ECE 5997
Hardware Accelerator Design & Automation
Fall 2021

Scheduling

Announcements

» Lab 2 due next Wed (Nov 10)

Outline

> Unconstrained scheduling
~ ASAP and ALAP

» Constrained scheduling
— Resource constrained scheduling (RCS)
— Exact formulations with integer linear programming (ILP)

Recap: Topological Sort

> A topological sort (or order) of a directed graph is an
ordering of nodes where all edges go from an earlier
vertex (left) to a later vertex (right)
— Feasible if and only if the subject graph is a DAG

Recap: A Typical HLS Flow

High-level Programming
Languages
(C/C++, OpenCL, SystemC, ...)

Parsing

J———— Intermediate

I Representation (IR)
Transformations - >
|
Allocation
Scheduling‘ Binding
e -
RTL
generation

if (condition) {

} élse {
t; = a + b;
t, = ¢ * d;
t; = e + f;
ty =t * oty
z =t - t3;
(")
) &
)
@
e
Control data flow graph
BB
(CDFG)

Q.
-

(59
}
¢
|
2

3 cycles

s,

_sg

\/

'

4

s3 \

4_

e

l

Finite state machines with datapath A

Importance of Scheduling

» Scheduling is a central problem in HLS

— Introduces clock boundaries to untimed (or partially timed)
input specification

—~ Has significant impact on the quality of results
* Frequency
- Latency
» Throughput
- Area
* Power

Scheduling: Untimed to Timed

Latency

inl in2 in3 in4 inl in2 in3 in4

outl outl

Control-Data
Flow Graph

Ly & 3%d 4y
outl=f (in] ,inZ,in3,in4)

Tz —]/tclk
Al =3* Aadd
Untimed Combinational

Area

inl in2 in3 in4

L1 [|
}

—P»| REG

outl

tclk = dadd + dsetup
T,=1/(3%*t,)
AZ = Aadd + 2 ¥ Areg

Sequential

Throughput

in

out

Ly R dy,+d

setup

I;=1/t,

A,=3%4 , +6*Areg
Pipelined

Scheduling Input

» Control data flow graph (CDFG)

— Generated by a compiler front end X=xkd
from high-level description ul'=u-3 o dx-37y"dx
yl = y+u*dx

— Nodes ¢ = xla;

- Operations (and pseudo operations) | x=x;u=ul;y =yl
— Directed edges

- Data edges, control edges,

precedence edges

) 0 & % g
» Without control flow, the basic ¥ 2
structure is a data flow graph ©
(DFG) S

Scheduling Output

» Scheduling: map operations to states

» Each clock cycle corresponds to a state in the FSM
— Commonly referred to as control step (c-step)
@ vi, v2

clk

@ V3, V6, V10

clk

|:> @ v4, v7, v8

clk

(s4) v5,v9, v11

DFG FSM or State Transition
Diagram (STG)

Unconstrained Scheduling

> Only consideration: dependence

> As soon as possible (ASAP)

— Schedule an operation to the earliest possible step

> As late as possible (ALAP)

— Schedule an operation to the earliest possible step, without
increasing the total latency

ASAP Schedule

Assumption: Node delay = Cycle time

Y = ((a*b)+c)+(d*e)-(f+g)

g
1 2 3 4
control step
ASAP(G(V, E)): The start time for each
V'’ = Topological_Sort(G) operation is the least
foreach v;in V' one allowed by the
// Primary inputs (PIs) to first cycle dependencies
if vie Pls: t=1
// Assume no chaining & single-cycle operations
else: ti=max(t + 1);// (v;, vi) € E
10

ALAP Schedule

Assumption: Node delay = Cycle time

d :
o L Y = ((a*b)+c)+(d*e)-(f+q)
: i
g :
1 ; 2 3 4
control step
ALAP(G(V, E), L): // Lis the latency bound The end time of each
V'’ = Reverse_Topological_Sort(G) operation is the latest
foreach v;in V" one allowed by the
// Primary outputs (POs) to last cycle dependencies and the
if vie POs:t=1L latency constraint
// Assume no chaining & single-cycle operations
else: ti=min(t)-1;//(vi, v;) € E
11

