
Scheduling

ECE 5997
Hardware Accelerator Design & Automation

Fall 2021

▸Lab 2 due next Wed (Nov 10)

1

Announcements

▸ Unconstrained scheduling
– ASAP and ALAP

▸ Constrained scheduling
– Resource constrained scheduling (RCS)
– Exact formulations with integer linear programming (ILP)

2

Outline

▸ A topological sort (or order) of a directed graph is an
ordering of nodes where all edges go from an earlier
vertex (left) to a later vertex (right)

– Feasible if and only if the subject graph is a DAG

3

Recap: Topological Sort

a

c d

b
a cdb

High-level Programming
Languages

(C/C++, OpenCL, SystemC, ...)

Parsing

Transformations

RTL
generation

S0

S1

S2

S0

S1

S2

ab

z

d

3 cycles

*–

Control data flow graph
(CDFG)

Finite state machines with datapath

BB3

BB1

BB2

BB4

T F

+

-

*
+

*

if (condition) {
…

} else {
t1 = a + b;
t2 = c * d;
t3 = e + f;
t4 = t1 * t2;
z = t4 – t3;

}

Scheduling Binding

Allocation

Recap: A Typical HLS Flow

4

Intermediate
Representation (IR)

Importance of Scheduling

▸ Scheduling is a central problem in HLS
– Introduces clock boundaries to untimed (or partially timed)

input specification

– Has significant impact on the quality of results
• Frequency
• Latency
• Throughput
• Area
• Power
…

5

Scheduling: Untimed to Timed
Latency Area Throughput

Untimed Combinational Sequential Pipelined

+

+

in1

+

out1

in2 in3 in4

+

+

in1

+

out1

in2 in3 in4

add

clk1

addclk

AA
t1T
d3t

*3
/

1 =
=

*» tclk ≈ dadd + dsetup
T2 =1/ (3* tclk)
A2 = Aadd + 2*Areg regadd

clk3

setupaddclk

AAA
tT

ddt

*6*3
/1

3 +=
=

+»

+

+

in

+

out

3

2

1

4

3

2

1 2

1

()in4in3,in2,in1,fout1=

in1

+

out1

in2 in3 in4

REG

6

Control-Data
Flow Graph

▸ Control data flow graph (CDFG)
– Generated by a compiler front end

from high-level description
– Nodes

• Operations (and pseudo operations)
– Directed edges

• Data edges, control edges,
precedence edges

▸ Without control flow, the basic
structure is a data flow graph
(DFG)

7

Scheduling Input

xl = x+dx;
ul = u-3*x*u*dx-3*y*dx
yl = y+u*dx
c = xl<a;
x = xl; u = ul; y = yl;

+´´´´

´ ´ + <
-

-

▸ Scheduling: map operations to states
▸ Each clock cycle corresponds to a state in the FSM

– Commonly referred to as control step (c-step)

8

Scheduling Output

+

´

´

´´

´

´

+ <

-

-

1

2

3

4

v2v1

v3

v4

v5

v6

v7 v8

v9

v10

v11

s1

s2

s3

s4

v1, v2

v3, v6, v10

v4, v7, v8

v5, v9, v11

clk

clk

clk

DFG FSM or State Transition
Diagram (STG)

▸ Only consideration: dependence

▸ As soon as possible (ASAP)
– Schedule an operation to the earliest possible step

▸ As late as possible (ALAP)
– Schedule an operation to the earliest possible step, without

increasing the total latency

9

Unconstrained Scheduling

10

Y = ((a*b)+c)+(d*e)-(f+g)

ASAP(G(V, E)):
V ’ = Topological_Sort(G)
foreach vi in V ’:

// Primary inputs (PIs) to first cycle
if vi Î PIs: ti = 1
// Assume no chaining & single-cycle operations
else: ti = max(tj + 1); // (vj , vi) Î E

control step
2 3 41

×

×

+

+ +
−

a
b

c
d
e
f
g

ASAP Schedule
Assumption: Node delay = Cycle time

The start time for each
operation is the least
one allowed by the
dependencies

11

ALAP(G(V, E), L): // L is the latency bound
V ’ = Reverse_Topological_Sort(G)
foreach vi in V ’:
// Primary outputs (POs) to last cycle
if vi Î POs: ti = L
// Assume no chaining & single-cycle operations
else: ti = min(tj) - 1; // (vi , vj) Î E

control step

×

×

+

+ +
−

2 3 41

a
b

c
d
e
f
g

Y = ((a*b)+c)+(d*e)-(f+g)

ALAP Schedule
Assumption: Node delay = Cycle time

The end time of each
operation is the latest
one allowed by the
dependencies and the
latency constraint

▸ Constrained scheduling
– General case NP-hard
– Resource-constrained scheduling (RCS)

• Minimize latency given constraints on area or resources
– Time-constrained scheduling (TCS)

