ECE 5997
Hardware Accelerator Design & Automation
Fall 2021

Introduction to Neural Networks

Yichi Zhang, Ritchie Zhao, Zhiru Zhang
School of Electrical and Computer Engineering

~ = . .
Il t==))3 Cornell University .
\¢ o) -
Q) .=
S [T

Rise of the Machines

° (-2 o o9
2002 8% t‘of 8:8?") : - .;oo ‘
° : ° oo :.
o
.ge o':“ : .ge -‘:“ ; .ge 3;.. ; =
®
® G
0! AlphaGo

» Neural networks have revolutionized the world
— Self-driving vehicles

— Advanced image recognition
- Game Al

Rise of the Machines

Imagenet classification with deep convolutional neural networks

A Krizhevsky, | Sutskever, GE Hinton - Advances in neural ..., 2012 - papers.nips.cc

... Thus far, our results have improved as we have made our network larger and trained it longer
but we still have many orders of magnitude to go in order to match the infero-temporal pathway

isyial system. ... ImageNet: A Large-Scale Hierarchical Image Database. ...
Cited by 15127 JRelated articles All 95 versions Cite Save

Very deep convolutional networks for large-scale image recognition
K Simonyan, A Zisserman - arXiv preprint arXiv:1409.1556, 2014 - arxiv.org

Abstract: In this work we investigate the effect of the convolutional network depth on its
accuracy in the large-scale image recognition setting. Our main contribution is a thorough

orks of increasing depth using an architecture with very small (3x3)
Cited by 6274 Related articles All 14 versions Cite Save

Deep residual learning for image recognition
K He, X Zhang, S Ren, J Sun - ... of the |IEEE conference on computer ..., 2016 - cv-foundation.org

Abstract Deeper neural networks are more difficult to train. We present a residual learning
framework to ease the training of networks that are substantially deeper than those used

licitly reformulate the layers as learning residual functions with reference
Cited by 3659 Rglated articles All 20 versions Cite Save More

» Neural networks have revolutionized research

A Brief History

» 1950°s: First artificial neural networks created based on
biological structures in the human visual cortex

> 1980°s — 2000°s: NNs considered inferior to other,
simpler algorithms (e.g. SVM, logistic regression)

> Mid 2000°s: NN research considered “dead”, machine
learning conferences outright reject most NN papers

» 2010 — 2012: NNs begin winning large-scale image and
document classification contests, beating other methods

» 2012 — Now: NNs prove themselves in many industrial
applications (web search, translation, image analysis)

Things Neural Networks Can Do...

> Surpass human ability in image recognition

‘\" ‘l L‘ 5 ? __;_,x:- ', ’_ 3 4“-- ‘744_

B TR AN SO R

-
T SO0V N e L v

-&. '-'b ' v ""'"l" -—-. ‘ .‘\r
N e e R ﬂ»"-'ﬁ-

e e " |

Things Neural Networks Can Do...

» Generate celebrities

Things Neural Networks Can Do...

> Art style transfer

https://deepart.io/

Things Neural Networks Can Do...

» Beat humans at DOTA 2 6.5« MvR)

[Scene 1: Attacking Mid

lagle)L OBSERVATIONS

Action: Ability Nethertoxin
HIE.HEE

Target Viper
-
MEYRYYEER
e .~ e -~
Offset X

SO0 SU0D 200 SK00 0 0220 300 500

Offset Y

400 -300 -200 <100 O 100 200 300 400

Actin 2 frames

https://openai.com/five/

Part 1

CLASSIFICATION WITH
THE PERCEPTRON

Classification Problems

> We’'ll discuss neural networks for solving
supervised classification problems

« (Given a training set consisting
of labeled inputs

g * Learn a function which maps

\ *1*;1&;1‘ % .

Bes s Cat inputs to labels

i A » This function is used to predict
-
& [

Inputs Labels

the labels of new inputs

Inputs Predictions
=3 .

{ — Human — 277

=,
A

Training Set Predict New Data

»

A Simple Classification Problem

> Inputs: Pairs of numbers (x4, x2)

> Labels: O or 1
— binary decision problem

> Real-life analogue:
— Label = Raining or Not Raining
— xq = relative humidity
- X, = cloud coverage

Labe

-0.7 -06 O
-06 04 O
-0.5 0.7 1
-0.5 -02 O
-0.1 0.7 1
01 -02 O
03 05 1
04 01 1
04 -0.7 O

0.7 02 1
Training Set

10

Visualizing the Data

X2

1.00

0.75 A

0.50 +

0.25 4

0.00 A

—0.25 A

—0.50 A

=0.75 1

-1.00

-1.00 -0.75 -0.50 -0.25 0.00 0.25 0.50 0.75

Plot of the data points

1.00

Labe!

