ECE 5997
Hardware Accelerator Design & Automation
Fall 2021

Pipelining

Announcements

» DNN acceleration tutorial cancelled
— Slides will be posted on Tuesday

Digit Recognition Lab

» Use a simple machine learning algorithm to recognize
handwritten digits

— 2000 training instances per digit
- Each training/test instance is a 7x7 bitmap after downsampling

Random Sampling of MNIST

SEALDOHdB

MNIST dataset: http://yann.lecun.com/exdb/mnist/

K-Nearest-Neighbor (KNN) Implementation

bit4 digitrec(digit input)
{
#include “training_data.h"
// This array stores K minimum distances per training set
bit6 knn_set[10] [K_CONST];
// Initialize the knn set
for (int i = 0; i < 10; ++1i)
for (int k = @; k < K_CONST; ++k)]
// Note that the max distance is 49 Main compute loop
knn_set[i] [k] = 50; (10 cycles per innermost loop)

L2000: for (int i

= @; i < TRAINING_SIZE; ++i) {
L10: for (int j =

0; j < 10; j++) {

// Read a new instance from the training set

digit training_instance = training_datal[j * TRAINING_SIZE + i];
// Update the KNN set

update_knn(input, training_instance, knn_set[j]);

~200K cycles by default without optimizations

10x Speedup through Parallelization

bit4 digitrec(digit input)
{
#include “training_data.h"
// This array stores K minimum distances per training set
bit6 knn_set[10] [K_CONSTI];
// Initialize the knn set
for (int i = 0; i < 10; ++1i)
for (int k = 0; k < K_CONST; ++k)
// Note that the max distance is 49
knn_set[i] [k] = 50;

Unroll inner loop completely
L2000:lfor (int i=0; i< TRAINING SIZE; ++i) { o
L10:Y for (int j = 0; j < 10; j++) { artition training
set into 10 banks
// Read a new instance from the training set l

digit training_instance = training_datal[j * TRAINING_SIZE + il;
// Update the KNN set

update_knn(input, training_instance, knn_set[j]);

~20K cycles after parallelization

Further Speedup through Pipelining

bit4 digitrec(digit input)
{
#include “training_data.h"
// This array stores K minimum distances per training set
bit6 knn_set[10] [K_CONSTI];
// Initialize the knn set
for (int i = 0; i < 10; ++i)
for (int k = 0; k < K_CONST; ++k)
// Note that the max distance is 49

knn_set[i] [k] = 50; Pipeline outer loop
Unroll inner loop completely l
L20®0:lfor (int i =0; i< TRAINING SIZE; ++i) { N
L10:¥ for (int j = @0; j < 10; j++) { artition training

// Read a new instance from the training set

digit training_instance = training_datal[j * TRAINING_SIZE + il;
// Update the KNN set

update_knn(input, training_instance, knn_set[j]);

set into 110 banks

~2K cycles after pipelining

Outline

> Restrictions of Pipeline Throughput
— Types of recurrences

» Modulo scheduling concepts
— Extending SDC formulation for pipelining

» Case studies on HLS pipelining

Recap: Restrictions of Pipeline Throughput

> Resource limitations
— Limited compute resources
— Limited Memory resources (esp. memory port limitations)
— Restricted I/O bandwidth
— Low throughput of subcomponent

» Recurrences

— Also known as feedbacks, carried dependences
- Fundamental limits of the throughput of a pipeline

Type of Recurrences

» Types of dependences
— True dependences, anti-dependences, output dependences
— Intra-iteration vs. inter-iteration dependences

> Recurrence — if one iteration has dependence on the
same operation in a previous iteration

— Direct or indirect
— Data or control dependence

» Distance — number of iterations separating the two

dependent operations
(O = same iteration or intra-iteration)

True Dependences

> True dependence
— Aka flow or RAW (Read After Write) dependence
- S1->t82

- Statement S1 precedes statement S2 in the program and
computes a value that S2 uses

Example:
for (i=0;i<N;i++)
Ali] &=A[i-1] - 1;
_/I'

nter-iteration true dependence
on A (distance = 1)

Anti-Dependences

» Anti-dependence
— Aka WAR (Write After Read) dependence
- S1 2282

- S1 precedes S2 and may read from a memory location that is later
updated by S2

— Renaming (e.g., SSA) can resolve many of the WAR dependences

Example:
for (... I++){

Ali-1]=b —a; ™S Inter-iteration anti-dependence
}B['] =Ali] +1 on A (distance = 1)

10

Output Dependences

» Output dependence
- Aka WAW (Write After Write) dependence

— S1 precedes S2 and may write to a memory location that is later
(over)written by S2

- Renaming (e.g., SSA) can resolve many of the WAW dependences

Example: for (... i++) {

Bli] = A[i-1] + 1
Inter-iteration output(Ali] = Bli+1] + b
dependence on B B[i+2] =b—a
(distance = 2) }