• Minimize resources subject to bound on latency

▸ Exact methods
– Integer linear programming (ILP)
– Hu’s algorithm for a very restricted problem

▸ Heuristics
– List scheduling
– Force-directed scheduling
– SDC-based scheduling
…

12

Constrained Scheduling

▸ Linear programming (LP) solves the problem of
maximizing or minimizing a linear objective function
subject to linear constraints

– Efficiently solvable both in theory and in practice

▸ Integer linear programming (ILP): in addition to linear
constraints and objective, the values for the variables
have to be integer

– NP-Hard in general (A special case, 0-1 ILP)
– Modern ILP solvers can handle problems with nontrivial size

▸ Enormous number of problems can be expressed in LP
or ILP

13

Linear Programming

14

Canonical Form of ILP
maximize c1x1+c2x2+…+cnxn // objective function
subject to // linear constraints

a11x1+a12x2+…+a1nxn £ b1
a21x1+a22x2+…+a2nxn £ b2
….
am1x1+am2x2+…+amnxn £ bm
xi ≥ 0
xi Î Z

maximize cTx // c = (c1, c2, …, cn)
subject to

Ax ≤ b // A is a mxn matrix; b = (b1, b2, …, bn)
x ≥ 0
xi Î Z

Vector form

15

Example: Course Selection Problem

▸ A student is about to finalize course selection for the
coming semester, given the following information:

– Minimum credits per semester: 8

Schedule Credits Est. workload
(per week)

1. Big data analytics MW 2:00-3:30pm 3 8 hrs

2. How to build a start-up TT 2:00-3:00pm 2 4 hrs

3. Linear programming MW 9:00-11:00am 4 10 hrs

4. Analog circuits TT 1:00-3:00pm 4 12 hrs

Question: Which courses to take to minimize the amount of work?

▸ Define decision variables
(i = 1, 2, 3, 4):

▸ The total expected work hours:
▸ The total credits taken:
▸ Account for the schedule conflict:

▸ Complete ILP formulation (in canonical form):
minimize 8x1+4x2+10x3+12x4

s.t. 3x1+2x2+4x3+4x4 ≥ 8
x2+x4 ≤ 1
xi Î {0,1}

16

ILP Formulation for Course Selection

xi =
1 if course i is taken
0 if not

!
"
#

$#

Time CRs Work

1. Big data MW 2-
3:30pm

3 8 hrs

2. Start-up TT 2-3pm 2 4 hrs

3. Linear prog. MW 9-
11am

4 10 hrs

4. Analog TT 1-3pm 4 12 hrs

8x1+4x2+10x3+12x4
3x1+2x2+4x3+4x4
x2+x4 ≤ 1

▸When functional units are limited
– Each functional unit can only perform one operation

at each clock cycle
• e.g., if there are only K adders, no more than K additions can

be executed in the same c-step

▸A typical resource-constrained scheduling
problem for DFG
– Given the number of functional units of each type,

minimize latency (in cycles)
– NP-hard

17

Resource Constrained Scheduling (RCS)

▸Use binary decision variables
– xik = 1 if operation i starts at step k, otherwise = 0

• i = 1, … N, N is the total number of operations
• k = 1, …, L, L is the given upper bound on latency

ILP Formulation of RCS

ti = kxik
k=1

L

∑

18

ti indicates the start time of operation i

▸ Linear constraints:

– Unique start times:

– Dependence must be satisfied (no chaining)

ILP Formulation of RCS: Constraints (1)

xik =1, i =1,2,...,N
k
∑

19

vj must not start before vi completes
since vj depends on vi

t j ≥ ti + di +1:∀(vi,vj)∈ E⇒ k x jk
k
∑ ≥ k xik +

k
∑ di +1

▸ di : latency of operation i
– di = 1 means a single-cycle operation
– di > 1 indicates a multi-cycle operation

Start Time vs. Time(s) of Execution

▸ When di = 1, the following questions are the same:
– Does operation i start at step k
– Is operation i running at step k

▸ But if di > 1, the two questions should be formulated as:
– Does operation i start at step k

• Check if xik is 1
– Is operation i running at step k

• Check if the following hold

20

xil
l=k−di

k

∑ =1
?

▸ Is v9 (d9 = 3) running at step 6?
If and only if x9,6 + x9,5 + x9,4 equals 1

▸ Note:
– Only one (if any) of the above three cases can happen
– To meet resource constraints, we have to ask the same question

for ALL steps, and ALL operations of that type

4
5
6

x9,4=1

v9

4
5
6

x9,5=1

v9v9

4
5
6

x9,6=1

21

Operation vi Still Running at Step k ?

