
DNN Acceleration on FPGAs

ECE 5997
Hardware Accelerator Design & Automation

Fall 2021

▸ DNNs require enormous amount of compute
– For example, ResNet50 (70 layers) performs 7.7 billion operations

required to classify one image

1

Modern DNNs are Computationally Expensive

X. Xu, Y. Ding, S. X. Hu, M. Niemier, J. Cong, Y. Hu, and Y. Shi. Scaling for Edge Inference of Neural Networks. Nature Electronics, vol 1, Apr 2018.

© 2018 Macmillan Publishers Limited, part of Springer Nature. All rights reserved. © 2018 Macmillan Publishers Limited, part of Springer Nature. All rights reserved.

PERSPECTIVE NATURE ELECTRONICS

the interconnect. Neurocube44 stacked the hybrid memory cube
die on a single-instruction multiple-data processor, while TETRIS45
combined a hybrid memory cube with a spatial architecture. Unlike
general DNN accelerators, near-data processing achieves optimal
efficiency by using more area for computing. In order to achieve
higher efficiency, some works have even moved the DRAM on
chip. DaDianNao23 adopted embedded DRAM for high-density
on-chip memory, which achieves a 150-fold reduction in energy at
the cost of larger chip size. There are also some works that moved
computing units to sensors, thereby further reducing the cost of
memory access. ShiDiannao26 put vision processing in the sensor
with no DRAM, yielding a 63-fold improvement in energy effi-
ciency. RedEye46 even omitted analogue-to-digital conversion and
performed DNN computation in the analogue domain at the sensor.

Non-von Neumann architectures have also been explored to
reduce computation and memory consumption. One such approach
adopts non-volatile resistive memories as programmable resis-
tive elements. Because computation is performed in the analogue
domain, it can be extremely fast with ReRAM arrays47. The approach
also brings high density and high energy efficiency as computation
and memory are packed in the same chip area, thereby involving
minimal data movement. ISAAC48 adopted multicycle approach to
perform high-precision calculations with limited memory using

25.1 million memristors. PRIME49 employed a large memristor
array for multi-level computation. Jain et al.50 and Wang et al.51
proposed the use of spin-transfer torque magnetic RAM for
DNN computation.

Recently, representative array-level demonstrations have been
reported. These include IBM’s 500 × 661 phase change mem-
ory array for handwritten-digit recognition using the Modified
National Institute of Standards and Technology (MNIST) data-
base52, Tsinghua’s 128 × 8 analogue resistive RAM array for face rec-
ognition53, UCSB’s 12 × 12 crossbar array for pattern recognition54,
and UCSB’s floating-gate array for MNIST image recognition55.
Non-von Neumann architectures with memristors have several
drawbacks: a large analogue-to-digital/digital-to-analogue conver-
sion overhead, limited size of the memristor array, and energy and
time overheads for memristor writing. It was recently shown that
the analogue-to-digital conversion overhead can be eliminated by
training the networks in the analogue domain54, and memristor
writing can also be mitigated56. Although non-von Neumann archi-
tectures with non-volatile resistive memories have considerable
potential in both performance and energy efficiency, a number of
requirements are yet to be met: special materials and device engi-
neering to support the requirements of synaptic devices, increased
array size, DNN mapping and EDA tools, and large-scale prototype

N
um

be
r o

f o
pe

ra
tio

ns
 (×

10
9)

10

20

5

1

50

20% 10% 4%
Top-five error

AlexNet
(2012)

OverFeat
(2013)

GoogLeNet
(2014)

VGG-16

VGG-19
(2014)

Inception-v1

Inception-v2

Inception-v3

Inception-v4
(2016)

MobileNet
ShuffleNet

Xception

ResNeXt-101 DPN-131

PolyNet

NASNet-A(N=7)

ResNet110

ResNet152
(2015)

ResNet50

NASNet-A(N=5)

NASNet-A(N=4)

NASNet-A(N=7)

2011

Cambricon

DaDianNao

Diannao

NeuFlow

ShiDianNao

Arria II EP2AGZ350
Strati IV EP4SGX230

Stratix 10 GX 2800
Arria V GX660

Year

20

100

200

50

10

500

5

1,000

P
er

fo
rm

an
ce

 d
en

si
ty

(g
ig

ao
ps

 s
–1

 m
m

–2
)

PD of GPUs PD of ASICs PD of FPGAs

Moore’s law trend for
performance according to ref. 35

Moore’s law end

GTX 690 GTX Titan

GTX Titan X

GTX 1080

P100 V100

Eyeriss

TPU

EIE

Park
Moves

Myriad2

Arria V5AGZE7

20172012 2013 2014 2015 2016

65 nm 45 nm 40 nm 28 nm 16 nm 12 nm

DNNs in academia without
structural optimization

DNNs in academia with
structural optimization

GTX Titan Z

a

b

GTX 1080 Ti

Fig. 3 | Gap between required number of operations and performance density. a, Number of operations versus top-five error rate for leading DNN
designs from ImageNet classification competition. b, Performance density (PD) of leading GPU, ASIC and FPGA platforms. To catch up with the required
number of operations, simply increasing the chip area is not feasible. Only the leading DNNs are labelled with a year. The y axis is in log scale. Data taken
from refs 1–31,119,120.

