that are
directly connected to Vflow. In Figure 4a, we mark the resistor that
directly connects to node x1 with its resistance value r. We also list
all the negative resistors in the network as −R1,−R2, . . . ,−Rk.
Note that according to the construction of the circuit, we have
|−Ri| < r for all the negative resistors. Now we find the equivalent
resistance of the resistor subnetwork S to the right of node x1,
shown in the dashed box in Figure 4a. Based on the fact that
reducing the resistance value of positive resistors to zero will only
decrease the equivalent resistance of the network, we set all the
resistance of the positive resistors except r in S to be zero, which
only decreases the equivalent resistance of S. The resulting resistor
network consists only of the resistors shown in Figure 4b. Since
each of the resistance |Ri| is strictly less than r, all the parallel
negative resistors together also have an equivalent resistance that is
less than r. As a result, the equivalent resistance of S, which is the
sum of r and the equivalent resistance of these negative resistors, is
always positive. Figure 4c shows the equivalent circuit of Figure 4a,
where Req(i) > 0 for all i = 1, 2, . . . , t.

Each circuit branch in Figure 4c is a basic voltage divider. Since
all the remaining positive resistors have a resistance value of r, we
have Vxi = Vflow

Req(i)

Req(i)+r
for all i = 1, 2, . . . , t. Note that we

have shown Req(i) > 0 for all i = 1, 2, . . . , t, thus the steady-
state solution Vxi will strictly increase as Vflow increases, as long
as edge capacity constraints and flow conservation constraints are
satisfied. Summing up all the node voltages, we have

t∑
i=1

Vxi = Vflow

t∑
i=1

Req(i)

Req(i) + r
= Vflow

t∑
i=1

(1− r

Req(i) + r
)

= tVflow − rIflow , J
(6)

J in Equation (6) plays the role of objective function in the max-
flow problem. Vflow in the circuit is set to a high voltage value,
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Figure 4: Replacing resistor network with equivalent resistance.
so that Vflow will try to maximize the node voltages in the circuit.
Combining this result with the derived edge capacity constraint and
flow conservation constraint, we have:

J = tVflow − rIflow =

t∑
i=1

Vxi (7a)

k∑
i=1

Vxi =

j∑
i=1

Vyi (7b)

0 ≤ Vxi ≤ ci (7c)

where Equation (7b) holds for all vertices with incoming edges
xi and outgoing edges yi, and Equation (7c) holds for all edges
in the graph. Equation (7) is identical to the original max-flow
problem. Thus we conclude that the circuit solution is equivalent
to the solution of the corresponding max-flow problem.

2.5 An Example
Figure 5b shows an example circuit that solves a max-flow problem
instance in Figure 5a. A step function is first applied to Vflow that
drives Vx1 to its maximum value 3V . Then the circuit components
implementing flow conservation constraints start working together
to bring the other nodes to steady state. Vx3 and Vx4 will reach
their maximum values of 1V , corresponding to the case that flows
on edge ex3 and ex4 reach their maximum value of 1. Then Vx1 and
Vx2 in return bring Vx1 to its final value of 2V . Figure 5c shows
the waveform of the node voltages as a function of time.

3. Reconfigurable Crossbar Architecture
Constructing a custom circuit for each graph instance is generally
impractical as fabricating a custom circuit is both expensive and
time consuming. We propose to construct a reconfigurable sub-
strate that can be configured to encode different graph topologies,
enabling the solution of various problem instances using a sin-
gle substrate. We propose to use memristors as the reconfigurable
switches in our substrate. The memristor [16] is a two terminal de-
vice with a metal-insulator-metal sandwiched structure whose re-
sistance (called memristance) can be modulated by external stim-
ulus. Memristor can be switched between the high-resistance state
(HRS) and the low-resistance state (LRS) by external voltage stim-
ulus, and retains its resistance value when external stimulus is re-
moved or below a certain threshold. Our reason for choosing mem-
ristors as switches is twofold: (1) memristor-based switches are
more area-efficient than the traditional SRAM-based switches; (2)
since resistors are widely used on our substrate, we can directly
replace the resistors with memristors so that one single memristor
acts both as a switch and as a resistor. Namely, A memristor in HRS
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x1

-R

x1
-

-R1

x2
-R

x3

-R

-R2

x2
-

x4

-R3
x3

- x5

1V

2V

3V

2V

1VVflow

(b) The corresponding circuit.

