
Introduction to Neural Networks

Yichi Zhang, Ritchie Zhao, Zhiru Zhang
School of Electrical and Computer Engineering

ECE 5997
Hardware Accelerator Design & Automation

Fall 2021

▸Neural networks have revolutionized the world
– Self-driving vehicles
– Advanced image recognition
– Game AI

1

Rise of the Machines

2

Rise of the Machines

▸Neural networks have revolutionized research

▸ 1950’s: First artificial neural networks created based on
biological structures in the human visual cortex

▸ 1980’s – 2000’s: NNs considered inferior to other,
simpler algorithms (e.g. SVM, logistic regression)

▸ Mid 2000’s: NN research considered “dead”, machine
learning conferences outright reject most NN papers

▸ 2010 – 2012: NNs begin winning large-scale image and
document classification contests, beating other methods

▸ 2012 – Now: NNs prove themselves in many industrial
applications (web search, translation, image analysis)

3

A Brief History

▸ Surpass human ability in image recognition

4

Things Neural Networks Can Do…

▸ Generate celebrities

5

Things Neural Networks Can Do…

▸ Art style transfer

6

Things Neural Networks Can Do…

https://deepart.io/

▸ Beat humans at DOTA 2 (>6.5k MMR)

7

Things Neural Networks Can Do…

https://openai.com/five/

CLASSIFICATION WITH
THE PERCEPTRON

Part 1

▸We’ll discuss neural networks for solving
supervised classification problems

9

Classification Problems

???

Inputs Predictions

Predict New Data

• Given a training set consisting
of labeled inputs

• Learn a function which maps
inputs to labels

• This function is used to predict
the labels of new inputs

Cat

Bird

Human

Inputs Labels

Training Set

▸ Inputs: Pairs of numbers ("!, "")
▸ Labels: 0 or 1

– binary decision problem

▸ Real-life analogue:
– Label = Raining or Not Raining
– !! = relative humidity
– !" = cloud coverage

10

A Simple Classification Problem

x1 x2 Label
-0.7 -0.6 0
-0.6 0.4 0
-0.5 0.7 1
-0.5 -0.2 0
-0.1 0.7 1
0.1 -0.2 0
0.3 0.5 1
0.4 0.1 1
0.4 -0.7 0
0.7 0.2 1

Training Set

11

Visualizing the Data

Plot of the data points

!!

!"
x1 x2 Label
-0.7 -0.6 0
-0.6 0.4 0
-0.5 0.7 1
-0.5 -0.2 0
-0.1 0.7 1
0.1 -0.2 0
0.3 0.5 1
0.4 0.1 1
0.4 -0.7 0
0.7 0.2 1

Training Set

▸ In this case, the data points can be classified with a
linear decision boundary

12

Decision Function

Goal: learn this
function

▸The perceptron is the simplest possible neural
network, containing only one neuron

▸Described by the following equation:

! = #(%
"#$

%
&"'" +))

13

The Perceptron

%# = weights
& = bias
' = activation function

▸A 2-input, 1-output perceptron:

14

Breaking Down the Perceptron

%$
'

%%
+

($

(%
)

&

Linear function of (= ($
(%

+(+ &

Non-linear function
“squashes” output to

the interval (0,1)

Output
Probability that
the label is 1

▸A 2-input, 1-output perceptron:

15

Breaking Down the Perceptron

%$
'

%%
+

($

(%
)

&

Humidity

Raining?
Cloud
Cover

Yes

No

▸The activation function σ is non-linear:

16

Activation Function

Unit Step Sigmoid ReLU

Hard Yes/No decision

Used in the first
perceptrons

Soft probability

Used in early
neural nets

Makes deep networks
easier to train

Used in modern deep nets

1
1 + (!" max(0, /)

▸ Let’s plot the 2-input perceptron (sigmoid activation)
) = '(%$($ +%%(% + &)

17

The Perceptron Decision Boundary

1# = 10
1$ = 10

1# = 5
1$ = 20

1# = 20
1$ = 5

Ratio of weights change the direction of the decision boundary

▸ Let’s plot the 2-input perceptron (sigmoid activation)
) = '(%$($ +%%(% + &)

18

The Perceptron Decision Boundary

5 = 0 5 = 5 5 = −5

Bias moves boundary away the from origin

▸ Let’s plot the 2-input perceptron (sigmoid activation)
) = '(%$($ +%%(% + &)

19

The Perceptron Decision Boundary

1# = 10
1$ = 10

1# = 5
1$ = 5

1# = 2
1$ = 2

Magnitude of weights change the steepness of the decision boundary

▸The right parameters (weights and bias) will
create any linear decision boundary we want

▸Training = process of finding the parameters to
solve our classification problem
– Basic idea: iteratively modify the parameters to

reduce the training loss
– Training loss: measure of difference between

predictions and labels on the training set

20

Finding the Parameters

▸ Loss function
– Measure of difference between predictions and true labels

& =(
#$%

&
(* # − , #)'

▸ Gradient Descent:

&./$ = &. − η ./
.&.