11

Dependence Graph

» Data dependences of a loop often
represented by a dependence graph
- Forward edges: Intra-iteration (loop-
independent) dependences @
— Back edges: Inter-iteration (loop-carried) 3 @
dependences @)
- Edges are annotated with distance values: ol

number of iterations separating the two @
dependent operations involved [0

[0 [2]

» Recurrence manifests itself as a circuit

in the dependence graph Edges annotated
with distance values

12

Modulo Scheduling

> Aregular form of loop (or function) pipelining technique
— Also applies to software pipelining in compiler optimization

-~ Loop iterations use the same schedule, which are initiated
at a constant rate

» Advantages of modulo scheduling

- Easy to analyze: Steady state determines performance & resource
— Cost efficient: No code or hardware replication

> Optimization objective
— minimize |l under resource constraints
— minimize resource usage under |l constraint

NP-hard in general
Optimal polynomial time solution exists without recurrences or
resource constraints

13

Modulo Scheduling Example

Dependence graph:

Time
(cycle)

N O ok~ WD =+ O

=2

=2

w N =0
O

i Initiation Interval

(1)

slot 0 | Steady state
€ ® |slot1 | (Il cycles)

Steady state determines
both performance
resource usage

Schedule:
lteration
0 2 3
X A
ST A
ST ® S
6 |&®
Q
S

14

Algorithmic Scheme for Modulo Scheduling

> Common scheme of heuristic algorithms
— Find a lower bound on II: MIl = max { ResMIl, RecMIl }
— Look for a schedule with the given Il
- If a feasible schedule not found, increase Il and try again

Find Mil
and set Il = Ml

|

Look for a schedule \
No

W Increase I

Yes

Calculating Lower Bound of Initiation Interval

> Minimum possible Il (MII)
— MIl = max(ResMIll, RecMll)
— Alower bound, not necessarily achievable

» Resource constrained MIl (ResMIl)

~ ResMIl = max, [OPs(r,) / Limit(r,)]
OPs(r): number of operations that use resource of type r
Limit(r): number of available resources of type r

» Recurrence constrained MIl (RecMIl)

~ RecMIl = max; [Latency(c)) / Distance(c)) |
Latency(c,): total latency in dependence circuit c;
Distance(c;): total distance in dependence circuit c;

16

Minimum Il due to Resource Limits (ResMil)

Dependence Reservation tables
time
012345
+ a0l ioli1]i2[i3] i4]i5
! 4 adders a; iofi1]i2| i3] i4
: ot
a3

0,1, 2,3, ...:time (clock cycles)
a0, a1, a2, a3 : available adders
10, i1, 12, ... : loop iterations

5 add ao0liofiofit [i1]i2]i2]i3]i3| due to limited
adaers 4 resources, cannot

initiate iterations less
than 2 cycles apart

» Compute ResMIl: Max among all types of resources

_ ResMIl = max; [OPs(r;) / Limit(r;) |

17

Minimum Il due to Recurrences (RecMil)

Dependence Schedule (I1=2) Dependence Schedule (l1=1)
© a © a
[0] [1] l [0] [3] l a
a

b a
[1] ddf?ptende”fi l [3] dependence b
IStance = 4 distance = 3
b

Assume single-cycle operations, no chaining

> Compute Recurrence Minimum Il (RecMl)).

— Max among all circuits of:
RecMIl = max; [Latency(c;) / Distance(c;) |

- Latency(c) : sum of operation latencies along circuit ¢
— Distance(c) : sum of dependence distances along circuit ¢

18

Example: Calculating the Minimum Il

[1]

Three AddSub units available
Two Multipliers available
Assume 1-cycle operations, no chaining

What is the minimum Il (MIl) ?

19

SDC-Based Modulo Scheduling

> The SDC formulation can be lLOOp
extended to support modulo Find Minimum I
scheduling l

— Unifies intra-iteration and inter-

iteration scheduling constraints in | Model intra-iteration
a single SDC scheduling constraints

— Iterative algorithm with efficient l

incremental SDC update Model inter-iteration

scheduling constraints

SDC No
feasible? —>1 Increase I

Yes .
\ Fail
Incremental

scheduling

Y Schedule

Modeling Loop-Carried Dependence with SDC

» The dependence between two operations from different
iterations is termed inter-iteration (loop-carried) dependence
— Loop-carried dependence u - v with Dist(u, v) = K
s,+Lat, <s,+ K" Il

P
A |
~ BIi] = A[i] * C[il;

 A[i+2] =B[i] + C[i];
}

21

Modeling Loop-Carried Dependence with SDC

» The dependence between two operations from different
iterations is termed inter-iteration (loop-carried) dependence
— Loop-carried dependence u - v with Dist(u, v) = K
s,+Lat, <s,+ K" Il

ST
A |
~ B[i]=Ali] * C[i];
~ ALi+2] =B[i] + C[il;
}

S5 <8 + 2°11

22

Case Study: Prefix Sum

» Prefix sum computes a cumulative sum of a sequence of
numbers

— commonly used in many applications such as radix sort,
histogram, etc.