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

0.0E+00 5.0E-09 1.0E-08 1.5E-08 2.0E-08 2.5E-08

V
o

lt
ag

e 
(V

)
Time (s)

V(x1) V(x2) V(x3) V(x4) V(x5)

(c) Waveform of the node voltages.

Figure 5: An example of solving max-flow using analog circuit.
represents a disconnected switch; A memristor in LRS represents
both a connected switch and a resistor whose resistance is equal
to the LRS memristance. Additionally, using LRS memristors as
normal resistors enables the fine-tuning of memristance in LRS,
which helps mitigate the impact of process variation and parasitic
resistance, as will be discussed in Section 4.3.2.

Our substrate is composed of an n × n crossbar as shown in
Figure 6. At each intersection (ni, nj), there is a small circuit wid-
get connecting into the crossbar through a memristor switch. This
circuit widget represents an edge xij . Essentially, we can view the
crossbar as a physical representation of the adjacency matrix of the
graph. If edge (i, j) is present in the graph, the memristor switch
at position (ni, nj) will be set to LRS. Otherwise, the memristor
switch at position (ni, nj) will be set to HRS. When properly con-
figured, the crossbar architecture implements the circuit described
in Section 2. We implement the max-flow objective using the first
row of the crossbar, where the memristor switch at position (s, ni)
will be turned on if and only if edge (s, i) is present in the graph.
We enforce the edge capacity constraint using two diodes at each
intersection, and honor the flow conservation constraint by connect-
ing column ni with all the edges incident to ni. Figure 7 shows the
mapping of the example circuit to the crossbar. By examining the
circuit widgets at the intersections, we can verify that the crossbar
correctly implement the circuit in Figure 5b.3

3.1 Configuring the Crossbar
In the configuration stage, we program the memristors in the cross-
bar to the desired resistance state using voltage pulses. Vflow is set
to zero in this stage. The programming stage takes n cycles to com-
plete, one cycle for each row. At the ith programming cycle, row
i is activated by setting the row wire to a low voltage Vlow, while
keeping all the other rows at 0V. For every memristor that needs to
be set to LRS, the corresponding column will be set to a high volt-

3 Since there is no outgoing edge from sink t, the negative resistors in the
circuit widgets of column t can be omitted without affecting the correctness
of the circuit.
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Figure 7: Mapping the example circuit to the crossbar.

age Vhigh, while keeping all the other columns at 0V. By setting
the voltage difference (Vhigh − Vlow) greater than the memristor
threshold voltage, the desired memristors will be set to LRS, while
all the other memristors stay in HRS. After n cycles of configura-
tion, all the memristor switches are set to the desired state.

3.2 Computing Max-flow on the Crossbar
At the beginning of the computing stage, a step function is applied
to Vflow, and the circuit starts converging to steady state. To avoid
the complexity of detecting steady-state condition, we run the cir-
cuit for a period of time t. t should be long enough to ensure that the
circuit converges, which can be determined by profiling the worst-
case execution time of the substrate. After convergence, we mea-
sure the current through the voltage source Vflow and calculate the
objective value (i.e. value of max-flow) based on Equation (7a).

4. Implementation
We have shown that the proposed substrate generates optimal so-
lution for max-flow problems under several assumptions: (1) one
voltage source for each edge with exact voltage level; (2) ideal
negative resistors and diodes; (3) no process variations or parasitic
resistance. In this section, we analyze the impact of these assump-
tions on the solution quality, and propose techniques that enable a
practical implementation of the proposed substrate.

