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▸Neural networks have revolutionized the world
– Self-driving vehicles
– Advanced image recognition
– Game AI
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Rise of the Machines
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Rise of the Machines

▸Neural networks have revolutionized research



▸ 1950’s: First artificial neural networks created based on 
biological structures in the human visual cortex

▸ 1980’s – 2000’s: NNs considered inferior to other, 
simpler algorithms (e.g. SVM, logistic regression)

▸ Mid 2000’s: NN research considered “dead”, machine 
learning conferences outright reject most NN papers

▸ 2010 – 2012: NNs begin winning large-scale image and 
document classification contests, beating other methods

▸ 2012 – Now: NNs prove themselves in many industrial 
applications (web search, translation, image analysis)
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A Brief History



▸ Surpass human ability in image recognition
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Things Neural Networks Can Do…



▸ Generate celebrities
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Things Neural Networks Can Do…



▸ Art style transfer
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Things Neural Networks Can Do…

https://deepart.io/



▸ Beat humans at DOTA 2 (>6.5k MMR)
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Things Neural Networks Can Do…

https://openai.com/five/



CLASSIFICATION WITH
THE PERCEPTRON

Part 1



▸We’ll discuss neural networks for solving 
supervised classification problems
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Classification Problems

???

Inputs Predictions

Predict New Data

• Given a training set consisting 
of labeled inputs

• Learn a function which maps 
inputs to labels

• This function is used to predict 
the labels of new inputs

Cat

Bird

Human

Inputs Labels

Training Set



▸ Inputs: Pairs of numbers ("!, "")
▸ Labels: 0 or 1

– binary decision problem

▸ Real-life analogue:
– Label = Raining or Not Raining
– !! = relative humidity
– !" = cloud coverage
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A Simple Classification Problem

x1 x2 Label
-0.7 -0.6 0
-0.6 0.4 0
-0.5 0.7 1
-0.5 -0.2 0
-0.1 0.7 1
0.1 -0.2 0
0.3 0.5 1
0.4 0.1 1
0.4 -0.7 0
0.7 0.2 1

Training Set
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Visualizing the Data

Plot of the data points

!!

!"
x1 x2 Label
-0.7 -0.6 0
-0.6 0.4 0
-0.5 0.7 1
-0.5 -0.2 0
-0.1 0.7 1
0.1 -0.2 0
0.3 0.5 1
0.4 0.1 1
0.4 -0.7 0
0.7 0.2 1

Training Set



▸ In this case, the data points can be classified with a 
linear decision boundary
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Decision Function

Goal: learn this 
function



▸The perceptron is the simplest possible neural 
network, containing only one neuron

▸Described by the following equation:
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The Perceptron

%# = weights
& = bias
' = activation function



▸A 2-input, 1-output perceptron:
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Breaking Down the Perceptron
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▸A 2-input, 1-output perceptron:
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Breaking Down the Perceptron

%$
'

%%
+

($

(%
)

&

Humidity

Raining?
Cloud 
Cover

Yes

No



▸The activation function σ is non-linear:
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Activation Function

Unit Step Sigmoid ReLU

Hard Yes/No decision

Used in the first 
perceptrons

Soft probability

Used in early 
neural nets

Makes deep networks 
easier to train

Used in modern deep nets

1
1 + (!" max(0, /)



▸ Let’s plot the 2-input perceptron (sigmoid activation)
) = '(%$($ +%%(% + &)
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The Perceptron Decision Boundary

1# = 10
1$ = 10

1# = 5
1$ = 20

1# = 20
1$ = 5

Ratio of weights change the direction of the decision boundary



▸ Let’s plot the 2-input perceptron (sigmoid activation)
) = '(%$($ +%%(% + &)
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The Perceptron Decision Boundary

5 = 0 5 = 5 5 = −5

Bias moves boundary away the from origin



▸ Let’s plot the 2-input perceptron (sigmoid activation)
) = '(%$($ +%%(% + &)
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The Perceptron Decision Boundary

1# = 10
1$ = 10

1# = 5
1$ = 5

1# = 2
1$ = 2

Magnitude of weights change the steepness of the decision boundary



▸The right parameters (weights and bias) will 
create any linear decision boundary we want

▸Training = process of finding the parameters to 
solve our classification problem
– Basic idea: iteratively modify the parameters to 

reduce the training loss
– Training loss: measure of difference between 

predictions and labels on the training set
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Finding the Parameters



▸ Loss function
– Measure of difference between predictions and true labels

& =(
#$%

&
(* # − , # )'

▸ Gradient Descent:

&./$ = &. − η ./
.&.

