ECE 5997 Hardware Accelerator Design & Automation Fall 2021

Scheduling

Cornell University

Announcements

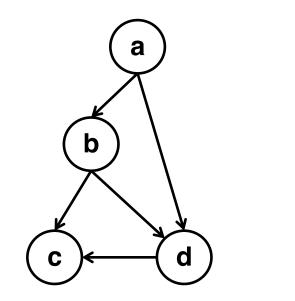
Lab 2 due next Wed (Nov 10)

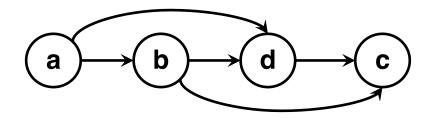
Outline

- Unconstrained scheduling
 - ASAP and ALAP
- Constrained scheduling
 - Resource constrained scheduling (RCS)
 - Exact formulations with integer linear programming (ILP)

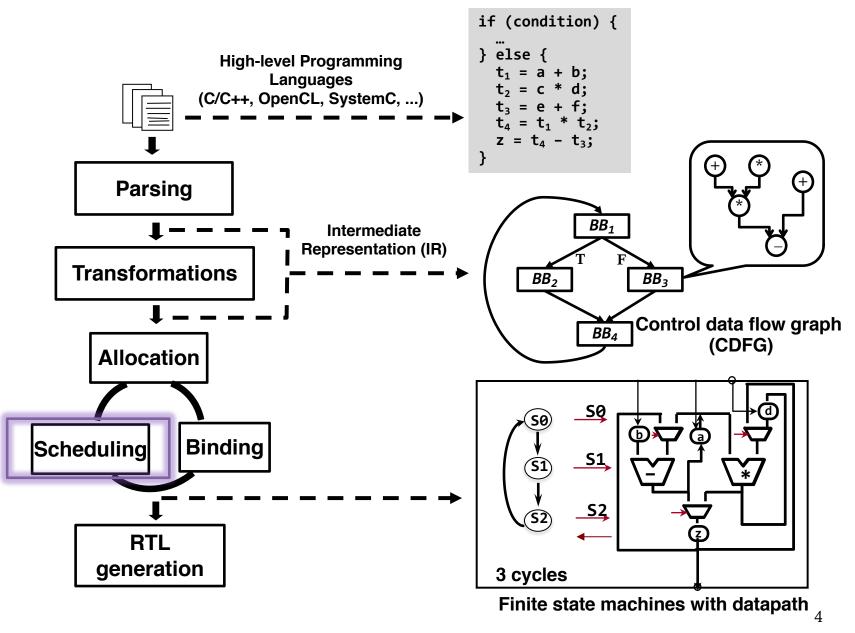
Recap: Topological Sort

- A topological sort (or order) of a directed graph is an ordering of nodes where all edges go from an earlier vertex (left) to a later vertex (right)
 - Feasible if and only if the subject graph is a DAG





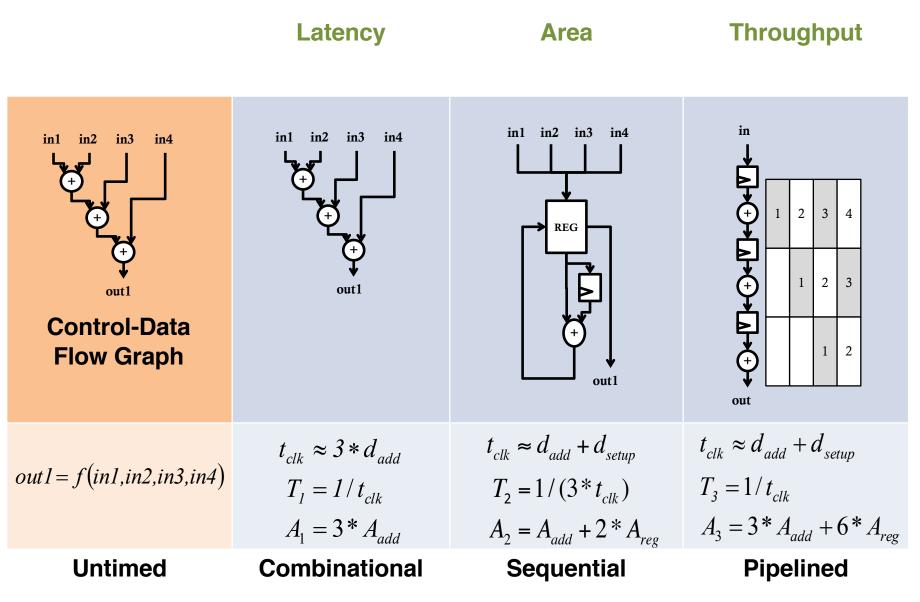
Recap: A Typical HLS Flow



Importance of Scheduling

- Scheduling is a central problem in HLS
 - Introduces clock boundaries to untimed (or partially timed) input specification
 - Has significant impact on the quality of results
 - Frequency
 - Latency
 - Throughput
 - Area
 - Power
 - • •

