
Resource Sharing
Pipelining

ECE 5997
Hardware Accelerator Design & Automation

Fall 2021

▸ Yichi Zhang (PhD TA) will give a tutorial on neural
networks next Tuesday in Rhodes 310

▸ Lab 3 is released (due 12/1)
– Go through the CORDIC tutorial asap

1

Announcements

▸ Resource sharing overview
– Sub-problems: functional unit, register, and connectivity binding

problems
– Key concepts: compatibility and conflict graphs

▸ Introduction to pipelining
– Common forms in hardware accelerators
– Throughput restrictions
– Dependence types

2

Agenda

High-level Programming
Languages

(C/C++, OpenCL, SystemC, ...)

Parsing

Transformations

RTL
generation

S0

S1

S2

S0

S1

S2

ab

z

d

3 cycles

*–

Control data flow graph
(CDFG)

Finite state machines with datapath

BB3

BB1

BB2

BB4

T F

+

-

*
+

*

if (condition) {
…

} else {
t1 = a + b;
t2 = c * d;
t3 = e + f;
t4 = t1 * t2;
z = t4 – t3;

}

Scheduling Binding

Allocation

Recap: A Typical HLS Flow

3

Intermediate
Representation (IR)

Resource Sharing and Binding

▸ Resource sharing enables reuse of hardware resources
to minimize cost, in resource usage/area/power
– Typically carried out by binding in HLS
– Other subtasks such allocation and scheduling greatly impact

the resource sharing opportunities

▸ Binding maps operations, variables, and/or data
transfers to the available resources
– After scheduling: decide resource usage and detailed

architecture (focus of this lecture)
– Before scheduling: affect both area and delay
– Simultaneous scheduling and binding: better result but more

expensive

4

▸ Functional unit (FU) binding
– Primary objective is to minimize the number of FUs
– Considers connection cost

▸ Register binding
– Primary objective is to minimize the number of registers
– Considers connection cost

▸ Connectivity binding
– Minimize connections by exploiting the commutative property of

some operations / FUs
– NP-hard

5

Binding Sub-problems

Sharing Conditions

▸ Functional units (registers) are shared by operations
(variables) of same type whose lifetimes do not overlap

▸ Lifetime: [birth-time, death-time)
– Operation: The whole execution time (if unpipelined)
– Variable: From the time this variable is defined to the time it is

last used

6

7

Operation Binding

Functional Unit Operations
Mul1 op1, op3

AddSub1 op2, op4

AddSub2 op5, op6

clock edge

×

×

+

+ +
−

2 31

a
b

c
d
e
f
g

op1
op2

op3

op4

op5

op6

Functional Unit Operations
Mul1 op1, op3

AddSub1 op2, op4, op6

AddSub2 op5

Binding 1 Binding 2

8

Register Binding

clock edge

×

×

+

+ +
−

2 31

a

b

c

d

e

f

g

Lifetime crossing clock edge;
Register Implied

9

Variable Lifetime Analysis

v1 [1, 2)
v2 [2, 3)
v3 [3, 4)

Variables v1, v2, and v3 can
share the same register

Variable lifetimes

clock edge

×

×

+

+ +
−

2 3 41

a

b

c
d
e
f
g

v1
v2

v3

▸ Operation/variables compatibility
– Same type, non-overlapping lifetimes

▸ Compatibility graph
– Vertices: operations/variables
– Edges: compatibility relation

▸ Conflict graph: Complement of compatibility graph

10

Compatibility and Conflict Graphs

a b

c

d

a b

c

d

A scheduled DFG
(operations have the
same type) Compatibility graph

a b

c

d

Conflict graph

Note: A compatibility/conflict graphs for variables/registers
can be constructed in a similar way

Clique Cover Number and Chromatic Number

▸ Compatibility graph
– Partition the graph into a minimum number of cliques

• Clique in an undirected graph is a subset of its vertices such that
every two vertices in the subset are connected by an edge

▸ Conflict graph
– Color the vertices by a minimum number of colors (chromatic

number), where adjacent vertices cannot use the same color

11

a b

c

d

a b

c

d

A scheduled DFG Clique partitioning on
compatibility graph

a b

c

d

Coloring on
conflict graph

Operations have same type

Example: Meeting Assignment Problem

Meeting Schedule (am)

A 9:00~11:00

B 9:30~10:00

C 10:00~11:00

D 11:00~11:30

12

9:30 10:00 10:30 11:00 11:309:00

A
B

C

D

Gantt chart

Conflict graph
(chromatic number?)