7 = training step
η = learning rate or step size

21

Gradient Descent

Sum over training samples

9 % = Prediction

Gradient = direction
of steepest descent

in :

; % = True label

▸At each step k:
1. Classify each sample to get each) #

2. Compute the loss -

3. Compute the gradient <=
<>!

4. Update the parameters using gradient descent

%?@$ = %? − η 0-
0%?

22

Training a Neural Network

▸Perceptron training demo
– No bias (bias = 0)
– No test set (training samples only)

23

Demo

DEEP NEURAL NETWORKS
Part 2

▸A deep neural network (DNN) consists of many
layers of neurons (perceptrons)

▸Each connection indicates a weight &

25

Deep Neural Network

Image credit: http://www.opennn.net/

Input Layer
Hidden Layers

Output Layer

▸A single neuron can only make a simple decision
▸Feeding neurons into each other allows a DNN

to learn complex decision boundaries

26

Combining Neurons

Image credit: http://www.opennn.net/

Simple
Decisions

Complex
Decisions

27

Complex Decision Boundaries

Image credit: https://www.carl-olsson.com/fall-semester-2013/

2 units 3 units 4 units

5 units 10 units 20 units

▸ Gradient Descent:

&./$ = &. − η ./
.&.

28

Learning a Deep Neural Network

-

How to get ()(*!
for

this neuron?

▸ Backpropagation: use the chain rule from calculus to
propagate the gradients backwards through the network

29

Backpropagation

1

(

)
1((,))
01
02

01
03 =

01
02
02
03

01
0* =

01
02
02
0*

Inspired by course slides from L. Fei-Fei, J. Johnson, S. Yeung, CS231n at Stanford University

2 2(1, ℎ)

ℎ

▸ Remember Gradient Descent?

&./$ = &. − η ./
.&.

▸ - must be computed over the entire training set, which
can be millions of samples!

▸ Stochastic Gradient Descent:
– At each set, only compute & for a minibatch (a few samples

randomly taken from the training set)
– SGD is faster and more accurate than GD for DNNs!

30

Stochastic Gradient Descent

CONVOLUTIONAL
NEURAL NETWORKS

Part 3

▸ So far, we’ve see networks built from
fully-connected layers

▸ These networks don’t work well for
images. Why?

▸ Images are typically shift-invariant
(i.e. a 6 is a 6 even when shifted)

▸ But a fully-connected neuron probably
won’t work when the input is shifted

32

Neural Networks for Images

33

The Convolutional Filter

Image credit: http://deeplearning.stanford.edu/wiki/index.php/Feature_extraction_using_convolution

Input
Image

Output
Feature map

▸ Each neuron learns a weight filter and convolves the
filter over the image

▸ Each neuron outputs a 2D feature map
(basically an image of features)

34

The Convolutional Filter

Image credit: http://deeplearning.stanford.edu/wiki/index.php/Feature_extraction_using_convolution

Input
Image

Output
Feature map

▸ Each point in the feature map encodes both a decision
and its spatial location

▸ Detects the pattern anywhere in the image!

▸4 input and 5 output feature maps
▸ Each output map uses 4 filters, 1 per input map
▸4×5 total filters

35

The Convolutional Layer

Filters

Output Feature MapsInput Feature Maps

! "

∗

36

The Convolutional Layer

Filters

Output Feature MapsInput Feature Maps

! "

∗

1 for(row=0; row<R; row++) {
2 for(col=0; col<C; col++) {
3 for(to=0; to<N; to++) {
4 for(ti=0; ti<M; ti++) {
5 for(i=0; i<K; i++) {
6 for(j=0; j<K; j++) {

output_fm[to][row][col] +=
weights[to][ti][i][j]*input_fm[ti][S*row+i][S*col+j];

}}}}}}

"

#

Huge amount of
parallelism!

▸ Front: convolutional layers learn visual features
▸ Feature maps get downsampled through the network
▸ Back: fully-connected layers perform classification using

the visual features

37

Convolutional Neural Network

Convolutional Layers Fully-connected Layers

Image credit: http://www.wildml.com/2015/11/understanding-convolutional-neural-networks-for-nlp/

▸ Deep CNNs combine simple features into complex patterns
– Early conv layers = edges, textures, ridges
– Later conv layers = eyes, noses, mouths

38

Learning Complex Features

Image credit: https://devblogs.nvidia.com/parallelforall/accelerate-machine-learning-cudnn-deep-neural-network-library/; H. Lee, R. Grosse, R.
Ranganath, and A. Y. Ng, “Unsupervised Learning of Hierarchical Representations with Convolutional Deep Belief Networks”, CACM Oct 2011

FIN

39

