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▸Lab 2 due next Wed (Nov 10)
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Announcements



▸ Unconstrained scheduling 
– ASAP and ALAP

▸ Constrained scheduling 
– Resource constrained scheduling (RCS)
– Exact formulations with integer linear programming (ILP)
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Outline



▸ A topological sort (or order) of a directed graph is an 
ordering of nodes where all edges go from an earlier 
vertex (left) to a later vertex (right) 

– Feasible if and only if the subject graph is a DAG
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Recap: Topological Sort
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if (condition) {
…

} else {
t1 = a + b;
t2 = c * d;
t3 = e + f;
t4 = t1 * t2;
z = t4 – t3;

}

Scheduling Binding

Allocation

Recap: A Typical HLS Flow
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Intermediate 
Representation (IR)



Importance of Scheduling

▸ Scheduling is a central problem in HLS
– Introduces clock boundaries to untimed (or partially timed) 

input specification

– Has significant impact on the quality of results 
• Frequency
• Latency
• Throughput
• Area
• Power
…
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Scheduling: Untimed to Timed 
Latency Area Throughput
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Control-Data 
Flow Graph



▸ Control data flow graph (CDFG)
– Generated by a compiler front end 

from high-level description
– Nodes

• Operations (and pseudo operations)
– Directed edges

• Data edges, control edges, 
precedence edges

▸ Without control flow, the basic 
structure is a data flow graph 
(DFG)
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Scheduling Input

xl = x+dx;
ul = u-3*x*u*dx-3*y*dx
yl = y+u*dx
c = xl<a;
x = xl; u = ul; y = yl;
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▸ Scheduling: map operations to states
▸ Each clock cycle corresponds to a state in the FSM

– Commonly referred to as control step (c-step)
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Scheduling Output
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▸ Only consideration: dependence 

▸ As soon as possible (ASAP) 
– Schedule an operation to the earliest possible step 

▸ As late as possible (ALAP)
– Schedule an operation to the earliest possible step, without 

increasing the total latency
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Unconstrained Scheduling
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Y = ((a*b)+c)+(d*e)-(f+g)

ASAP(G(V, E)):
V ’ = Topological_Sort(G)
foreach vi in V ’:

// Primary inputs (PIs) to first cycle
if vi Î PIs: ti = 1
// Assume no chaining & single-cycle operations
else: ti = max(tj + 1); // (vj , vi ) Î E

control step
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ASAP Schedule
Assumption: Node delay = Cycle time

The start time for each 
operation is the least 
one allowed by the 
dependencies



11

ALAP(G(V, E), L): // L is the latency bound
V ’ = Reverse_Topological_Sort(G)
foreach vi in V ’:
// Primary outputs (POs) to last cycle
if vi Î POs: ti = L
// Assume no chaining & single-cycle operations
else: ti = min(tj) - 1; // (vi , vj ) Î E

control step
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Y = ((a*b)+c)+(d*e)-(f+g)

ALAP Schedule
Assumption: Node delay = Cycle time

The end time of each 
operation is the latest 
one allowed by the 
dependencies and the 
latency constraint



▸ Constrained scheduling
– General case NP-hard
– Resource-constrained scheduling (RCS)

• Minimize latency given constraints on area or resources
– Time-constrained scheduling (TCS) 

• Minimize resources subject to bound on latency

▸ Exact methods
– Integer linear programming (ILP)
– Hu’s algorithm for a very restricted problem

▸ Heuristics
– List scheduling
– Force-directed scheduling
– SDC-based scheduling
…
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Constrained Scheduling



▸ Linear programming (LP) solves the problem of 
maximizing or minimizing a linear objective function 
subject to linear constraints

– Efficiently solvable both in theory and in practice

▸ Integer linear programming (ILP): in addition to linear 
constraints and objective, the values for the variables 
have to be integer

– NP-Hard in general (A special case, 0-1 ILP)
– Modern ILP solvers can handle problems with nontrivial size

▸ Enormous number of problems can be expressed in LP 
or ILP
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Linear Programming
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Canonical Form of ILP
maximize c1x1+c2x2+…+cnxn // objective function
subject to   // linear constraints

a11x1+a12x2+…+a1nxn £ b1
a21x1+a22x2+…+a2nxn £ b2
….
am1x1+am2x2+…+amnxn £ bm
xi ≥ 0
xi Î Z

maximize cTx // c = (c1, c2, …, cn) 
subject to   

Ax ≤ b // A is a mxn matrix; b = (b1, b2, …, bn)
x ≥ 0 
xi Î Z

Vector form
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Example: Course Selection Problem

▸ A student is about to finalize course selection for the 
coming semester, given the following information:

– Minimum credits per semester: 8

Schedule Credits Est. workload 
(per week)

1. Big data analytics MW 2:00-3:30pm 3 8 hrs

2. How to build a start-up TT 2:00-3:00pm 2 4 hrs

3. Linear programming MW 9:00-11:00am 4 10 hrs

4. Analog circuits TT 1:00-3:00pm 4 12 hrs

Question: Which courses to take to minimize the amount of work?