Compatibility graph
(max clique size?)

▸ Clique partitioning and graph coloring problems are
NP-hard on general graphs, with the exception of
perfect graphs

▸ Definition of perfect graphs
– For every induced subgraph, the size of the maximum (largest)

clique equals the chromatic number of the subgraph
– Examples: bipartite graphs, chordal graphs, etc.

• Chordal graphs: every cycle of four or more vertices has a chord,
i.e., an edge between two vertices that are not consecutive in the
cycle.

13

Perfect Graphs

▸ Intersection graphs of a (multi)set of intervals on a line
– Vertices correspond to intervals
– Edges correspond to interval intersection
– A special class of chordal graphs

14

Interval Graph

[Figure source: en.wikipedia.org/wiki/Interval_graph]

▸ Problem statement
– Given: Input is a group of intervals with starting and ending time
– Goal: Minimize the number of colors of the corresponding

interval graph

15

Left Edge Algorithm

Repeat
create a new color group c
Repeat

assign leftmost feasible interval to c
until no more feasible interval

until no more interval

Interval are sorted according to their left endpoints

Greedy algorithm, O(nlogn) time

Left Edge Demonstration

Lifetime intervals with a given schedule

Assign colors (or tracks)
using left edge algorithm

0 1 2 3 4 5 6 7

1
6

4
7

8

2

3
5

8

6

7 4

2

1

3

5

Corresponding
colored conflict graph

8

0 1 2 3 4 5 6 7 8

16

1 2 3

6 7 5

4

8

17

Binding Impact on Multiplexer Network

Functional Unit Operations

Mul1 op1, op3
AddSub1 op2, op4
AddSub2 op5, op6

clock cycle

×

×

+

+ +
−

2 3 41

a

b

c
d

e
f
g

op1
op2

op3

op4

op5

op6

Functional Unit Operations

Mul1 op1, op3
AddSub1 op2, op4, op6
AddSub2 op5

Binding 1 Binding 2

+

×

+

a

Mul1

AddSub1

AddSub2

d b e

c

f g
+

×

a

Mul1

AddSub1

d b e

c

+
AddSub2

f g

▸ Resource sharing directly impacts the complexity of
the resulting datapath
– # of functional units and registers, multiplexer networks, etc.

▸ Binding for resource usage minimization
– Left edge algorithm: greedy but optimal for DFGs
– NP-hard problem with the general form of CDFG
– Polynomial-time algorithm exists for SSA-based register

binding, although more registers are required

▸ Connectivity binding problem (e.g., multiplexer
minimization) is NP-Hard

18

Binding Summary

▸ Parallel processing
– Emphasizes concurrency by replicating a hardware structure

several times (Homogeneous)
• High performance is attained by having all structures execute simultaneously

on different parts of the problem to be solved

▸ Pipelining
– Takes the approach of decomposing the function to be

performed into smaller stages and allocating separate hardware
to each stage (Heterogeneous)
• Data/instructions flow through the stage of a hardware pipeline at a rate

(often) independent of the length of the pipeline

Parallelization Techniques

[source: Peter Kogge, The Architecture of Pipelined Computers]
19

▸ Operator pipelining
– Fine-grained pipeline (e.g., functional units, memories)
– Execute a sequence of operations on a pipelined resource

▸ Loop/function pipelining (focus of this class)
– Statically scheduled
– Overlap successive loop iterations / function invocations at a

fixed rate

▸ Task pipelining
– Coarse-grained pipeline formed by multiple concurrent

processes (often expressed in loops or functions)
– Dynamically controlled
– Start a new task before the prior one is completed