NATURE ELECTRONICS | VOL 1 | APRIL 2018 | 216–222 | www.nature.com/natureelectronics218

Compute Density

2

DNNs are Moving to Dedicated Hardware

Blue Chips
Apple
Google
Intel
Microsoft
…

Startups
Cambricon
Cerebras
Deephi (à Xilinx)
Graphcore
…

Academia
EIE/ESE [Han ISCA’16, FPGA’17]
Eyeriss [Chen ISCA’16]
FINN [Umuroglu FPGA’17]
Minerva [Reagen ISCA’16]
…

Optimizing FPGA-based Accelerator Design for
Deep Convolutional Neural Networks
Cheng Zhang1, Peng Li2, Guangyu Sun1,3, Yijin Guan1, Bingjun Xiao2,
Jason Cong2,3,1

1Center for Energy-Efficient Computing and Applications, Peking University
2Computer Science Department, University of California, Los Angeles
3PKU/UCLA Joint Research Institute in Science and Engineering
FPGA’15, Feb 2015

3

1. Analysis of the different sources of parallelism in the
convolution kernel of a CNN

2. Quantitative performance modeling of the hardware
design space using the Roofline method

3. Design and implementation of a CNN accelerator for
FPGA using Vivado HLS, evaluated on AlexNet

4

Main Contributions

▸ An output pixel is connected to its neighboring region on
each input feature map

▸ All pixels on an output feature map use the same filter
weights

5

Convolutional Layer

Filters

Output Feature MapsInput Feature Maps

I O
C

R

K

▸ Four main sources of parallelism
1. Across input feature maps

6

Parallelism in the Convolutional Layer

Filters

Output Feature MapsInput Feature Maps

I O
C

R

K

▸ Four main sources of parallelism
1. Across input feature maps
2. Across output feature maps

7

Parallelism in the Convolutional Layer

Filters

Output Feature MapsInput Feature Maps

I O
C

R

K

▸ Four main sources of parallelism
1. Across input feature maps
2. Across output feature maps
3. Across different output pixels (i.e. filter positions)

8

Parallelism in the Convolutional Layer

Filters

Output Feature MapsInput Feature Maps

I O
C

R

K

▸ Four main sources of parallelism
1. Across input feature maps
2. Across output feature maps
3. Across different output pixels (i.e. filter positions)
4. Across filter pixels

9

Parallelism in the Convolutional Layer

Filters

Output Feature MapsInput Feature Maps

I O
C

R

K

10

Parallelism in the Code

1 for (row=0; row<R; row++) {
2 for (col=0; col<C; col++) {
3 for (to=0; to<O; to++) {
4 for (ti=0; ti<I; ti++) {
5 for (ki=0; ki<K; ki++) {
6 for (kj=0; kj<K; kj++) {

output_fm[to][row][col] +=
weights[to][ti][ki][kj]*input_fm[ti][S*row+ki][S*col+kj];

}}}}}}

Loop over output pixels
Loop over output feature maps
Loop over input feature maps
Loop over filter pixels

Filters

Output Feature MapsInput Feature Maps

I O
C

R

K

S is the stride

11

Challenges for FPGA

...
Computation Resource

PE-1 PE-2 PE-n

Inter-
connect

buffer1
On-chip memory

buffer2

External Memory

Off-chip Bus

Limited on-chip storage

Limited off-chip bandwidth

Limited compute and routing
resources

▸ We can’t just unroll all the loops due to limited FPGA resources
▸ Must choose the right code transformations to exploit the parallelism

in a resource efficient way

Technique: loop unrolling,
pipelining, interchange

Technique: loop tiling

Technique: data reuse,
compute-memory balance

12

Loop Tiling

1 for (row=0; row<R; row++) {
2 for (col=0; col<C; col++) {
3 for (to=0; to<O; to++) {
4 for (ti=0; ti<I; ti++) {
5 for (ki=0; ki<K; ki++) {
6 for (kj=0; kj<K; kj++) {

output_fm[to][row][col] +=
weights[to][ti][ki][kj]*input_fm[ti][S*row+ki][S*col+kj];

}}}}}}

Loop over pixels in an output map

Filters

Output Feature MapsInput Feature Maps

I O
C

R

K

1 for (row=0; row<R; row+=Tr) {
2 for (col=0; col<C; col+=Tc) {
3 for (to=0; to<O; to++) {
4 for (ti=0; ti<I; ti++) {
5 for (trr=row; trr<min(row+Tr, R); trr++) {
6 for (tcc=col; tcc<min(col+Tc, C); tcc++) {
7 for (ki=0; ki<K; ki++) {
8 for (kj=0; kj<K; kj++) {

output_fm[to][trr][tcc] +=
weights[to][ti][ki][kj]*input_fm[ti][S*trr+ki][S*tcc+kj];

}}}}}}
}}}} 13

Loop Tiling

Filters

Output Feature MapsInput Feature Maps

I O
C

R

K

Loops over pixels
in each tile

Tc

Tr

Loop over different tiles

Offloading just the inner loops requires only a small
portion of the data to be stored on FPGA chip

1 for(row=0; row<R; row+=Tr) {
2 for(col=0; col<C; col+=Tc) {
3 for(to=0; to<M; to+=Tm) {
4 for(ti=0; ti<N; ti+=Tn) {

