
Pipelining

ECE 5997
Hardware Accelerator Design & Automation

Fall 2021

▸DNN acceleration tutorial cancelled
– Slides will be posted on Tuesday

1

Announcements

2

Digit Recognition Lab

MNIST dataset: http://yann.lecun.com/exdb/mnist/

▸ Use a simple machine learning algorithm to recognize
handwritten digits
– 2000 training instances per digit
– Each training/test instance is a 7x7 bitmap after downsampling

3

K-Nearest-Neighbor (KNN) Implementation

Main compute loop
(10 cycles per innermost loop)

~200K cycles by default without optimizations

4

10x Speedup through Parallelization

Unroll inner loop completely

Partition training
set into 10 banks

~20K cycles after parallelization

5

Further Speedup through Pipelining

Unroll inner loop completely

Partition training
set into 10 banks

~2K cycles after pipelining

Pipeline outer loop

▸Restrictions of Pipeline Throughput
– Types of recurrences

▸Modulo scheduling concepts
– Extending SDC formulation for pipelining

▸Case studies on HLS pipelining

6

Outline

▸ Resource limitations
– Limited compute resources
– Limited Memory resources (esp. memory port limitations)
– Restricted I/O bandwidth
– Low throughput of subcomponent
…

▸ Recurrences
– Also known as feedbacks, carried dependences
– Fundamental limits of the throughput of a pipeline

7

Recap: Restrictions of Pipeline Throughput

Type of Recurrences

▸ Types of dependences
– True dependences, anti-dependences, output dependences
– Intra-iteration vs. inter-iteration dependences

▸ Recurrence – if one iteration has dependence on the
same operation in a previous iteration
– Direct or indirect
– Data or control dependence

▸ Distance – number of iterations separating the two
dependent operations
(0 = same iteration or intra-iteration)

8

▸ True dependence
– Aka flow or RAW (Read After Write) dependence
– S1 àt S2

• Statement S1 precedes statement S2 in the program and
computes a value that S2 uses

Example:

True Dependences

Inter-iteration true dependence
on A (distance = 1)

9

for (i = 0; i < N; i++)
A[i] &= A[i-1] - 1;

for (… i++) {
A[i-1] = b – a;
B[i] = A[i] + 1

}

Anti-Dependences

▸ Anti-dependence
– Aka WAR (Write After Read) dependence
– S1 àa S2

• S1 precedes S2 and may read from a memory location that is later
updated by S2

– Renaming (e.g., SSA) can resolve many of the WAR dependences

Example:

10

Inter-iteration anti-dependence
on A (distance = 1)

Inter-iteration output
dependence on B
(distance = 2)

Output Dependences

▸ Output dependence
– Aka WAW (Write After Write) dependence
– S1 precedes S2 and may write to a memory location that is later

(over)written by S2
– Renaming (e.g., SSA) can resolve many of the WAW dependences

Example:

11

for (… i++) {
B[i] = A[i-1] + 1
A[i] = B[i+1] + b
B[i+2] = b – a

}

▸ Data dependences of a loop often
represented by a dependence graph
– Forward edges: Intra-iteration (loop-

independent) dependences
– Back edges: Inter-iteration (loop-carried)

dependences
– Edges are annotated with distance values:

number of iterations separating the two
dependent operations involved

▸ Recurrence manifests itself as a circuit
in the dependence graph

12

Dependence Graph

v1

v2

v4

v3

[1]

[0] [2][0]

[0]

Edges annotated
with distance values

[0]

Modulo Scheduling

▸ A regular form of loop (or function) pipelining technique
– Also applies to software pipelining in compiler optimization
– Loop iterations use the same schedule, which are initiated

at a constant rate

▸Advantages of modulo scheduling
– Easy to analyze: Steady state determines performance & resource
– Cost efficient: No code or hardware replication

▸ Optimization objective
– minimize II under resource constraints
– minimize resource usage under II constraint
NP-hard in general
Optimal polynomial time solution exists without recurrences or
resource constraints

13

Modulo Scheduling Example

Dependence graph: Schedule: II = 2

II = 2

0

14

1
2
3

× +

–

LD

ST

ST

–

LD

× +

ST

–

LD

× +

ST

–

LD

× +

ST

–

LD

× +

ST

–

LD

× +

Iteration
1 2 3

Initiation Interval
(II)

×+

LD

ST

–

Steady state determines
both performance
resource usage

0

1
0

2
3

Time
(cycle)

5
4

6
7

slot 0
slot 1

Steady state
(II cycles)