4.1 Voltage Level Quantization
In practice, it is too expensive to use one distinct voltage source on
the substrate for each edge. Also, the output voltage level of a volt-
age source cannot be arbitrarily large. To address these two issues,
we propose the following quantization scheme that maps the edge
capacities to a set of discrete voltage levels. Given a supply volt-
age of value Vdd, we uniformly divide the voltage interval [0, Vdd]
into N voltage levels: V = { 1

N
Vdd,

2
N
Vdd, . . . ,

N−1
N

Vdd, Vdd}.
For each voltage level in V, we construct one voltage source with
the corresponding voltage value. One voltage source will be used
for multiple edges if these edges share the same voltage level
after quantization. The quantization function Q uniformly maps
the edge capacities of a max-flow instance into the voltage lev-
els in set V. Specifically, given an edge capacity x, Q maps x

to one of the voltage levels in V: Q(x) = b(x/C)Nc
N

Vdd, where
C is the largest edge capacity of the max-flow instance. The solu-
tion Y = {Vx1 , Vx2 , . . . , Vxm} obtained from the circuit is then
mapped back to the interval [0, C]: Ỹ = Y × Vdd

C
. Ỹ is an ap-

proximate solution of the original problem with quantization er-
rors. The worst-case quantization error e of the flow on one edge is
bounded by the quantization step: e = C

N
with C being the largest

edge capacity and N being the number of voltage levels. Note that
the choice of N provides a trade-off between accuracy and cost—
increasing N reduces the worst-case quantization error, but also
increases circuit complexity and cost. Figure 8 illustrates the appli-
cation of voltage quantization on the same graph in Figure 5a with
N = 20 and Vdd = 1V , the result shows a 5% deviation in the
final flow value |f |.
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4.2 Negative Resistors
We can view a negative resistor as a current-controlled voltage
source with the transresistance equal to −R, which can be im-
plemented using an op-amp, as shown in Figure 9a. The precision
of the negative resistor is determined by the open loop gain A of
the op-amp. To derive the precision of the negative resistor, we
calculate the effective resistance Reff of the negative resistor as
Reff = −(1 + 1

A
R0

Rtarget
)Rtarget, where R0

Rtarget
is a constant

that is close to 1. Thus the precision of the negative resistor is in-
versely proportional to the gain A of the op-amp. Since modern
op-amps can easily achieve gain A > 1000, indicating a preci-
sion of ±0.1%, we conclude that the implementation of op-amp
has negligible impact on the precision of the negative resistor.

4.3 Process Variation and Parasitic Resistance
The actual resistance of the resistors deviates from their nominal
values due to unavoidable process variation and parasitic effects,
which degrade the solution quality. In this section, we first make
an important observation that the solution quality depends only on
the ratio of the resistance values instead of the absolution resistance
values. This enables the use of layout matching techniques to min-
imize variations. We will also discuss post-fabrication resistance
tuning to further reduce the impact of resistance variation.

4.3.1 Resistance Matching
Although most integrated resistors have tolerances of ±20 to 30%,
the tolerance of the ratio between two resistors can be controlled to
be better than ±1%, and in many cases, to be within ±0.1% [15].
We have shown in Section 2.4 that the circuit node voltages are only
functions of ratios of resistances. Since the circuit node voltages in
steady state represent the flow value, we are encouraged to discover
that the solution quality is also only a function of resistance ratios,
independent of the absolute resistance values. Consequently, the
substrate is expected to be highly insensitive to process variation.
However, resistance compensation techniques are still needed to
counter the other sources of variations such as parasitic resistance.

4.3.2 Resistance Tuning
The fact that all the resistances in the circuit are realized by mem-
ristors makes it possible to conduct post-fabrication fine-grained
resistance tuning [21]. This is especially useful to minimize the
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Figure 9: Negative resistor and the resistance tuning circuit.
influence of parasitic resistance. We outline the tuning process as
follows.