7 = training step
η = learning rate or step size
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Gradient Descent

Sum over training samples

9 % = Prediction 

Gradient = direction 
of steepest descent 

in :

; % = True label



▸At each step k:
1. Classify each sample to get each ) #

2. Compute the loss -

3. Compute the gradient <=
<>!

4. Update the parameters using gradient descent

%?@$ = %? − η 0-
0%?
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Training a Neural Network



▸Perceptron training demo
– No bias (bias = 0)
– No test set (training samples only)
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Demo



DEEP NEURAL NETWORKS
Part 2



▸A deep neural network (DNN) consists of many 
layers of neurons (perceptrons)

▸Each connection indicates a weight &
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Deep Neural Network

Image credit: http://www.opennn.net/

Input Layer
Hidden Layers

Output Layer



▸A single neuron can only make a simple decision
▸Feeding neurons into each other allows a DNN 

to learn complex decision boundaries
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Combining Neurons

Image credit: http://www.opennn.net/

Simple 
Decisions

Complex 
Decisions
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Complex Decision Boundaries

Image credit: https://www.carl-olsson.com/fall-semester-2013/

2 units 3 units 4 units

5 units 10 units 20 units



▸ Gradient Descent:

&./$ = &. − η ./
.&.
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Learning a Deep Neural Network

-

How to get ()(*!
for 

this neuron?



▸ Backpropagation: use the chain rule from calculus to 
propagate the gradients backwards through the network
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Backpropagation

1

(

)
1((, ))
01
02

01
03 =

01
02
02
03

01
0* =

01
02
02
0*

Inspired by course slides from L. Fei-Fei, J. Johnson, S. Yeung, CS231n at Stanford University
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▸ Remember Gradient Descent?

&./$ = &. − η ./
.&.

▸ - must be computed over the entire training set, which 
can be millions of samples!

▸ Stochastic Gradient Descent:
– At each set, only compute & for a minibatch (a few samples 

randomly taken from the training set)
– SGD is faster and more accurate than GD for DNNs!
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Stochastic Gradient Descent



CONVOLUTIONAL 
NEURAL NETWORKS

Part 3



▸ So far, we’ve see networks built from 
fully-connected layers

▸ These networks don’t work well for 
images. Why?

▸ Images are typically shift-invariant 
(i.e. a 6 is a 6 even when shifted)

▸ But a fully-connected neuron probably 
won’t work when the input is shifted
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Neural Networks for Images
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The Convolutional Filter

Image credit: http://deeplearning.stanford.edu/wiki/index.php/Feature_extraction_using_convolution

Input
Image

Output
Feature map

▸ Each neuron learns a weight filter and convolves the 
filter over the image

▸ Each neuron outputs a 2D feature map 
(basically an image of features)



34

The Convolutional Filter

Image credit: http://deeplearning.stanford.edu/wiki/index.php/Feature_extraction_using_convolution

Input
Image

Output
Feature map

▸ Each point in the feature map encodes both a decision 
and its spatial location

▸ Detects the pattern anywhere in the image!



▸4 input and 5 output feature maps
▸ Each output map uses 4 filters, 1 per input map
▸4×5 total filters
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The Convolutional Layer

Filters

Output Feature MapsInput Feature Maps

! "

∗
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The Convolutional Layer

Filters

Output Feature MapsInput Feature Maps

! "

∗

1 for(row=0; row<R; row++) {
2     for(col=0; col<C; col++) {
3         for(to=0; to<N; to++) {
4             for(ti=0; ti<M; ti++) {
5                 for(i=0; i<K; i++) {
6                     for(j=0; j<K; j++) {

output_fm[to][row][col] += 
weights[to][ti][i][j]*input_fm[ti][S*row+i][S*col+j]; 

}}}}}}

"

#

Huge amount of 
parallelism!



▸ Front: convolutional layers learn visual features
▸ Feature maps get downsampled through the network
▸ Back: fully-connected layers perform classification using 

the visual features
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Convolutional Neural Network

Convolutional Layers Fully-connected Layers

Image credit: http://www.wildml.com/2015/11/understanding-convolutional-neural-networks-for-nlp/



▸ Deep CNNs combine simple features into complex patterns
– Early conv layers = edges, textures, ridges 
– Later conv layers = eyes, noses, mouths

38

Learning Complex Features

Image credit: https://devblogs.nvidia.com/parallelforall/accelerate-machine-learning-cudnn-deep-neural-network-library/; H. Lee, R. Grosse, R. 
Ranganath, and A. Y. Ng, “Unsupervised Learning of Hierarchical Representations with Convolutional Deep Belief Networks”, CACM Oct 2011



FIN
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