// write output feature map
// write input feature map + filters

5 for(trr=row; trr<min(row+Tr, R); trr++) {
6 for(tcc=col; tcc<min(tcc+Tc, C); tcc++) {
7 for(too=to; too<min(to+Tn, M); too++) {
8 for(tii=ti; tii<(ti+Tn, N); tii++) {
9 for(i=0; i<K; i++) {
10 for(j=0; j<K; j++) {

output_fm[to][row][col] +=
weights[to][ti][i][j]*input_fm[ti][S*row+i][S*col+j];

}}}}}}

// read output feature map
}}}}

14

Code with Loop Tiling

Loop over input feature maps

1 for (row=0; row<R; row+=Tr) {
2 for (col=0; col<C; col+=Tc) {
3 for (to=0; to<O; to+=Tm) {

// software: write output feature map
4 for (ti=0; ti<I; ti+=Tn) {

// software: write input feature map + filters

5 for (trr=row; trr<min(row+Tr, R); trr++) {
6 for (tcc=col; tcc<min(col+Tc, C); tcc++) {
7 for (too=to; too<min(to+To, O); too++) {
8 for (tii=ti; tii<(ti+Ti, I); tii++) {
9 for (ki=0; ki<K; ki++) {
10 for (kj=0; kj<K; kj++) {

output_fm[too][trr][tcc] +=
weights[too][tii][ki][kj]*input_fm[tii][S*trr+ki][S*tcc+kj];

}}}}}}
}
// software: read output feature map

}}}

CPU Portion

FPGA Portion

Maximize
memory reuse

Maximize
computational
performance

5 for (trr=row; trr<min(row+Tr, R); trr++) {
6 for (tcc=col; tcc<min(col+Tc, C); tcc++) {
7 for (too=to; too<min(to+To, O); too++) {
8 for (tii=ti; tii<(ti+Ti, I); tii++) {
9 for (ki=0; ki<K; ki++) {
10 for (kj=0; kj<K; kj++) {

output_fm[too][trr][tcc] +=
weights[too][tii][ki][kj]*input_fm[tii][S*trr+ki][S*tcc+kj];

}}}}}}

15

Optimizing for On-Chip Performance

9 for (ki=0; ki<K; ki++) {
10 for (kj=0; kj<K; kj++) {
5 for (trr=row; trr<min(row+Tr, R); trr++) {
6 for (tcc=col; tcc<min(col+Tc, C); tcc++) {
7 for (too=to; too<min(to+To, O); too++) {
8 for (tii=ti; tii<(ti+Ti, I); tii++) {

output_fm[too][trr][tcc] +=
weights[too][tii][ki][kj]*input_fm[tii][S*trr+ki][S*tcc+kj];

}}}}}}

Reorder these two loops to the top level

16

Optimizing for On-Chip Performance

9 for(i=0; i<K; i++) {
10 for(j=0; j<K; j++) {
5 for(trr=row; trr<min(row+Tr, R); trr++) {
6 for(tcc=col; tcc<min(tcc+Tc, C); tcc++) {
7 for(too=to; too<min(to+Tm, M); too++) {
8 for(tii=ti; tii<(ti+Tn, N); tii++) {

output_fm[too][trr][tcc] +=
weights[too][tii][i][j]*input_fm[tii][S*trr+i][S*tcc+j];

}}}}}}

Reorder these two loops to the top level9 for (ki=0; ki<K; ki++) {
10 for (kj=0; kj<K; kj++) {
5 for (trr=row; trr<min(row+Tr, R); trr++) {
6 for (tcc=col; tcc<min(col+Tc, C); tcc++) {

#pragma HLS pipeline
7 for (too=to; too<min(to+To, O); too++) {
8 for (tii=ti; tii<(ti+Ti, I); tii++) {

output_fm[too][trr][tcc] +=
weights[too][tii][ki][kj]*input_fm[tii][S*trr+ki][S*tcc+kj];

}}}}}}

17

Optimizing for On-Chip Performance

9 for(i=0; i<K; i++) {
10 for(j=0; j<K; j++) {
5 for(trr=row; trr<min(row+Tr, R); trr++) {
6 for(tcc=col; tcc<min(tcc+Tc, C); tcc++) {
7 for(too=to; too<min(to+Tm, M); too++) {
8 for(tii=ti; tii<(ti+Tn, N); tii++) {

output_fm[too][trr][tcc] +=
weights[too][tii][i][j]*input_fm[tii][S*trr+i][S*tcc+j];

}}}}}}

Reorder these two loops to the top level9 for(i=0; i<K; i++) {
10 for(j=0; j<K; j++) {
5 for(trr=row; trr<min(row+Tr, R); trr++) {
6 for(tcc=col; tcc<min(tcc+Tc, C); tcc++) {

#pragma HLS pipeline
7 for(too=to; too<min(to+Tm, M); too++) {
8 for(tii=ti; tii<(ti+Tn, N); tii++) {

output_fm[too][trr][tcc] +=
weights[too][tii][i][j]*input_fm[tii][S*trr+i][S*tcc+j];