Algorithmic Scheme for Modulo Scheduling

▸ Common scheme of heuristic algorithms
– Find a lower bound on II: MII = max { ResMII, RecMII }
– Look for a schedule with the given II
– If a feasible schedule not found, increase II and try again

15

Find MII
and set II = MII

Found it? Increase II
No

Look for a schedule

Yes

Calculating Lower Bound of Initiation Interval

▸ Minimum possible II (MII)
– MII = max(ResMII, RecMII)
– A lower bound, not necessarily achievable

▸ Resource constrained MII (ResMII)
– ResMII = maxi éOPs(ri) / Limit(ri)ù

OPs(r): number of operations that use resource of type r
Limit(r): number of available resources of type r

▸ Recurrence constrained MII (RecMII)
– RecMII = maxi éLatency(ci) / Distance(ci)ù

Latency(ci): total latency in dependence circuit ci
Distance(ci): total distance in dependence circuit ci

16

▸ Compute ResMII: Max among all types of resources
– ResMII = maxi éOPs(ri) / Limit(ri)ù

Minimum II due to Resource Limits (ResMII)

+

+

i0 i1 i2 i3
i0 i1 i2

i0 i1
i0

a0
a1
a2
a3

0 1 2 3

i0 i0 i1 i1
i0 i0

i2 i2 i3 i3
i1 i1 i2 i2

0, 1, 2, 3, … : time (clock cycles)
a0, a1, a2, a3 : available adders
i0, i1, i2, … : loop iterations

due to limited
resources, cannot
initiate iterations less
than 2 cycles apart

a0
a1

time

4 adders

17

+

+

i3
i2
i1

i3
i2

4 5

Dependence Reservation tables

i4 i5
i4

2 adders

Minimum II due to Recurrences (RecMII)

▸ Compute Recurrence Minimum II (RecMII):
– Max among all circuits of:

RecMII = maxi éLatency(ci) / Distance(ci)ù

– Latency(c) : sum of operation latencies along circuit c
– Distance(c) : sum of dependence distances along circuit c

18

a

b

[1][0]

[1] dependence
distance = 1

Dependence

a

b
[3][0]

Dependence

[3] dependence
distance = 3

a

b
a

b

Schedule (II=2)

a

b

a

b

a

b
a

b

Schedule (II=1)

Assume single-cycle operations, no chaining

19

Example: Calculating the Minimum II

× +× × ×

× × +

-

-
§ Three AddSub units available
§ Two Multipliers available
§ Assume 1-cycle operations, no chaining

[1]

What is the minimum II (MII) ?

SDC-Based Modulo Scheduling

Model intra-iteration
scheduling constraints

Model inter-iteration
scheduling constraints

Find Minimum II

Incremental
scheduling

SDC
feasible?

Loop

Increase II

Schedule

Yes

No

Fail

▸ The SDC formulation can be
extended to support modulo
scheduling
– Unifies intra-iteration and inter-

iteration scheduling constraints in
a single SDC

– Iterative algorithm with efficient
incremental SDC update

20

Modeling Loop-Carried Dependence with SDC

▸ The dependence between two operations from different
iterations is termed inter-iteration (loop-carried) dependence
– Loop-carried dependence u à v with Dist(u, v) = K

su + Latu £ sv + K* II

for (i = 0; i < N-2; i++)
{

B[i] = A[i] * C[i];
A[i+2] = B[i] + C[i];

}

Dist(v5, v1) = 2

×

+

v1 v2
v3

v5st

ld ld

v4

C[i]A[i]

A[i+2]

21

Modeling Loop-Carried Dependence with SDC

▸ The dependence between two operations from different
iterations is termed inter-iteration (loop-carried) dependence
– Loop-carried dependence u à v with Dist(u, v) = K

su + Latu £ sv + K* II

s5 £ s1 + 2*II

for (i = 0; i < N-2; i++)
{

B[i] = A[i] * C[i];
A[i+2] = B[i] + C[i];

}

×

+

v1 v2
v3

v5st

ld ld

v4

C[i]A[i]

A[i+2]
×

+

v2
v3

v5st

ld

v4

v1ld

×

v1 v2
v3

ld ld

…

II

22

II

▸ Prefix sum computes a cumulative sum of a sequence of
numbers
– commonly used in many applications such as radix sort,

histogram, etc.