To begin with, we configure the substrate to implement the
tuning circuit shown in Figure 9b, which is a simple circuit that
enforces Vx = −Vx− . For each of the tuning circuit, we first
set Vx = 0 and modulate R3 until Vx− = 0. This step ensures
1
R3

= 1
r1

+ 1
r2

. We then set Vx = 1V , and collectively change
the values of r1 and r2 until Vx− = −1V . These two steps
can be iterated for a few times for better tuning precision. We
note that in principle the tuning process has to be done only once
right after fabrication, thus no performance overhead is incurred
afterwards. However, since the memristance may slowly drift over
a long period of time, the tuning process can be repeated based on
the endurance of the memristors.

5. Performance Evaluation
We construct a 1000 × 1000 substrate in circuit-level netlist and
simulate the substrate in SPICE [25]. The detailed parameters used
in the simulation are listed in Table 1. The parameters for mem-
ristors and op-amps are set to typical values from recent litera-
ture [3, 9]. We will first evaluate the execution time for various
benchmarks, then estimate the power consumption of the substrate
using an analytical method.

Table 1: Design parameters for the max-flow computing substrate.

Memristor LRS resistance (kΩ) 10
Memristor HRS resistance (kΩ) 1000
Objective function voltage Vflow (V ) 3
Open loop gain of op-amp 1× 104

Gain-bandwidth product of op-amp (GHz) 10 to 50
Number of columns in the crossbar 1000
Number of rows in the crossbar 1000
Number of voltage levels 20

5.1 Convergence Time
The convergence time of the substrate is measured as the time in-
terval between the rising edge of Vflow and the timestamp when
the flow value is within 0.1% of the final value. To model the effect
of parasitic capacitances, we add a parasitic capacitance of 20fF
to each circuit net. We compare the convergence time against the
execution time of the widely used push-relabel algorithm running
on a server with 3GHz Intel Xeon processor and 16GB of RAM.
The push-relabel algorithm is compiled using GCC 4.4.7 with -O3
optimization option. When measuring execution time on CPU, we
exclude the time taken to read input file and the time taken to gener-
ate internal data structure for fair comparison. We use R-MAT syn-
thetic graph generator [5] to generate both dense (|E| ∝ |V |2) and
sparse (|E| ∝ |V |) graphs. The number of nodes in the generated
graph ranges from 200 to 1000, and the number of edges ranges
from 500 to 8000. We plot the convergence time of the substrate
and the execution time of the push-relabel algorithm in Figure 10.
Using op-amps with 10G gain-bandwidth product (GBW), our sub-
strate achieves a range of speedups between 150X and 1500X
compared to the software implementation. If we further increase
the GBW to 50G, we can achieve an additional 10X speedup. Such
dramatic speedup is not too surprising as the circuit operates vastly
different and more efficient than the CPU — instead of sequentially
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Figure 10: Convergence time of synthetic benchmarks.

executing millions of instructions, the circuit converges to the opti-
mal solution in a massively concurrent fashion, with physics being
the driving force, e.g., pulling up and pulling down of the node volt-
ages. We also plot the relative error of the circuit solution compared
to the optimal solution in Figure 10. The deviations from the opti-
mal solutions are due to the quantized voltage levels and non-ideal
circuit components. We can observe that in all cases the relative er-
ror is within 8%, with an average relative error of 3.7% for dense
graphs and 5.4% relative error for sparse graphs.

5.2 Analysis of Power and Energy Consumption
We analytically model the power consumption of the substrate with
the goal of showing the general trend of power consumption as a
function of circuit size. The model provides insights on how a given
power budget impacts the overall design. The majority of power is
consumed by op-amps and resistors. For resistors, we observe that
it is possible to proportionally scale up the resistor values without
influencing the correctness of the solution (Section 4.3.1). Scal-
ing up the resistance reduces the average current through the re-
sistors, thus reducing the power consumption of the resistors. Con-
sequently, the op-amps are the major source of power consump-
tion. According to the circuit structure, one op-amp is needed for
each edge that is present in the graph.4 Additionally, one op-amp
is needed for each node to enforce flow conservation constraint.
Thus the power consumption for solving a graph of |V | nodes and
|E| edges is roughly (|E|+ |V |)Pamp, where Pamp is the average
power consumption of an op-amp.