20

Common Forms of Pipelining

▸ Pipelined multi-cycle operations
– v3 and v4 can share the same pipelined multiplier (3 stages)

21

Operator Pipelining

+

×

×

-

+C0

C1

C2

C3

C4

C5

v1

v4

v2

v3

v5

Loop Pipelining

▸ Loop pipelining is one of the most important optimizations
for high-level synthesis
– Key metric: Initiation Interval (II) in # cycles
– Allows a new iteration to begin processing every II cycles, before the

previous iteration is complete

22

for (i = 0; i < N; ++i)
p[i] = x[i] * y[i];

II = 1

ld
ld

ld

× ×
×

×
×

×

st
st

st
ld – Load
st – Store

ldld

×

st

x[i] y[i]

p[i]

Pipeline schedule

Pipelining

▸ Given a 100-iteration loop with the loop body taking 50
cycles to execute
– If we pipeline the loop with II = 1, how many cycles do we need

to complete execution of the entire loop ?
– What about II = 2 ?

23

Pipeline Performance

▸ Function pipelining: Entire function is becomes a
pipelined datapath

24

Function Pipelining

void fir(int *x, int *y)
{
static int shift_reg[NUM_TAPS];
const int taps[NUM_TAPS] =

{1, 9, 14, 19, 26, 19, 14, 9, 1};
int acc = 0;
for (int i = 0; i < NUM_TAPS; ++i)

acc += taps[i] * shift_reg[i];
for (int i = NUM_TAPS - 1; i > 0; --i)

shift_reg[i] = shift_reg[i-1];

shift_reg[0] = *x;
*y = acc;

}

Pipeline the entire function of the FIR filter
(with all loops unrolled and arrays completely partitioned)

×

+

×

+

×

+

×

+

×

Task Pipelining

Gradient
WeightingH

Outer
Product

Gradient
Calculation

Velocity
Calculation

Tensor
CalculationV

gx
gy
gz

wy

wx

wz

oxy
oyy
oxx

oxz
oyz

txy tyy txxtxztyz

DVI

frame_in frame_out

velX
velY

linebuffer linebuffer

linebuffer

Gradient
WeightingV

wy

wx

wz

Tensor
CalculationH

txy
tyy
txx

txz
tyz

25

A coarse-grained pipeline for
the optical flow algorithm

▸ Resource limitations
– Limited compute resources
– Limited Memory resources (esp. memory port limitations)
– Restricted I/O bandwidth
– Low throughput of subcomponent
…

▸ Recurrences
– Also known as feedbacks, carried dependences
– Fundamental limits of the throughput of a pipeline

26

Restrictions of Pipeline Throughput

27

Resource Limitation

▸ Memory is a common source of resource contention
– e.g. memory port limitations

Only one memory read
port à 1 load / cycle

for (i = 1; i < N; ++i)
b[i] = a[i-1] + a[i];

Assuming ‘a’ and ‘b’ are held in
two different memories

cycle 1 cycle 2 cycle 3 cycle 4
i = 0 ld1 ld2 + st
i = 1 ld1 ld2 +II = 1

ld2

+

ld1

st

a[i-1]

b[i]

a[i]

Port conflict

cycle 1 cycle 2 cycle 3 cycle 4
i = 0 ld1

ld2
+ st

i = 1 ld1
ld2

+ st

▸ Recurrences restrict pipeline throughput
– Computation of a component depends on a previous result

from the same component

28

Recurrence Restriction

for (i = 1; i < N; ++i)
a[i] = a[i-1] + a[i];

II = 1

ld2

+

ld1

st

a[i-1]

a[i]

a[i]

ld – Load
st – Store

Assume chaining is not possible on memory
reads (i.e., ld) and writes (i.e., st) due to cycle
time constraint

▸More Pipelining

29

Next Lecture

▸These slides contain/adapt materials developed
by
– Prof. Deming Chen (UIUC)
– Prof. Jason Cong (UCLA)

30

Acknowledgements