23

Case Study: Prefix Sum

void prefixsum (int in[N], int out[N])
out[0] = in[0];
for (int i = 1; i < N; i++) {

#pragma HLS pipeline II=?
out[i] = out[i-1]+ in[i];

}
}

out[0] = in[0];
out[1] = in[0] + in[1];

out[1] = in[0] + in[1] + in[2];

out[1] = in[0] + in[1] + in[2] + in[3];

…

▸ Loop-carried dependence exists between to reads on ‘out’
▸ Assume chaining is not possible on memory reads (ld) and

writes (st) due to target cycle time
– RecMII = 3

24

Prefix Sum: RecMII

cycle 1 cycle 2 cycle 3 cycle 4
i = 0 ld1

ld2
+ st

i = 1 ld1
ld2

+ stII = 1

ld2

+

ld1

st

out[i-1]

out[i]

in[i]

ld – Load
st – Store

out[0] = in[0];
for (int i = 1; i < N; i++)

out[i] = out[i-1]+ in[i];

Assume chaining is not possible on memory
reads (i.e., ld) and writes (i.e., st) due to cycle
time constraint

▸ Introduce an intermediate variable ‘tmp’ to hold the
running sum from the previous ‘in’ values

▸ Shorter dependence circuit leads to RecMII = 1

25

Prefix Sum: Code Optimization

cycle 1 cycle 2 cycle 3 cycle 4
i = 0 ld + st
i = 1 ld + stII = 1

ld

+

st

tmp

out[i]

in[i]

ld – Load
st – Store

int tmp = in[0];
for (int i = 1; i < N; i++) {

tmp += in[i];
out[i] = tmp;

}

Case Study: Convolution for Image Processing

-1 -2 -1

0 0 0
1 2 1

3x3 convolutionInput image
frame

Output image
frame

0
1
2
3
4
5
6

0 1 2 3 4 5 6

26

0
1
2
3
4
5
6

0 1 2 3 4 5 6

▸ A common computation of image/video processing is
performed over overlapping stencils, termed as convolution

Achieving High Throughput with Pipelining

27

▸ Inner loops (i & j) are automatically unrolled
▸ With a 3x3 convolution kernel, 9 pixels are required for

calculating the value of one output pixel
▸ If the entire input image is stored in an on-chip buffer

with two read ports
– ResMII = ?
– What about RecMII?

for (r = 1; r < R; r++)
for (c = 1; c < C; c++) {
#pragma HLS pipeline II=?
for (i = 0; i < 3; i++)
for (j = 0; j < 3; j++)
out[r][c] += img[r+i-1][c+j-1] * f[i][j];

}

Achieving II=1 for 3x3 Convolution
Pixels in line buffer
(2 lines stored)

New pixel fetched from input stream
or frame buffer in off-chip memory

1. Push pixels into
shift register window
1 new pixel + 2 pixels
from line buffer

2. Update line buffer
by removing the oldest
pixel and shifting in the
new one

28

Output pixel produced by
one convolution operation

On-chip
SRAMs

Flip-
Flops

Input pixel stream
Convolve

Off-chip
DDR

Resulting Specialized Memory Hierarchy

Processing window

Line buffers

Frame buffers
Frame n

Frame n-1
Frame n-2

Output pixel stream

29

▸ Memory architecture customized for convolution

30

HLS Code Snippet
1 LineBuffer<2,C,pixel_t> linebuf;
2 Window<3,3,pixel_t> window;
3 for (int r = 1; r < R+1; r++) {
4 for (int c = 1; c < C+1; c++) {
5 #pragma HLS pipeline II=1
6 pixel_t new_pixel = img[r][c];
7 // Update shift window
8 window.shift_left();
9 if (r < R && c < C) {

10 for (int i = 0; i < 2; i++)
11 window.insert(buf[i][c]);
12 }
13 else { // zero padding
14 for (int i = 0; i < 2; i++)
15 window.insert(0);
16 }
17 window.insert(new_pixel);
18 // Update line buffer
19 linebuf.shift_up(c);
20 if (r < R && c < C)
21 linebuf[1].insert(c, new_pixel);
22 else // Zero padding
23 linebuf[1].insert(c, 0);
24 // Perform 3x3 convolution
25 out[r-1][c-1] = convolve(window, weights);
26 }
27 }

Figure 6: A loop kernel combining two 1D stencil opera-
tions.

1 #ifdef OFF_CHIP_OPT
2 void optical_flow(frames_t frames[MAX_HEIGHT * MAX_WIDTH],
3 velocity_t outputs[MAX_HEIGHT * MAX_WIDTH])
4 #else
5 void optical_flow(pixel_t frame1[MAX_HEIGHT * MAX_WIDTH],
6 pixel_t frame2[MAX_HEIGHT * MAX_WIDTH],
7 pixel_t frame3[MAX_HEIGHT * MAX_WIDTH],
8 pixel_t frame4[MAX_HEIGHT * MAX_WIDTH],
9 pixel_t frame5[MAX_HEIGHT * MAX_WIDTH],

10 velocity_t outputs[MAX_HEIGHT * MAX_WIDTH])
11 #endif

Figure 7: O↵-chip memory access optimization for Optical
Flow.