The maximum graph size that a substrate can support is lim-
ited by the power budget. Given a power budget of Ptot and as-
suming |V | � |E|, then the the substrate can support roughly up
to Ptot/Pamp number of edges. Assuming a 1V supply voltage
and an average current of 500µA for the op-amp, which is typical

4 Note that if an edge is not present in the graph, the corresponding op-amp
can be power gated, thus consuming no power.



for the 32nm technology node, Pamp evaluates to 500µW. Given a
power budget of Ptot = 5W, which is typical for an embedded sys-
tem, we can accommodate up to 104 active edges on the substrate.
Increasing the power budget to Ptot = 150W, a typical value for
high-end servers, the number of active edges that the substrate can
support boosts to 3× 105. This estimation shows that the substrate
is indeed promising in solving large-scale max-flow problems. Al-
though in this case power consumption of the substrate is compara-
ble to CPUs, the energy efficiency is drastically higher because our
substrate is around 150X to 1500X faster than the CPUs.

6. Related Work
There has been a large body of work seeking to break the limit
of the traditional von Neumann architecture and to achieve higher
performance and efficiency. Silicon implementation of artificial
neural network is one of the most well-known efforts in this
field. Recently, a digital neuromorphic chip with one million spik-
ing neurons was built with a power consumption of less than
70mW [24]. Analog implementation of the neuron network is also
studied to achieve speedup and power reduction for specific appli-
cations [1]. Novel devices such as memristors are utilized to con-
struct unconventional computing substrates. Memristor-based sub-
strates are demonstrated to solve maze [26], conduct matrix mul-
tiplication [17], as well as general approximate computation [20].
A generalized concept of universal memcomputing machine is also
proposed as an alternative to the von Neumann architecture [8].

In an effort to achieve reconfigurability in analog circuit, field-
programmable analog arrays (FPAAs) integrate dedicated analog
components with floating-gate transistors and programmable resis-
tor/capacitor networks, enabling reconfigurable computing in the
analog domain [2]. More relevant to our work, Vichik and Borrelli
design an analog circuit to solve linear and quadratic programming
problem, where unknown variables are directly modeled by node
voltages and each constraint is specified by a dedicated circuit com-
ponent [30]. The node voltages representing unknown variables
are driven towards their optimal value subjected to the circuit con-
straints. However, their approach is problem specific, i.e., different
instances of the analog circuit need to be built for solving different
linear or quadratic programs. The structure of circuit components
in our paper is inspired from their work, but tailored to exploit the
specific properties of max-flow problems.

Although an ASIC or FPGA implementation of max-flow accel-
erator can improve performance and efficiency on a pure software
execution, we note that in practice the demonstrated performance
benefit is typically a moderate 3-5X speedup over CPUs using an
FPGA-based accelerator [18]. In fact, it has been shown that the
max-flow problem is inherently hard to parallelize [12], implying
that ASIC or FPGA based hardware acceleration can only achieve
limited performance improvements. This motivates us to investi-
gate more disruptive approaches in this research.

7. Conclusions and Future Work
In this paper, we propose a reconfigurable analog substrate that
enables fast computation of max-flow on directed graphs. Our
approach maps graph topology to on/off states of the crossbar
switches, and obtain the solution of max-flow problem using
steady-state voltages in the circuit. Performance evaluation demon-
strates promising results in speed and energy consumption com-
pared to digital computers. Future directions include investigating
the asymptotic time complexity behavior by analyzing the transient
response of the circuit. We also plan to study techniques to handle
even larger graph using graph decomposition [28].
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