Constrained Scheduling

» Constrained scheduling
— General case NP-hard

— Resource-constrained scheduling (RCS)
- Minimize latency given constraints on area or resources

— Time-constrained scheduling (TCS)
« Minimize resources subject to bound on latency

» Exact methods
— Integer linear programming (ILP)
— Hu’s algorithm for a very restricted problem

> Heuristics
— List scheduling
— Force-directed scheduling
— SDC-based scheduling

12

Linear Programming

> Linear programming (LP) solves the problem of
maximizing or minimizing a linear objective function

subject to linear constraints
— Efficiently solvable both in theory and in practice

> Integer linear programming (ILP): in addition to linear
constraints and objective, the values for the variables
have to be integer
- NP-Hard in general (A special case, 0-1 ILP)
— Modern ILP solvers can handle problems with nontrivial size

» Enormous number of problems can be expressed in LP
or ILP

13

Canonical Form of ILP

maximize c;X{+C,X»+...+C.X,, // objective function
subject to // linear constraints
A1Xq+a1oXo+. .. +21 X, < Dy
Ao X +AooXo+. .. +8o X, < Dy

A1 X1+amoXot. .. +am X, < D
X; =0
Xi & Z

Vector form

maximize c'x //c=(c, Cs, ..., C,)
subject to
Ax<Db // A'is a mxn matrix; b = (b4, b,, ..., b;)

x=0
XiEZ

14

Example: Course Selection Problem

> A student is about to finalize course selection for the
coming semester, given the following information:

— Minimum credits per semester: 8

Schedule Credits | Est. workload
(per week)
1. Big data analytics MW 2:00-3:30pm 3 8 hrs
2. How to build a start-up TT 2:00-3:00pm 2 4 hrs
3. Linear programming MW 9:00-11:00am 4 10 hrs
4. Analog circuits TT 1:00-3:00pm 4 12 hrs

Question: Which courses to take to minimize the amount of work?

15

ILP Formulation for Course Selection

>

v

v

Time CRs Work

Deflne decision variables 1 Big data Wz | 3 | 8hr
(i=1,2,3,4): 3:300m

2. Start-up TT 2-3pm 2 4 hrs

X. = 1 lf Course1 18 taken 3. Linear prog. MW 9- 4 10 hrs
i~ 0 if ¢ 11am

11 no 4. Analog TT 1-3pm 4 12 hrs

The total expected work hours: 8x;+4x,+10x5+12x,4

The total credits taken:

Account for the schedule conflict: x,+x, < 1

Complete ILP formulation (in canonical form):

minimize 8Xx,+4x,+10x3+12X,

s.t. 3xy+2x,+4X5+4x,2 8

Xpo+X, < 1
Xi € {0,1}

3X1 +2X2+4X3+4X4

16

Resource Constrained Scheduling (RCS)

» When functional units are limited

— Each functional unit can only perform one operation
at each clock cycle

° e.g., if there are only K adders, no more than K additions can
be executed in the same c-step

> A typical resource-constrained scheduling
problem for DFG

— Given the number of functional units of each type,
minimize latency (in cycles)

— NP-hard

17

ILP Formulation of RCS

» Use binary decision variables
- x; = 1 if operation i starts at step k, otherwise =0
- 1=1,... N, Nis the total number of operations
*k=1,...,L, Listhe given upper bound on latency

L
t = zkxik
k=1

t; indicates the start time of operation i

18

ILP Formulation of RCS: Constraints (1)

» Linear constraints:

— Unique start times: Exik =], i1=12,...N
k

— Dependence must be satisfied (no chaining)
tzt;+d, V(v,v,)EE= Ek Xy 2 Ek X, +d,
k k

4

v; must not start before v; completes
since v;depends on v;

> d.: latency of operation i
- d;=1 means a single-cycle operation

- d;> 1 indicates a multi-cycle operation
19

Start Time vs. Time(s) of Execution

» When d; = 1, the following questions are the same:

— Does operation i start at step k
— Is operation i running at step k

» But if d; > 1, the two questions should be formulated as:

— Does operation : start at step k
+ Check if xj, is 1

— Is operation i running at step k
+ Check if the following hold

k ?