-0.7 -06 O
-06 04 O
-0.5 0.7 1
-0.5 -02 O
-0.1 0.7 1
01 -02 O
03 05 1
04 01 1
04 -0.7 O
0.7 02 1

Training Set

11

Decision Function

> In this case, the data points can be classified with a
linear decision boundary

1.0 —10

Goal: learn this
function

12

The Perceptron

> The perceptron is the simplest possible neural
network, containing only one neuron

» Described by the following equation:

n
y = U(ZWixi + b)
i=1

w; = weights
b = bias
o = activation function

13

Breaking Down the Perceptron

» A 2-input, 1-output perceptron:

w _
@ 1 Output
> 0)—)@: Probability that
@/ the label is 1
W3

S — +

Non-linear function
“squashes” output to

X1 the interval (0,1)
Linear function of X = [xz]

Wx + b

14

Breaking Down the Perceptron

» A 2-input, 1-output perceptron:

Humidity M

—>@ Raining?

Cloud W
Cover 2

o —> +

o

Yes

No

15

Activation Function

» The activation function o is non-linear:

Unit Step

-0!5 0 0.5

Hard Yes/No decision

Used in the first
perceptrons

Sigmoid
.1 |
1+e™™*

—0:5 T

2 0 2

Soft probability

Used in early
neural nets

-0!5 0 0'5

Makes deep networks
easier to train

Used in modern deep nets

16

The Perceptron Decision Boundary

> Let’s plot the 2-input perceptron (sigmoid activation)
y = o(Wixq + WyXxy + b)

W1=1O W1=5
W2=10 W2=20

10 10 ' 10 10 10 10

Ratio of weights change the direction of the decision boundary

17

The Perceptron Decision Boundary

> Let’s plot the 2-input perceptron (sigmoid activation)
y = o(Wixq + WyXxy + b)

08
0.6
0.4
0.2
0.0
10
0.5
-1.0 0.0
-0.5
0. -0.

0.5

b=20 b=5 b =-5

10 10

08 ‘ 08

| 0.6 0.6

1 04 ‘ 0.4
02 02
1 | 0.0

0.0
10

05

10 -10

Bias moves boundary away the from origin

18

The Perceptron Decision Boundary

> Let’s plot the 2-input perceptron (sigmoid activation)
y = o(Wixq + WyXxy + b)

10 10 ' 10 -10 10 -10

Magnitude of weights change the steepness of the decision boundary

19

Finding the Parameters

> The right parameters (weights and bias) will
create any linear decision boundary we want

> Training = process of finding the parameters to
solve our classification problem

— Basic idea: iteratively modify the parameters to
reduce the training loss

— Training loss: measure of difference between
predictions and labels on the training set

20

Gradient Descent

> Loss function
-~ Measure of difference between predictions and true labels

N
: : () = Prediction
L==§Z) _ D)2 v
i=o(y) t@W = True label

t
Sum over training samples

> i -
Gradient Descent: Gradient = direction

n oL of steepest descent
— = in L
d Wi

k = training step
n = learning rate or step size

Wk+1 = Wg

21

Training a Neural Network

> At each step k:

1. Classify each sample to get each y®
2. Compute the loss L

oL
aWk

4. Update the parameters using gradient descent

dL
Wi+1 = Wi — ﬂa—wk

3. Compute the gradient

22

Demo

> Perceptron training demo
— No bias (bias = 0)
— No test set (training samples only)

23

Part 2

DEEP NEURAL NETWORKS

Deep Neural Network

> A deep neural network (DNN) consists of many
layers of neurons (perceptrons)

» Each connection indicates a weight w

< o2
0 T
< lottedl! Whedhey
$CO et 0
X3 Q #\w"f’ﬁ /N ﬁ"’
x4 l

/)
T g OO
L

Lol
J ’l"‘»
(7

Hidden Layers

Output Layer
Input Layer

Image credit: http://www.opennn.net/

25

Combining Neurons

> A single neuron can only make a simple decision

> Feeding neurons into each other allows a DNN
to learn complex decision boundaries