}}}}}}

9 for (ki=0; ki<K; ki++) {
10 for (kj=0; kj<K; kj++) {
5 for (trr=row; trr<min(row+Tr, R); trr++) {
6 for (tcc=col; tcc<min(col+Tc, C); tcc++) {

#pragma HLS pipeline
7 for (too=to; too<min(to+To, O); too++) {

#pragma HLS unroll
8 for (tii=ti; tii<(ti+Ti, I); tii++) {

output_fm[too][trr][tcc] +=
weights[too][tii][ki][kj]*input_fm[tii][S*trr+ki][S*tcc+kj];

}}}}}}

18

Optimizing for On-Chip Performance

9 for(i=0; i<K; i++) {
10 for(j=0; j<K; j++) {
5 for(trr=row; trr<min(row+Tr, R); trr++) {
6 for(tcc=col; tcc<min(tcc+Tc, C); tcc++) {
7 for(too=to; too<min(to+Tm, M); too++) {
8 for(tii=ti; tii<(ti+Tn, N); tii++) {

output_fm[too][trr][tcc] +=
weights[too][tii][i][j]*input_fm[tii][S*trr+i][S*tcc+j];

}}}}}}

Reorder these two loops to the top level9 for(i=0; i<K; i++) {
10 for(j=0; j<K; j++) {
5 for(trr=row; trr<min(row+Tr, R); trr++) {
6 for(tcc=col; tcc<min(tcc+Tc, C); tcc++) {

#pragma HLS pipeline
7 for(too=to; too<min(to+Tm, M); too++) {
8 for(tii=ti; tii<(ti+Tn, N); tii++) {

output_fm[too][trr][tcc] +=
weights[too][tii][i][j]*input_fm[tii][S*trr+i][S*tcc+j];

}}}}}}

9 for(i=0; i<K; i++) {
10 for(j=0; j<K; j++) {
5 for(trr=row; trr<min(row+Tr, R); trr++) {
6 for(tcc=col; tcc<min(tcc+Tc, C); tcc++) {

#pragma HLS pipeline
7 for(too=to; too<min(to+Tm, M); too++) {

#pragma HLS unroll
8 for(tii=ti; tii<(ti+Tn, N); tii++) {

output_fm[too][trr][tcc] +=
weights[too][tii][i][j]*input_fm[ti][S*trr+i][S*tcc+j];

}}}}}}

9 for (ki=0; ki<K; ki++) {
10 for (kj=0; kj<K; kj++) {
5 for (trr=row; trr<min(row+Tr, R); trr++) {
6 for (tcc=col; tcc<min(col+Tc, C); tcc++) {

#pragma HLS pipeline
7 for (too=to; too<min(to+To, O); too++) {

#pragma HLS unroll
8 for (tii=ti; tii<(ti+Ti, I); tii++) {

#pragma HLS unroll
output_fm[too][trr][tcc] +=
weights[too][tii][ki][kj]*input_fm[tii][S*trr+ki][S*tcc+kj];

}}}}}}

19

Optimizing for On-Chip Performance

Number of cycles to execute the above loop nest
≈ "×"×$%×$& + (≈ $%×$&×"!

(is the pipeline depth (# of pipeline stages, II=1)

9 for(i=0; i<K; i++) {
10 for(j=0; j<K; j++) {
5 for(trr=row; trr<min(row+Tr, R); trr++) {
6 for(tcc=col; tcc<min(tcc+Tc, C); tcc++) {
7 for(too=to; too<min(to+Tm, M); too++) {
8 for(tii=ti; tii<(ti+Tn, N); tii++) {

output_fm[too][trr][tcc] +=
weights[too][tii][i][j]*input_fm[tii][S*trr+i][S*tcc+j];

}}}}}}

Reorder these two loops to the top level9 for(i=0; i<K; i++) {
10 for(j=0; j<K; j++) {
5 for(trr=row; trr<min(row+Tr, R); trr++) {
6 for(tcc=col; tcc<min(tcc+Tc, C); tcc++) {

#pragma HLS pipeline
7 for(too=to; too<min(to+Tm, M); too++) {
8 for(tii=ti; tii<(ti+Tn, N); tii++) {

output_fm[too][trr][tcc] +=
weights[too][tii][i][j]*input_fm[tii][S*trr+i][S*tcc+j];

}}}}}}

9 for(i=0; i<K; i++) {
10 for(j=0; j<K; j++) {
5 for(trr=row; trr<min(row+Tr, R); trr++) {
6 for(tcc=col; tcc<min(tcc+Tc, C); tcc++) {

#pragma HLS pipeline
7 for(too=to; too<min(to+Tm, M); too++) {

#pragma HLS unroll
8 for(tii=ti; tii<(ti+Tn, N); tii++) {

output_fm[too][trr][tcc] +=
weights[too][tii][i][j]*input_fm[ti][S*trr+i][S*tcc+j];

}}}}}}

9 for (ki=0; ki<K; ki++) {
10 for (kj=0; kj<K; kj++) {
5 for (trr=row; trr<min(row+Tr, R); trr++) {
6 for (tcc=col; tcc<min(col+Tc, C); tcc++) {

#pragma HLS pipeline
7 for (too=to; too<min(to+To, O); too++) {

#pragma HLS unroll
8 for (tii=ti; tii<(ti+Ti, I); tii++) {

#pragma HLS unroll
output_fm[too][trr][tcc] +=
weights[too][tii][ki][kj]*input_fm[tii][S*trr+ki][S*tcc+kj];

}}}}}}

20

Optimizing for On-Chip Performance

Generated Hardware
Performance and size of
each PE determined by tile
factors Ti and To
Number of data transfers
determined by Tr and Tc

To

Ti

▸ Challenge: Number of available optimizations present a
huge space of possible designs
– What is the optimal loop order?
– What tile size to use for each loop?