Scheduling: Untimed to Timed

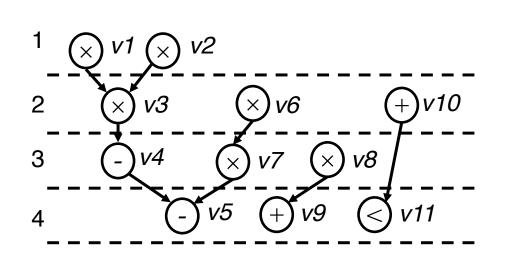


Scheduling Input

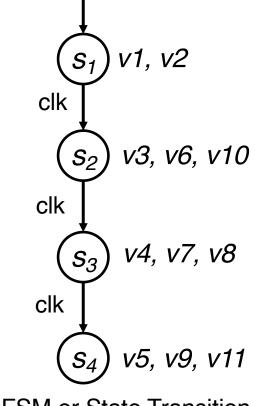
- Control data flow graph (CDFG)
 - Generated by a compiler front end from high-level description
 - Nodes
 - Operations (and pseudo operations)
 - Directed edges
 - Data edges, control edges, precedence edges
- Without control flow, the basic structure is a data flow graph (DFG)

Scheduling Output

- Scheduling: map operations to states
- Each clock cycle corresponds to a state in the FSM
 - Commonly referred to as control step (c-step)



DFG

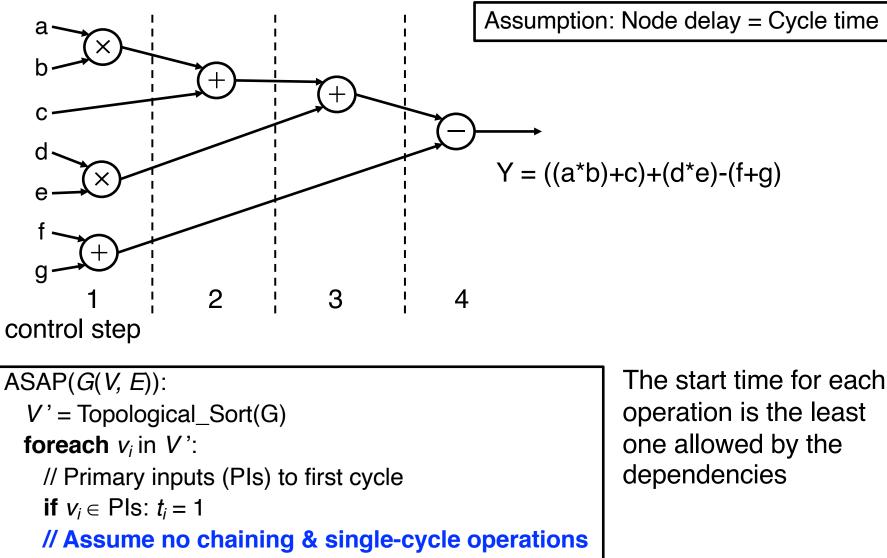


FSM or State Transition Diagram (STG)

Unconstrained Scheduling

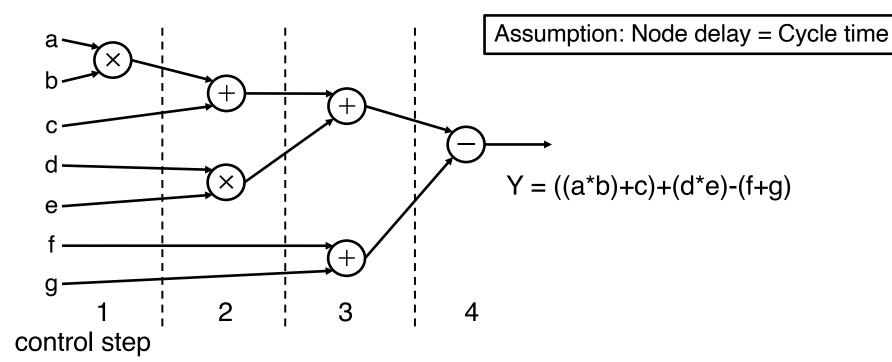
- Only consideration: dependence
- As soon as possible (ASAP)
 - Schedule an operation to the earliest possible step
- As late as possible (ALAP)
 - Schedule an operation to the earliest possible step, without increasing the total latency