▸ Linear constraints:

– Unique start times:

– Dependence must be satisfied (no chaining)

– Resource constraints

ILP Formulation of RCS: Constraints (2)

xik =1, i =1,2,...,N
k
∑

22

RT(vi) : resource type ID of operation vi (between 1~nres)
ar is the number of available resources for resource of type r

xil
l=k−di

k

∑
i:RT (vi)=r
∑ ≤ ar, r =1,...,nres, k =1,...,L

t j ≥ ti + di +1:∀(vi,vj)∈ E⇒ k x jk
k
∑ ≥ k xik +

k
∑ di +1

▸Objective: min cTt
– t = start times vector, c = cost weight (e.g., [0 ...0 1])

▸To minimize the overall latency, we can introduce a
pseudo node to serve as a unique sink (vN+1)
– This sink depends on the original primary output nodes
– We then minimize the start time of the sink node

23

ILP Formulation of RCS: Objective

+

´

´

´´

´

´

+ <

-

-

sink

v2v1

v3

v4

v5

vN+1

v6

v7 v8

v9

v10

v11

å
=

+•
L

k
kNxk

1
,1min tN+1 min

▸ Two operations: v1 and v2
– Each operate has a full-cycle delay
– No operation chaining allowed
– L = 3, i.e., a three-cycle scheduling window

▸ Objective: ASAP (no resource constraints here)
▸ Write down the ILP formulation

24

Exercise: ILP for ASAP Scheduling

´

+

v1

v2

▸ In general, the following will help the ILP solver run
faster

– Minimize # of variables and constraints
– Simplify the constraints

▸ We can write the ILP without ASAP and ALAP, but using
ASAP and ALAP will simplify the inequalities

+´´´´

´ ´ + <

-

-

1

2

3

4

v2v1

v3

v4

v5

v6

v7

v8

v9

v10

v11

+´

´

´´

´

´

+ <

-

-

1

2

3

4

v2v1

v3

v4

v5

v6

v7 v8

v9

v10

v11

25

Use of ASAP and ALAP

ASAP schedule ALAP schedule

x1,1 + x1,2 + x1,3 + x1,4 =1
x2,1 + x2,2 + x2,3 + x2,4 =1
...
x11,1 + x11,2 + x11,3 + x11,4 =1

26

ILP Formulation: Unique Start Time Constraints

x1,1 =1
x2,1 =1
x3,2 =1
...
x6,1 + x6,2 =1
...
x9,2 + x9,3 + x9,4 =1
...

▸ Without using ASAP and ALAP ▸ Using ASAP and ALAP

))(),((
0

i
L
ii

S
i

L
i

S
iil

vALAPtvASAPt
tlandtlforx

==

><=

+´´´´

´ ´ + <

-

-

1

2

3

4

v2v1

v3

v4

v5

v6

v7

v8

v9

v10

v11

+´

´

´´

´

´

+ <

-

-

1

2

3

4

v2v1

v3

v4

v5

v6

v7 v8

v9

v10

v11

assume L=4

ILP Formulation: Dependence Constraints

▸ Using ASAP and ALAP, the non-trivial inequalities are:
(assuming no chaining and single-cycle ops)

2x7,2 +3x7,3 − x6,1 − 2x6,2 −1≥ 0
2x9,2 +3x9,3 + 4x9,4 − x8,1 − 2x8,2 −3x8,3 −1≥ 0

2x11,2 +3x11,3 + 4x11,4 − x10,1 − 2x10,2 −3x10,3 −1≥ 0
4x5,4 − 2x7,2 −3x7,3 −1≥ 0

5xn,5 − 2x9,2 −3x9,3 − 4x9,4 −1≥ 0
5xn,5 − 2x11,2 −3x11,3 − 4x11,4 −1≥ 0

27

+´´´´

´ ´ + <

-

-

1

2

3

4

v2v1

v3

v4

v5

v6

v7

v8

v9

v10

v11

+´

´

´´

´

´

+ <

-

-

1

2

3

4

v2v1

v3

v4

v5

v6

v7 v8

v9

v10

v11

assume L=4

ILP Formulation: Resource Constraints
▸ Resource constraints (assuming 2 ALUs and 2 multipliers)

2
2
2
2
2
2
2

4,114,94,5

3,113,103,93,4

2,112,102,9

1,10

3,83,7

2,82,72,62,3

1,81,61,21,1

£++

£+++

£++

£

£+

£+++

£+++

xxx
xxxx
xxx
x
xx
xxxx
xxxx

28

+´´´´

´ ´ + <

-

-

1

2

3

4

v2v1

v3

v4

v5

v6

v7

v8

v9

v10

v11

+´

´

´´

´

´

+ <

-

-

1

2

3

4

v2v1

v3

v4

v5

v6

v7 v8

v9

v10

v11

assume L=4

▸Pros: versatile modeling ability
– Can be extended to handle almost every design

aspects
• Resource allocation
• Module selection
• Area, power, etc.

▸Cons: computationally expensive
– #variables = O(#nodes * #c-steps)
– 0-1 assignment variables: need extensive search to

find optimal solution

29

ILP Summary

▸More scheduling algorithms

30

Next Lecture

▸These slides contain/adapt materials developed
by
– Ryan Kastner (UCSD)

31

Acknowledgements