Spam Filtering, this optimization is applied to overlap di↵er-
ent stages of the image processing pipeline. For the dataflow
optimization to work, each intermediate variable can be only
produced and consumed once per iteration. Therefore, since
the 2D triangle array is needed by both rasterization stages,
we create two separate arrays triangle_2ds and trian-
gle_2ds_same to avoid using the same array twice in the
pipeline. The rasterization1 stage copies the content of
triangle_2ds into triangle_2ds_same.

In Spam Filtering and 3D Rendering, we use dataflow
optimization inside a loop rather than in a function. This
”dataflow in loop” feature is available only in recent versions
of Xilinx SDSoC and SDAccel. For 3D Rendering, this new
choice of optimization greatly improves the throughput of
the design. The user can turn on/o↵ this optimization to
analyze its e↵ectiveness. Comparison of these two design
points is provided in Section 5.4.

4.5 Optical Flow
The Optical Flow application captures the motion pattern

of objects between consecutive image frames. It is an impor-
tant step for object detection, and is integrated into several

image/video processing toolsets including OpenCV and the
Computer Vision toolbox of Matlab. Our implementation
operates on five consecutive image frames with resolution of
436x1024. The output is a 2D vector field of the same size,
where each vector in the vector field shows the movement of
the pixel in the input image frames. Currently, the input,
output as well as all intermediate results are represented
with 32-bit floating point numbers. The hardware function
is implemented using C++.
Similar to the 3D rendering application, the Optical Flow

application also contains an image processing pipeline. The
pipeline stages are common compute-intensive kernels in im-
age processing:

• 1D Convolution: 1D convolution is the major work-
load in many pipeline stages of the application, includ-
ing computing and averaging the gradients in three di-
mensions. Figure 6 shows a kernel which computes
the gradient in horizontal and vertical directions. The
variable frame is the input image frame while gradi-
ent_x and gradient_y are variables for output gra-
dients. Line 32-43 shows the 1D convolutions in two
dimensions. Several other pipeline stages perform 1D
convolutions with filters of di↵erent sizes. The code
structure and optimization techniques for those stages
are similar to what we present in Figure 6.

• Outer Product: This kernel takes in a 2D gradient
vector field, and computes the outer product of the
same gradient vector at each pixel location.

The major compute optimization for Optical Flow is the
streaming dataflow optimization. Similar with 3D Render-
ing (Section 4.4), we also use dataflow optimization to con-
struct channels between di↵erent stages of the image pro-
cessing pipeline. However, since all pipeline stages in Opti-
cal Flow read and write data in strict streaming order, we
can declare the intermediate variables as ”STREAM” vari-
ables so that they are implemented as fixed-depth FIFOs.
In this case, the whole accelerator can be considered as a
very deep, fine-grained pipeline, and the execution time of
di↵erent stages can be perfectly overlapped.
Intensive memory optimizations are also necessary for the

Optical Flow design to achieve high throughput. Careful
readers must have noticed that the gradient_xy_calc ker-
nel shown in Figure 6 maintains a local line bu↵er and a
window bu↵er to support concurrent data access at line 32-
43 and exploit the data locality of the stencil pattern. The
line bu↵er stores pixels in recently visited rows to minimize
memory accesses to the frame bu↵er. The window bu↵er
is usually completely partitioned into registers for parallel
data access, and it consistently reads from the line bu↵er
to get new data. This on-chip memory optimization is not
only used in many pipeline stages of this application, but
also a common optimization technique for applications with
shifting access windows.
Another memory optimization, shown in Figure 7, opti-

mizes for o↵-chip memory accesses. Figure 7 shows the func-
tion signature of the top-level hardware function with and
without the optimization. Lines 2-3 show the function sig-
nature with o↵-chip memory access optimization, where the
five image frames are packed into a single variable and each
element in the structure array frames contains one pixel
from each frame. Lines 5-10 shows the unoptimized ver-

6

▸Pipelining is one of the most commonly used
techniques in HLS to boost performance of the
synthesized hardware

▸Recurrences and resource restrictions limit the
pipeline throughput

▸Modulo scheduling
– A regular form of software pipeline technique

• Also applies to loop pipelining for hardware synthesis
– NP-hard problem in general

31

Summary

▸These slides contain/adapt materials developed
by
– Prof. Ryan Kastner (UCSD)
– Prof. Scott Mahlke (UMich)
– Dr. Stephen Neuendorffer (Xilinx)

32

Acknowledgements