ASAP Schedule



else: $t_i = \max(t_j + 1)$; // $(v_j, v_i) \in E$

ALAP Schedule



ALAP(G(V, E), L): // L is the latency bound $V' = \text{Reverse}_\text{Topological}_\text{Sort}(G)$ foreach v_i in V': // Primary outputs (POs) to last cycle if $v_i \in \text{POs}$: $t_i = L$ // Assume no chaining & single-cycle operations else: $t_i = \min(t_i) - 1$; // $(v_i, v_i) \in E$ The end time of each operation is the latest one allowed by the dependencies and the latency constraint

Constrained Scheduling

- Constrained scheduling
 - General case NP-hard
 - Resource-constrained scheduling (RCS)
 - Minimize latency given constraints on area or resources
 - Time-constrained scheduling (TCS)
 - Minimize resources subject to bound on latency
- Exact methods
 - Integer linear programming (ILP)
 - Hu's algorithm for a very restricted problem
- Heuristics

. . .

- List scheduling
- Force-directed scheduling
- SDC-based scheduling

Linear Programming

- Linear programming (LP) solves the problem of maximizing or minimizing a linear objective function subject to linear constraints
 - Efficiently solvable both in theory and in practice
- Integer linear programming (ILP): in addition to linear constraints and objective, the values for the variables have to be integer
 - NP-Hard in general (A special case, 0-1 ILP)
 - Modern ILP solvers can handle problems with nontrivial size
- Enormous number of problems can be expressed in LP or ILP

Canonical Form of ILP

 $\label{eq:ctorform} \begin{array}{l} \hline \underline{Vector\ form} \\ \hline \textbf{maximize}\ \ c^{\mathsf{T}}x \quad //\ c = (c_1,\,c_2,\,\ldots,\,c_n) \\ \hline \textbf{subject\ to} \\ Ax \leq b \qquad //\ A\ is\ a\ mxn\ matrix;\ b = (b_1,\,b_2,\,\ldots,\,b_n) \\ x \geq 0 \\ x_i \in \textbf{Z} \end{array}$

Example: Course Selection Problem

- A student is about to finalize course selection for the coming semester, given the following information:
 - Minimum credits per semester: 8

	Schedule	Credits	Est. workload (per week)
1. Big data analytics	MW 2:00-3:30pm	3	8 hrs
2. How to build a start-up	TT 2:00-3:00pm	2	4 hrs
3. Linear programming	MW 9:00-11:00am	4	10 hrs
4. Analog circuits	TT 1:00-3:00pm	4	12 hrs

Question: Which courses to take to minimize the amount of work?

ILP Formulation for Course Selection

Define decision variables (i = 1, 2, 3, 4):

 $\mathbf{x}_{i} = \begin{cases} 1 & \text{if course } i \text{ is taken} \\ 0 & \text{if not} \end{cases}$

	Time	CRs	Work
1. Big data	MW 2- 3:30pm	3	8 hrs
2. Start-up	TT 2-3pm	2	4 hrs
3. Linear prog.	MW 9- 11am	4	10 hrs
4. Analog	TT 1-3pm	4	12 hrs

- The total expected work hours: 8x₁+4x₂+10x₃+12x₄
- The total credits taken:
- Account for the schedule conflict: $x_2 + x_4 \le 1$
- Complete ILP formulation (in canonical form): minimize 8x₁+4x₂+10x₃+12x₄

s.t.
$$3x_1 + 2x_2 + 4x_3 + 4x_4 \ge 8$$

 $x_2 + x_4 \le 1$
 $x_i \in \{0, 1\}$

 $3x_1+2x_2+4x_3+4x_4$

Resource Constrained Scheduling (RCS)

- When functional units are limited
 - Each functional unit can only perform one operation at each clock cycle
 - e.g., if there are only K adders, no more than K additions can be executed in the same c-step
- A typical resource-constrained scheduling problem for DFG
 - Given the number of functional units of each type, minimize latency (in cycles)
 - NP-hard

ILP Formulation of RCS

- Use binary decision variables
 - $x_{ik} = 1$ if operation *i* starts at step *k*, otherwise = 0
 - i = 1, ..., N, N is the total number of operations
 - k = 1, ..., L, *L* is the given **upper bound on latency**

$$t_i = \sum_{k=1}^{L} k x_{ik}$$

 t_i indicates the start time of operation i

ILP Formulation of RCS: Constraints (1)