▸ Implementing and testing each design by hand will be
slow and error-prone
– Some designs will exceed the on-chip compute/memory capacity

▸ Solution: Performance modeling + automated design
space exploration

21

Design Space Complexity

▸We calculate the following design metrics:
– Total number of operations (FLOP)

• Depends on the CNN model parameters
– Total external memory access (Byte)

• Depends on the CNN weight and activation size
– Total execution time (Sec)

• Depends on the hardware architecture (e.g., tile factors To
and Ti)

• Ignore resource constrains for now

22

Performance Modeling

▸ Total operations FLOPS≈ 2×#×$×%×&×'!

▸ Execution time = Number of Cycles×Clock Period
– Number of cycles ≈ !

"# ×
$
"% ×

&
"' ×

(
") × #$×#%×&*

≈
'
#(

×
)
#*

×+×,×&*

▸ External memory accesses =)* × +* +)-×+- +).×+.
– Size of input fmap buffer: Bi = #*×(Tr+K−1)(Tc+K−1) with stride=1
– Size of output fmap buffer: Bo = #(×Tr ×Tc
– Size of weight buffer: Bw = #(×Tr ×&*

– External access times: ao = !
"# ×

&
"' ×

(
") , ai = aw =

$
"% ×/(

23

Performance Modeling

24

Performance Modeling

...
Computation Resource

PE-1 PE-2 PE-n

Inter-
connect

buffer1
On-chip memory

buffer2

External Memory

Off-chip Bus

Computational Throughput

Required Bandwidth

Computation To Communication
(CTC) Ratio

GFLOP/Sec

FLOP / (Byte Accessed)

GByte/Sec

=
Total number of operations

Total execution time

=
Total number of operations
Total external memory access

!"#$%
&%' = !)*+,/&%'

)*+,/("#$% /''%00%1)

=
Computational Throughput

CTC Ratio

25

Roofline Method [1]
Co

m
pu

ta
tio

na
l T

hr
ou

gh
pu

t

Computation To Communication (CTC) Ratio

Required
Bandwidth

GFLOP/Sec

FLOP /
Byte

Gbyte/Sec

Design

[1] S. Williams, A. Waterman, and D. Patterson, Roofline: an insightful visual performance
model for multicore architectures, CACM, 2009.

26

Roofline Method [1]
Co

m
pu

ta
tio

na
l T

hr
ou

gh
pu

t

Computation To Communication (CTC) Ratio

FLOP /
Byte

Bandwidth Roof
(Device memory

bandwidth)Computational Roof
(Max device throughput)

“The Roofline”

Exceeds On-Chip Resources

Bandwidth-Bottlenecked

Theoretical
Throughput

Attainable
Throughput

GFLOP/Sec

[1] S. Williams, A. Waterman, and D. Patterson, Roofline: an insightful visual performance
model for multicore architectures, CACM, 2009.

0

20

40

60

80

100

120

0 10 20 30 40 50 60

27

Design Space Exploration with Roofline

Computational Roof
B

Bandwidth Roof

A

Co
m

pu
ta

tio
na

l T
hr

ou
gh

pu
t

Computation To Communication (CTC) Ratio

▸ All values in
floating-point

▸ Only handles
Conv layers, not
dense or pooling

▸ Virtex7-485t
▸ 100MHz
▸ 61.6 GOPS
▸ 18.6 W power

28

Hardware Implementation

29

Experimental Results

0

10

20

30

40

50

60

70

80

90

100

1 thread -O3 16 threads -O3 FPGA

Energy

0

2

4

6

8

10

12

14

16

18

20

1 thread -O3 16 threads -O3 FPGA

Speedup

90x

20x

18x

5x

CPU Xeon E5-2430
(32nm) 16 cores 2.2 GHz gcc 4.7.2 -O3

OpenMP 3.0

FPGA Virtex7-485t (28nm) 448 PEs 100MHz Vivado 2013.4
Vivado HLS 2013.4

An OpenCL Deep Learning Accelerator on Arria 10
Utku Aydonat, Shane O’Connell, Davor Capalija, Andrew C. Ling,
Gordon R. Chiu
Intel Corporation (formerly Altera)
Toronto, Canada
FPGA’17, Feb 2017

30

▸Reducing external memory bandwidth usage by:
1. Storing all intermediate feature maps in on-chip

buffers
2. Image batching for dense layers

▸Optimizing the convolution arithmetic using the
Winograd Transformation

▸A compute-bound implementation on Arria 10
whose energy efficiency matches the Titan X
GPU

31

Main Contributions

▸ The FPGA’15 paper used C++ with
Xilinx Vivado HLS to generate RTL

▸ Sequential programming model
using loops

▸ Inter-loop-iteration parallelism is
implicit (requires unrolling)