void prefixsum (int in[N], int out[N]) out[0] = in[O];

out[0] = Iin[O]; _ _
for (inti=1;i<N;i++){ out[1] = in[0] +in[1];

#pragma HLS pipeline 11=? out[1] = in[0] + in[1] + in[2];

out[i] = out[i-1]+ in[i]; _ _ _ |
} out[1] = In[0] + In[1] + in[2] + In[3];

}

23

Prefix Sum: RecMIi

» Loop-carried dependence exists between to reads on ‘out’

> Assume chaining is not possible on memory reads (Id) and
writes (st) due to target cycle time

- RecMIl =3
inli] outfi-1] out[0] = in[O];

for (inti=1;i<N;i++)
out[i] = out[i-1]+ in[i];

cycle 1 | cycle 2 | cycle 3 | cycle 4
=0
' :31 + st
2 ————
i=1 Id, [+ ot
W=D| |,
Id — Load Assume chaining is not possible on memory
st — Store reads (i.e., Id) and writes (i.e., st) due to cycle

time constraint
24

Prefix Sum: Code Optimization

> Introduce an intermediate variable ‘tmp’to hold the
running sum from the previous ‘in’ values

» Shorter dependence circuit leads to RecMlIl = 1

int tmp = in[0];
in[i] for (inti=1;i<N;i++) {
tmp +=in]i];

@ tmp out[i] = tmp;

o) |

e cycle 1 | cycle2 | cycle 3 | cycle 4
out]i] =0 Id + __\ st

i=1 II=1 |d -+ st
Id — Load

st — Store

25

Case Study: Convolution for Image Processing

> A common computation of image/video processing is
performed over overlapping stencils, termed as convolution

k-1

w

-1

Im.g [n+i][m+j] f[L]
0

(Img ®f)[n+k—_1m
5

k—
+T

i=0j

0123456 0123456
0 0
1 1
2 2
; ® — B g
5 -1{-21-1 5
6 0]0]0 6

1/2]1
Input image 3x3 convolution Output image

frame frame

26

Achieving High Throughput with Pipelining

for (r=1;r<R;r++)
for(c=1;c<C;c++){
#pragma HLS pipeline [I=?
for (i=0;1 <3; i++)
for (j=0;]<3;j++)
out[r][c] += img[r+i-1][c+j-1] * [i][j];
Y

> Inner loops (i & j) are automatically unrolled
» With a 3x3 convolution kernel, 9 pixels are required for
calculating the value of one output pixel
> If the entire input image is stored in an on-chip buffer
with two read ports
— ResMIl =?
— What about RecMII?

27

Achieving lI=1 for 3x3 Convolution

Pixels in line buffer

1 .
?@ — 8/9 (2 lines stored)
F/// Wm
pZd oN
g% erg,ﬂ
/; //6 1. Push pixels into oP
/Fram shift register window
1 new pixel + 2 pixels ht5
from line buffer id
2. Update line buffer P
by removing the oldest s
pixel and shifting in the % PP
new one pe A
AT
L ////
]] T
New pixel fetched from input stream g g= g%
. AR L /// e
or frame buffer in off-chip memory P P F rﬂm
o (!
Output pixel produced by /Outpu

one convolution operation
28

Resulting Specialized Memory Hierarchy

» Memory architecture customized for convolution

—| Input pixel stream

Processing window A

Line buffers \

Frame buffers

Off-chip
DDR

Output pixel stream

Frame n-2

Frame n-1

A

Frame n

29

HLS Code Snippet

1 LineBuffer<2,C,pixel_t> linebuf;

2 Window<3,3,pixel_t> window;

3 for (int r = 1; r < R+1; r++) {

4 for (int ¢ = 1; ¢ < C+1; c++) {
5 #pragma HLS pipeline II=1

6 pixel_t new_pixel = img[r] [c];
7 // Update shift window

8 window.shift_left();

9 if (r <R && c < C) {

10 for (int 1 = 0; 1 < 2; i++)
11 window. insert (buf [i] [c]);
12 }

13 else { // zero padding

14 for (int 1 = 0; i < 2; i++)
15 window.insert (0) ;

16 }

17 window.insert (new_pixel);

18 // Update line buffer

19 linebuf.shift_up(c);

20 if (r <R && c < C)

21 linebuf[1].insert(c, new_pixel);
22 else // Zero padding

23 linebuf[1] .insert(c, 0);

24 // Perform 3x3 convolution

25 out [r-1] [c-1] = convolve(window, weights);
26 }

Summary

> Pipelining is one of the most commonly used
techniques in HLS to boost performance of the
synthesized hardware

» Recurrences and resource restrictions limit the
pipeline throughput

> Modulo scheduling

— Aregular form of software pipeline technique
* Also applies to loop pipelining for hardware synthesis

— NP-hard problem in general

31

Acknowledgements

> These slides contain/adapt materials developed
by
- Prof. Ryan Kastner (UCSD)
— Prof. Scott Mahlke (UMich)
— Dr. Stephen Neuendorffer (Xilinx)

32