X1

el

X3

x4

/i "
‘}é!\, YN

N7t vl N

i ehollgtg

B NG
2

Simple aw
Decisions

Complex
Decisions

Image credit: http://www.opennn.net/

26

Complex Decision Boundaries

2 units 4 units

05 1 -1 -0.5 o 05 1 -1

10 units

.5 1

5 units 20 units

Image credit: https://www.carl-olsson.com/fall-semester-2013/

27

Learning a Deep Neural Network

» Gradient Descent:

How to get 6_k for

this neuron? \

x1

m)
‘ au) \
v"“ O
- o) “»“ ’ \;'I’N
X3 . "‘"& 42“
gL
)
AW

\¢/
A'A
%

N ol

x4 ’A "

28

Backpropagation

> Backpropagation: use the chain rule from calculus to
propagate the gradients backwards through the network

X
b9 090f TN Fooy)
dx Of Ox y

\

99 g(f,h)
Og_aga_f }
h

dy ~ of dy

Inspired by course slides from L. Fei-Fei, J. Johnson, S. Yeung, CS231n at Stanford University 29

Stochastic Gradient Descent

» Remember Gradient Descent?
dL

w =W, — N—
k+1 k Ll dw,

> L must be computed over the entire training set, which
can be millions of samples!

» Stochastic Gradient Descent:

— At each set, only compute L for a minibatch (a few samples
randomly taken from the training set)

— SGD is faster and more accurate than GD for DNNs!

30

Part 3

CONVOLUTIONAL
NEURAL NETWORKS

Neural Networks for Images

» So far, we'’ve see networks built from
fully-connected layers

» These networks don’t work well for
images. Why?

.

S R I R

6 > Images are typically shift-invariant
(i.e. a 6 is a 6 even when shifted)

ON

> But a fully-connected neuron probably
6 won’t work when the input is shifted

32

The Convolutional Filter

1x1 1x0 1x1 0 0
Input Qo]m 1xo 15 = Output
Image 0x1 oxo 1x1 111 Feature map
0/[0|1(1]|0
0(1|1({0]|0

> Each neuron learns a weight filter and convolves the
filter over the image

» Each neuron outputs a 2D feature map
(basically an image of features)

Image credit: http://deeplearning.stanford.edu/wiki/index.php/Feature_extraction_using_convolution 33

The Convolutional Filter

1x1 1x0 1x1 0 0
Input Qo 1X1 1x0 = = Output
Image 0x1 oxo 1x1 111 Feature map
0/[0|1({1]|0
0(1|1({0]|0

» Each point in the feature map encodes both a decision
and its spatial location

> Detects the pattern anywhere in the image!

Image credit: http://deeplearning.stanford.edu/wiki/index.php/Feature_extraction_using_convolution 34

The Convolutional Layer

Input Feature Maps

Filters

2

-
Tt E~——

Output Feature Maps

» M input and N output feature maps
» Each output map uses M filters, 1 per input map

» M XN total filters

35

The Convolutional Layer

Filters

Input Feature Maps

1 for(row=0; row<R; row++) {

2 for(col=0; col<C; col++) {

3 for(to=0; to<N; to++) {

4 for(ti=0; ti<M; ti++) {

5 for(i=0; <I5; i++) {

6 for(j=0; <I¢; j++) {
output_fm[to][row][col] +=

weights[to][ti][i][j]*inp
33338,

-

[\I /%

-
T E~——

-
-

Output Feature Maps

Huge amount of
parallelism!

ut_fm[ti][S*row+i][S*col+j];

36

Convolutional Neural Network

l I —
[
- — — —

J\

= e o e e ~~w._ dog(0.01)
%ﬁt (0.04)
| | @ boat (0.94)
L - bird (0.02)
----- -D = SRR ”
J
|

Convolutional Layers Fully-connected Layers

> Front: convolutional layers learn visual features
> Feature maps get downsampled through the network

» Back: fully-connected layers perform classification using
the visual features

Image credit: http://www.wildml.com/2015/11/understanding-convolutional-neural-networks-for-nlp/ 37

Learning Complex Features

» Deep CNNs combine simple features into complex patterns
— Early conv layers = edges, textures, ridges
— Later conv layers = eyes, noses, mouths

Image credit: https://devblogs.nvidia.com/parallelforall/accelerate-machine-learning-cudnn-deep-neural-network-library/; H. Lee, R. Grosse, R.
Ranganath, and A. Y. Ng, “Unsupervised Learning of Hierarchical Representations with Convolutional Deep Belief Networks”, CACM Oct 2011