32

OpenCL Programming

void sum (float* a,
float* b,
float* c)

{
for (i = 0; i < 100; i++)

c[i] = a[i] * b[i];
}

kernel
void sum (global float* a,

global float* b,
global float* c)

{
int gid = get_global_id(0);

c[gid] = a[gid] * b[gid];
}

OpenCLConventional C++

▸ This work used OpenCL and Intel
FPGA SDK to generate RTL

▸ Parallel programming model using
multithreaded kernels; where inter-
iteration parallelism is explicit – each
thread obtains an independent ID

▸ Previous papers stored layer
data off-chip

▸ Insufficient on-chip storage
to hold all data for a layer
(input+output)

▸ This work uses Arria 10
FPGA device

▸ Enough storage to keep data
on-chip (for conv layers in
AlexNet)

▸ Use double-buffering to
store input+output

33

Data Placement

Off-Chip Storage

FPGA
On-Chip
Storage

PE

Layer Data
1

Off-Chip Storage FPGA

On-Chip Storage

PE

3 2 1

1

2

2

3

3

3 2 1

▸ On FPGA, DSP blocks (used for fixed-point multiplies) are typically
the bottlenecked resource

▸ Consider a 1-dimensional convolution with output length 2 and filter
length 3, denoted F(2,3)

34

Arithmetic Optimizations

▸ In the 70s, Shmuel Winograd proved that F(m,r) can be computed
with a lower bound of only m+r−1 multiplies [1]

F(2,3)
6 multiplies

f0 f1 f2

i0 i1 i2 i3
∗

o0 o1

f0 f1 f2

i0 i1 i2 i1 i2 i3

f0 f1 f2
⨯ ⨯ ⨯ ⨯ ⨯ ⨯

o0 o1

[1] S. Winograd, Arithmetic Complexity of Computations, SIAM, Jan 1, 1980

35

Winograd Transform

(+
(,

=
*+ *, **
*, ** *-

F+
F,
F*

f0 f1 f2

i0 i1 i2 i3
∗

o0 o1

=
*+F+ + *,F, + **F,
*,F+ + **F, + *-F*

(+
(,

=
H+ + H, + H*
H, − H* − H-

"! = $! − $"
"" = $" − $#"# = $# + $"
"$ = $# − $$

'! = (! '$ = ("
'# =

(! + (# + ("
2 '" =

(! − (# + ("
2

Each -" = /"0"

6 unique multiplies

Naïve Approach

Winograd Approach

1 multiply per yi
4 unique multiplies

di and gi are
linearly mapped

from ii and fi

▸ Massive increase in performance due to Winograd Transform and
storing all features on-chip

▸ Among the first to break the TeraOP/s barrier on FPGA

36

Comparison to Previous Papers

Zhang
2015

Qiu
2016

This
Paper

Platform Virtex7
VX485t

Zynq
XC7Z045

Arria 10
1150

Clock (MHz) 100 150 303
Quantization 32-bit

float
16-bit
fixed

16-bit
fixed

Performance (GOP/s) 61.6 137.0 1382
Power (W) 18.6 9.6 45
Energy Efficiency (GOP/J) 3.3 14.2 30.7

▸ Results show FPGAs can compete with GPUs in energy efficiency
▸ Titan X numbers ignore communication overhead and use random

data instead of real images (highly optimistic)

37

Experimental Evaluation

Platform img/s Power
(W)

Energy Efficiency
(img/s/W)

Arria 10 DLA (20nm) 1020 45 22.7
Nvidia Titan X (28nm) 5120 227 22.6
Nvidia M4 (28nm) 1150 58 19.8

Benchmark app is AlexNet

Accelerating Binarized Convolutional Neural
Networks with Software-Programmable FPGAs
Ritchie Zhao1, Weinan Song2, Wentao Zhang2, Tianwei Xing3, Jeng-
Hau Lin4, Mani Srivastava3, Rajesh Gupta4, Zhiru Zhang1

1Electrical and Computer Engineering, Cornell University
2Electronics Engineering and Computer Science, Peking University
3Electrical Engineering, University of California Los Angeles
4Computer Science and Engineering, University of California San Diego
FPGA’17, Feb 2017

38

▸Hardware architects widely apply fixed-point
optimization for CNN acceleration
– Motivation: both neural nets and image/video apps

naturally tolerate small amounts of noise
– Approach: take a trained floating-point model and

apply quantization
• 16 or 8-bit fixed-point have been shown to be practical

▸Can we go even lower by training a reduced-
numerical-precision CNN from the ground up?

39

CNNs with Reduced Numerical Precision

40

Aggressively Quantized CNNs

▸ML research papers:
– BinaryConnect [NIPS] Dec 2015
– BNN [arXiv] Mar 2016
– Ternary-Net [arXiv] May 2016
– XNOR-Net [ECCV] Oct 2016
– HWGQ [CVPR] Jul 2017
– LR-Net [arXiv] Oct 2018
– Many more!

Near state-of-the-art
on MNIST, CIFAR-10
and SVHN at time of
publication

[1] Matthew Courbariaux et al. Binarized Neural Networks: Training Deep Neural Networks with Weights and Activations Constrained
to +1 or -1. arXiv:1602.02830, Feb 2016.