El, Xy =

I=k—d;+]

20

Operation v; Still Running at Step k ?

> IS v4 (dy = 3) running at step 6?
If and only if X9 6 + X9 5 + X9 4 €quals 1

; ; T
- N 2_/_ 2_\%/_
—/ ° S

Xo,6=1 X95=1 X9,4=1

> Note:
— Only one (if any) of the above three cases can happen

— To meet resource constraints, we have to ask the same question
for ALL steps, and ALL operations of that type

21

ILP Formulation of RCS: Constraints (2)

» Linear constraints:

— Unique start times: Exik =1, i=12,...N
k

— Dependence must be satisfied (no chaining)

tzt;+d, V(v,v,)EE= Ek Xy 2 Ek X, +d,
k k

— Resource constraints

k
2 2 x,<a., r=1,...,n_ , k=1,..,L

lRT(Vl)=l’ l=k—dl+‘

RT(v,) : resource type ID of operation v, (between 1~n,)
a, is the number of available resources for resource of type r

22

ILP Formulation of RCS: Objective

> Objective: min c't
— t = start times vector, ¢ = cost weight (e.g., [0 ...0 1])

> To minimize the overall latency, we can introduce a
pseudo node to serve as a unique sink (V1)
— This sink depends on the original primary output nodes
-~ We then minimize the start time of the sink node

L

min ty,;, > min ZkOxNHk

Exercise: ILP for ASAP Scheduling
> Two operations: v, and v,

— Each operate has a full-cycle delay
— No operation chaining allowed

- L =3, i.e., athree-cycle scheduling window

> Obijective: ASAP (no resource constraints here)
> Write down the ILP formulation

Vi @
qe

24

Use of ASAP and ALAP

> In general, the following will help the ILP solver run
faster
— Minimize # of variables and constraints
— Simplify the constraints

> We can write the ILP without ASAP and ALAP, but using
ASAP and ALAP will simplify the inequalities

ASAP schedule ALAP schedule

25

ILP Formulation: Unique Start Time Constraints

x,=0 for 1<t and >t

(t5 = ASAP(v), t" = ALAP(v.))

> Without using ASAP and ALAP > Using ASAP and ALAP
=1 X =
Xigt X, X3+ X,
Xy, = 1
Xy ¥ Xy + Xyt X, =1 X, =
_ X, +x.,=1
Xipg ¥ X T X3 X4 = 1 6.1 © 76,2

Xg, +Xg5+ Xy, =1

assume L=4

26

ILP Formulation: Dependence Constraints

» Using ASAP and ALAP, the non-trivial inequalities are:

(assuming no chaining and single-cycle ops)
2x,,+3X,,— X, —2x4,-120
2Xg, +3Xg5 + 44Xy, — X —2X5, —=3%5, 120
2%, + 3% 3+ 4%, =X —2X0, = 3X,,; =120
4x5,—2x,,-3x,,-120

5X, 52Xy, = 3xg,—4x,, 120

an,s - 2x11,2 - 33511,3 - 4x11,4 -1=0

assume L=4

27

ILP Formulation: Resource Constraints

» Resource constraints (assuming 2 ALUs and 2 multipliers)
X X, X +HXg 2

XyotXg, +X5,+ X, <2
Xg3+Xg3 <2

Xjgg S 2

Xop +Xygp +X),S2

Xgz3 T Xg3 T X953+ X3 <2

XsqgtXg 4T X4 <2

assume L=4

28

ILP Summary

> Pros: versatile modeling ability

— Can be extended to handle almost every design
aspects

* Resource allocation
* Module selection
* Area, power, etc.

» Cons: computationally expensive

— #variables = O(#nodes * #c-steps)

- 0-1 assignment variables: need extensive search to
find optimal solution

29

Next Lecture

» More scheduling algorithms

30

Acknowledgements

> These slides contain/adapt materials developed

by
— Ryan Kastner (UCSD)

31