Linear constraints:

- Unique start times:
$$\sum_{k} x_{ik} = 1$$
, $i = 1, 2, ..., N$

- Dependence must be satisfied (no chaining)

$$t_{j} \ge t_{i} + d_{i} \qquad : \forall (v_{i}, v_{j}) \in E \Longrightarrow \sum_{k} k \ x_{jk} \ge \sum_{k} k \ x_{ik} + d_{i}$$

 v_j must not start before v_i completes since v_j depends on v_i

- d_i : latency of operation i
 - $d_i = 1$ means a single-cycle operation
 - $d_i > 1$ indicates a multi-cycle operation

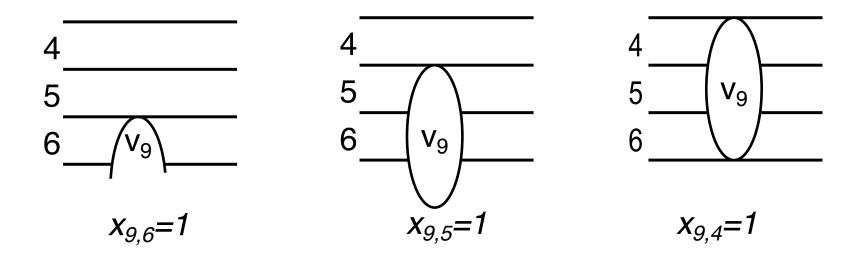
Start Time vs. Time(s) of Execution

- When $d_i = 1$, the following questions are the same:
 - Does operation i start at step k
 - Is operation i running at step k
- But if $d_i > 1$, the two questions should be formulated as:
 - Does operation i start at step k
 - Check if x_{ik} is 1
 - Is operation i **running** at step k
 - Check if the following hold

$$\sum_{l=k-d_i+1}^k x_{il} \stackrel{?}{=} 1$$

Operation *v_i* **Still Running at Step** *k* **?**

Is v₉ (d₉ = 3) running at step 6?
If and only if x_{9,6} + x_{9,5} + x_{9,4} equals 1



- Note:
 - Only one (if any) of the above three cases can happen
 - To meet resource constraints, we have to ask the same question for ALL steps, and ALL operations of that type

ILP Formulation of RCS: Constraints (2)

Linear constraints:

- Unique start times:
$$\sum_{k} x_{ik} = 1$$
, $i = 1, 2, ..., N$

- Dependence must be satisfied (no chaining)

$$t_j \ge t_i + d_i$$
 : $\forall (v_i, v_j) \in E \Rightarrow \sum_k k \ x_{jk} \ge \sum_k k \ x_{ik} + d_i$

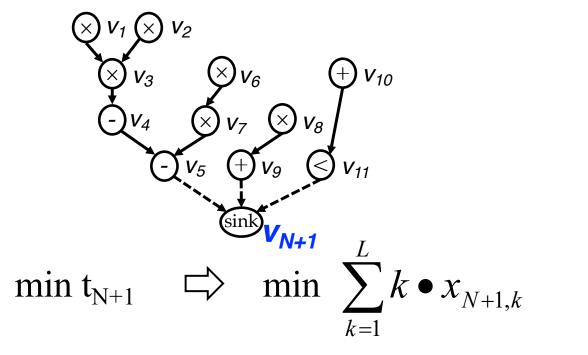
- Resource constraints

$$\sum_{i:RT(v_i)=r} \sum_{l=k-d_i+1}^k x_{il} \le a_r, \quad r = 1, ..., n_{res}, \quad k = 1, ..., L$$

 $RT(v_i)$: resource type ID of operation v_i (between 1~n_{res}) a_r is the number of available resources for resource of type r

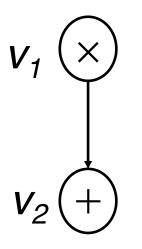
ILP Formulation of RCS: Objective

- Objective: min $c^T t$
 - t = start times vector, c = cost weight (e.g., [0 ... 0 1])
- To minimize the overall latency, we can introduce a pseudo node to serve as a unique sink (v_{N+1})
 - This sink depends on the original primary output nodes
 - We then minimize the start time of the sink node