41

CNN vs. BNN

∗
Input Map

2.4		6.2		…
3.3		1.8

… …
Weights

0.8		0.1		
0.3		0.8

∗
Input Map

(Binary)

1			−1			…
1					1

… …
Weights
(Binary)

1		−1		
1		−1

=

Output Map

5.0		9.1		…
4.3		7.8

… …

=

J%.
(Integer)

1				−3		…
3				−7

… …

+%& =
,%& − -
." − /

0 + 1

Output Map
(Binary)

1			−1			…
1			−1	

… …

2%& = 3+1 if +%& ≥ 0
−1 otherwise

→

→
→

Batch Normalization

Binarization

Key Differences
1. Inputs are binarized (−1 or +1)
2. Weights are binarized (−1 or +1)
3. Results are binarized after

batch normalization

CNN

BNN

1. Floating point ops replaced with binary logic ops

– Encode {+1,−1} as {0,1} à multiplies become XORs
– Conv/dense layers do dot products à XOR and popcount
– Operations can map to LUT fabric as opposed to DSPs

2. Binarized weights may reduce total model size
– But note that fewer bits per weight may be offset by having

more weights

42

Advantages of BNN

b1 b2 b1	⨯	b2
+1 +1 +1
+1 −1 −1
−1 +1 −1
−1 −1 +1

b1 b2 b1	XOR b2
0 0 0
0 1 1
1 0 1
1 1 0

▸ 6 conv layers, 3 dense layers, 3 max pooling layers
▸ All conv filters are 3x3
▸ First conv layer takes in floating-point input
▸ 13.4 Mbits total model size (after hardware optimizations)

43

BNN CIFAR-10 Architecture [2]

[2] M. Courbariaux et al. Binarized Neural Networks: Training Deep Neural Networks with Weights and Activations Constrained to +1
or -1. arXiv:1602.02830, Feb 2016.

32x32
16x16

8x8
4x4

3 128
128 256

256 512
512

1024 1024

10

Number of feature maps

Feature map
dimensions

44

BNN Accelerator Design Goals

▸Target low-power embedded applications
– Design must be resource efficient to fit a small device
– Execute layers sequentially on a single module

▸Optimize for batch size of 1
– Store all feature maps on-chip

• Binarization makes feature maps smaller
– Weights are streamed from off-chip storage

▸Synthesize RTL from C++ source

45

BNN Accelerator Architecture

BitSel

fout Conv
Weights

Convolvers

Variable-width
Line Buffer

∗

BitSel ∗
+

Integer
buffer

+
Pooling,
Bnorm,
Binarize

fout output streams
Input
words

Input
words

Output
wordsfin

…

Challenges Our Solution
Many diverse sources of parallelism
(across/within images, feature maps, subword)

Highly parallel and pipelined architecture with
a parameterized number of convolvers

Design must handle various layer types with
different sized feature maps

Novel variable-width line buffer ensure
pipeline is fully utilized

Slow interface between accelerator and
general-purpose memory system

Careful memory layout and BitSel unit enable
word-by-word data processing, instead of
pixel-by-pixel

46

BNN HLS Design
logic to be fixed. Note that the VWLB used in our design dif-
fers from Figure 3 in a few details. First, we have neglected
edge padding. The actual VWLB contains two additional el-
ements per bank to hold horizontal pad bits; vertical padding
is handled by inserting lines of zeros. Second, because the
pad bits are 0 rather than +1 or -1, we must make each ele-
ment in the VWLB two bits instead of one. The conv oper-
ation is performed between the 2-bit data and 1-bit weights,
and can be implemented as sign inversion and accumulate.

Bin-FC — The binary FC unit is comparatively simple.
Each cycle we read in some number of data words and an
equal number of weight words. Because there is no edge
padding in an FC layer the computations can be truly bi-
nary. We perform a dot product between the data and weight
words by applying a bitwise XOR operation and then sum-
ming of the resulting bits with a popcount. Similar to the
Bin-Conv unit, we accumulate the sum in an integer buffer
and apply binarization after all inputs have been processed.
Note that the FC layers are typically bound by memory
bandwidth of the CPU to FPGA connection, rather than the
ability of the Bin-FC unit to parallelize the computation.

Since the FC layers have many more weights than inputs
(see Table 1), we improve throughput via weight spilling —
part of the data buffer is used to hold the weights for the FC
layers. This increases the number of weights the accelerator
can hold and reduces the number of DMA transfers required.

4. HLS Accelerator Implementation
Figure 4 shows the HLS pseudocode for the front half of
the Bin-Con unit, and demonstrates a key difference between
BNN and CNN hardware design. For a CNN the code typ-
ically loops over an fmap processing one pixel at a time;
key design decisions include loop ordering and unroll fac-
tors (see [24] for a good example). In our BNN accelera-
tor, the basic atom of processing is not a pixel but a word.
The example code is designed to sustain one word per cy-
cle throughput over the entire input fmap set. Each fmap
consists of words per fmap words (this number differs be-
tween layers). As it processes the input set, the code updates
the weights on each new fmap and accumulates the conv re-
sults in outbuf. We call BitSel and conv inside the loop to
instantiate the BitSel units and conv logic as shown in Fig-
ure 2(b). To increase the number of input streams we can tile
the loop and unroll the inner loop body.

A key design decision here is the input word size, which
controls the level of parallelism across the pixels of an fmap.
To guarantee correctness, words per fmap must be an inte-
ger greater than zero; this constrains the word size to at most
the size of the smallest input fmap (8 ⇥ 8 = 64 bits in our
case). The word size restriction is not a big limiting factor in
our design, as 64 is already a very large parallelization factor
(it means we perform 64 convolutions per cycle), and there
are other sources of parallelism to exploit in the BNN.

1 VariableLineBuffer linebuf;
2 ConvWeights wts;
3 IntegerBuffer outbuf;
4
5 for (i = 0; i < n_input_words; i++) {
6 #pragma HLS pipeline
7
8 // read input word, update linebuffer
9 WordType word = input_data[i];

10 BitSel(linebuf, word, input_width);
11
12 // update the weights each time we
13 // begin to process a new fmap
14 if (i % words_per_fmap == 0)
15 wts = weights[i / words_per_fmap];
16
17 // perform conv across linebuffer
18 for (c = 0; c < LINE_BUF_COLS; c++) {
19 #pragma HLS unroll
20 outbuf[i % words_per_fmap][c] +=
21 conv(c, linebuf, wts);
22 }
23 }

Figure 4: HLS pseudocode for part of the Bin-Conv unit
— the pseudocode implements a pipeline which reads and
performs convolution on one input word each cycle. Many
details are left out; the goal is to illustrate how our design
can be expressed in high-level code.

We choose a word size of 64 bits for the data buffers,
which is the largest possible value given the condition above.
Each data buffer A and B is sized at 2048 words, which is
just enough to store the largest set of fmaps in the BNN. The
weight buffer has a word size of 9 bits so each 3⇥3 conv
filter fits in one word. The weight buffer contains 215 words,
which is the largest power of 2 we could fit onto the board.
The buffer to store batch norm constants contains just 128
64-bit words, and is sized to accommodate the maximum
number of output fmaps we can produce in one accelerator
invocation. The integer buffer (outbuf in the example) is
sized for the largest fmap (32⇥ 32), and each element has a
width of 12 determined through range analysis.

We also explored different values for fin and fout in Bin-
Conv. It was observed that both have roughly similar effects
on execution time, but increasing fout has a more severe
effect on total area. fin controls the number of BitSels and
VWLBs while fout controls the number of pooling/batch
norm units and integer buffers. In terms of logic a BitSel
and a pooling/batch norm unit is similar, but each VWLB
contains 32 ⇥ 3 2-bit registers while each integer buffer
contains 32 ⇥ 32 12-bit registers. Thus all else being equal
it is better to increase fin. This result shows the importance
of minimizing the storage of intermediate values and only
committing binarized data to memory.

▸User writes and tests in
C++
– CPU-FPGA interface

automatically synthesized
(by Xilinx SDSoC)

– Significant reduction in
verification time
• BNN RTL takes days to simulate

HLS code for part of convolver unit
https://github.com/cornell-zhang/bnn-fpga

https://github.com/cornell-zhang/bnn-fpga

mGPU CPU GPU FPGA
Runtime per
Image (ms)

90 14.8 0.73 5.94

Speedup 1x 6x 120x 15x
Power (W) 3.6* 95 235 4.7
Image/sec/Watt 3.1 0.71 5.8 36

47

FPGA Implementation

FPGA: ZedBoard with Xilinx
Zynq-7000
mGPU: Jetson TK1 embedded
GPU board
CPU: Intel Xeon E5-2640
multicore processor
GPU: NVIDIA Tesla K40 GPU

Misc. HW Optimizations
1. Quantized the input image and

batch norm params
2. Removed additive biases
3. Simplified batch norm computation

BNN Model Test
Error

Claimed in paper [2] 11.40%
Python out-of-the-box [2] 11.58%
C++ optimized model 11.19%
Accelerator 11.19%

R. Zhao et al., Accelerating Binarized Convolutional Neural Networks with Software-Programmable FPGAs.
International Symposium on Field-Programmable Gate Arrays, Feb. 2017.

▸Recent papers on neural networks on silicon
– https://github.com/fengbintu/Neural-Networks-on-Silicon

▸Tutorial on hardware architectures for DNNs
– http://eyeriss.mit.edu/tutorial.html

▸Landscape of neural network inference accelerators
– https://nicsefc.ee.tsinghua.edu.cn/projects/neural-network-

accelerator

▸Most cited deep learning papers (since 2012)
– https://github.com/terryum/awesome-deep-learning-papers

48

Additional Useful Resources

https://github.com/fengbintu/Neural-Networks-on-Silicon
http://eyeriss.mit.edu/tutorial.html
https://nicsefc.ee.tsinghua.edu.cn/projects/neural-network-accelerator
https://github.com/terryum/awesome-deep-learning-papers

▸ This tutorial contains/adapts materials developed by
– Ritchie Zhao (PhD student at Cornell)
– Authors of the following papers

• Optimizing FPGA-based Accelerator Design for Deep Convolutional
Neural Networks (FPGA’15, PKU-UCLA)

• An OpenCL Deep Learning Accelerator on Arria 10 (FPGA’17, Intel)

49

Acknowledgements