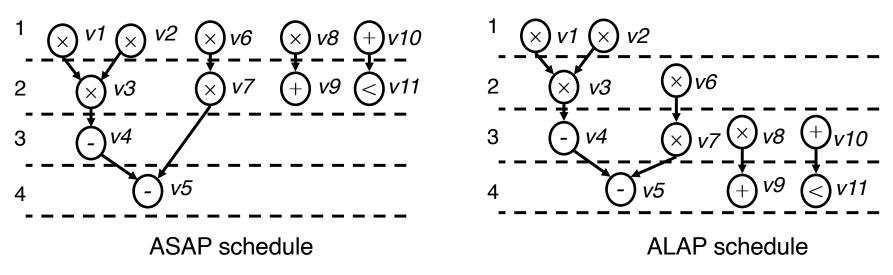
Exercise: ILP for ASAP Scheduling

- Two operations: v₁ and v₂
 - Each operate has a full-cycle delay
 - No operation chaining allowed
 - L = 3, i.e., a three-cycle scheduling window
- Objective: ASAP (no resource constraints here)
- Write down the ILP formulation



Use of ASAP and ALAP

- In general, the following will help the ILP solver run faster
 - Minimize # of variables and constraints
 - Simplify the constraints
- We can write the ILP without ASAP and ALAP, but using ASAP and ALAP will simplify the inequalities



ILP Formulation: Unique Start Time Constraints

$$x_{il} = 0 \quad for \quad l < t_i^S \quad and \quad l > t_i^L$$
$$(t_i^S = ASAP(v_i), t_i^L = ALAP(v_i))$$

Using ASAP and ALAP Without using ASAP and ALAP $x_{1,1} = 1$ $x_{1.1} + x_{1.2} + x_{1.3} + x_{1.4} = 1$ $x_{2,1} = 1$ $x_{2,1} + x_{2,2} + x_{2,3} + x_{2,4} = 1$ $x_{3,2} = 1$... $x_{6,1} + x_{6,2} = 1$ $x_{11,1} + x_{11,2} + x_{11,3} + x_{11,4} = 1$ $x_{9,2} + x_{9,3} + x_{9,4} = 1$ $1 \times v1 \times v2$ (×)v8 (×)v6 (+**)**v10 (x) v7 (+) v9 (<) v11 \bigvee_{V3} \bigvee_{V6} 2 2 assume L=4 (-)v4 $(\times)v7$ $(\times)v8$ (+)v103 v5 26

ILP Formulation: Dependence Constraints

 Using ASAP and ALAP, the non-trivial inequalities are: (assuming no chaining and single-cycle ops)

$$\begin{split} & 2x_{7,2} + 3x_{7,3} - x_{6,1} - 2x_{6,2} - 1 \ge 0 \\ & 2x_{9,2} + 3x_{9,3} + 4x_{9,4} - x_{8,1} - 2x_{8,2} - 3x_{8,3} - 1 \ge 0 \\ & 2x_{11,2} + 3x_{11,3} + 4x_{11,4} - x_{10,1} - 2x_{10,2} - 3x_{10,3} - 1 \ge 0 \\ & 4x_{5,4} - 2x_{7,2} - 3x_{7,3} - 1 \ge 0 \\ & 5x_{n,5} - 2x_{9,2} - 3x_{9,3} - 4x_{9,4} - 1 \ge 0 \\ & 5x_{n,5} - 2x_{11,2} - 3x_{11,3} - 4x_{11,4} - 1 \ge 0 \end{split}$$

ILP Formulation: Resource Constraints

Resource constraints (assuming 2 ALUs and 2 multipliers)

$$\begin{aligned} x_{1,1} + x_{2,1} + x_{6,1} + x_{8,1} &\leq 2 \\ x_{3,2} + x_{6,2} + x_{7,2} + x_{8,2} &\leq 2 \\ x_{7,3} + x_{8,3} &\leq 2 \\ x_{10,1} &\leq 2 \\ x_{9,2} + x_{10,2} + x_{11,2} &\leq 2 \\ x_{4,3} + x_{9,3} + x_{10,3} + x_{11,3} &\leq 2 \\ x_{5,4} + x_{9,4} + x_{11,4} &\leq 2 \end{aligned}$$

ILP Summary

- Pros: versatile modeling ability
 - Can be extended to handle almost every design aspects
 - Resource allocation
 - Module selection
 - Area, power, etc.
- Cons: computationally expensive
 - #variables = O(#nodes * #c-steps)
 - 0-1 assignment variables: need extensive search to find optimal solution

Next Lecture

More scheduling algorithms

Acknowledgements

- These slides contain/adapt materials developed by
 - Ryan Kastner (UCSD)