▸ Define decision variables 
(i = 1, 2, 3, 4):

▸ The total expected work hours:
▸ The total credits taken:
▸ Account for the schedule conflict:

▸ Complete ILP formulation (in canonical form):
minimize 8x1+4x2+10x3+12x4

s.t. 3x1+2x2+4x3+4x4 ≥ 8
x2+x4 ≤ 1
xi Î {0,1}
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ILP Formulation for Course Selection

xi =
1    if  course i is taken
0    if  not

!
"
#

$#

Time CRs Work

1. Big data MW 2-
3:30pm

3 8 hrs

2. Start-up TT 2-3pm 2 4 hrs

3. Linear prog. MW 9-
11am

4 10 hrs

4. Analog TT 1-3pm 4 12 hrs

8x1+4x2+10x3+12x4
3x1+2x2+4x3+4x4
x2+x4 ≤ 1



▸When functional units are limited
– Each functional unit can only perform one operation 

at each clock cycle
• e.g., if there are only K adders, no more than K additions can 

be executed in the same c-step

▸A typical resource-constrained scheduling 
problem for DFG 
– Given the number of functional units of each type, 

minimize latency (in cycles)
– NP-hard
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Resource Constrained Scheduling (RCS)



▸Use binary decision variables
– xik = 1 if operation i starts at step k, otherwise = 0

• i = 1, … N, N is the total number of operations
• k = 1, …, L, L is the given upper bound on latency

ILP Formulation of RCS

ti = kxik
k=1

L

∑
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ti indicates the start time of operation i



▸ Linear constraints:

– Unique start times:

– Dependence must be satisfied (no chaining)

ILP Formulation of RCS: Constraints (1)

xik =1, i =1,2,...,N
k
∑
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vj must not start before vi completes 
since vj depends on vi

t j ≥ ti + di +1:∀(vi,vj )∈ E⇒ k x jk
k
∑ ≥ k xik +

k
∑ di +1

▸ di : latency of operation i
– di = 1 means a single-cycle operation
– di > 1 indicates a multi-cycle operation



Start Time vs. Time(s) of Execution

▸ When di = 1, the following questions are the same:
– Does operation i start at step k 
– Is operation i running at step k 

▸ But if di > 1, the two questions should be formulated as:
– Does operation i start at step k

• Check if xik is 1
– Is operation i running at step k 

• Check if the following hold
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xil
l=k−di

k

∑ =1
?



▸ Is v9 (d9 = 3) running at step 6?
If and only if x9,6 + x9,5 + x9,4 equals 1

▸ Note:
– Only one (if any) of the above three cases can happen
– To meet resource constraints, we have to ask the same question 

for ALL steps, and ALL operations of that type

4
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x9,4=1

v9

4
5
6

x9,5=1

v9v9

4
5
6

x9,6=1
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Operation vi Still Running at Step k ?



▸ Linear constraints:

– Unique start times:

– Dependence must be satisfied (no chaining)

– Resource constraints

ILP Formulation of RCS: Constraints (2)

xik =1, i =1,2,...,N
k
∑
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RT(vi) : resource type ID  of operation vi (between 1~nres)
ar is the number of available resources for resource of type r

xil
l=k−di

k

∑
i:RT (vi )=r
∑ ≤ ar, r =1,...,nres, k =1,...,L

t j ≥ ti + di +1:∀(vi,vj )∈ E⇒ k x jk
k
∑ ≥ k xik +

k
∑ di +1



▸Objective: min cTt
– t = start times vector, c = cost weight (e.g., [0 ...0 1]) 

▸To minimize the overall latency, we can introduce a 
pseudo node to serve as a unique sink (vN+1) 
– This sink depends on the original primary output nodes 
– We then minimize the start time of the sink node
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ILP Formulation of RCS: Objective
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▸ Two operations: v1 and v2
– Each operate has a full-cycle delay 
– No operation chaining allowed
– L = 3, i.e., a three-cycle scheduling window

▸ Objective: ASAP (no resource constraints here)
▸ Write down the ILP formulation
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Exercise: ILP for ASAP Scheduling

´

+

v1

v2



▸ In general, the following will help the ILP solver run 
faster

– Minimize # of variables and constraints
– Simplify the constraints 

▸ We can write the ILP without ASAP and ALAP, but using 
ASAP and ALAP will simplify the inequalities
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Use of ASAP and ALAP

ASAP schedule ALAP schedule



x1,1 + x1,2 + x1,3 + x1,4 =1
x2,1 + x2,2 + x2,3 + x2,4 =1
...
x11,1 + x11,2 + x11,3 + x11,4 =1
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ILP Formulation: Unique Start Time Constraints

x1,1 =1
x2,1 =1
x3,2 =1
...
x6,1 + x6,2 =1
...
x9,2 + x9,3 + x9,4 =1
...

▸ Without using ASAP and ALAP ▸ Using ASAP and ALAP
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ILP Formulation: Dependence Constraints

▸ Using ASAP and ALAP, the non-trivial inequalities are: 
(assuming no chaining and single-cycle ops)

2x7,2 +3x7,3 − x6,1 − 2x6,2 −1≥ 0
2x9,2 +3x9,3 + 4x9,4 − x8,1 − 2x8,2 −3x8,3 −1≥ 0

2x11,2 +3x11,3 + 4x11,4 − x10,1 − 2x10,2 −3x10,3 −1≥ 0
4x5,4 − 2x7,2 −3x7,3 −1≥ 0

5xn,5 − 2x9,2 −3x9,3 − 4x9,4 −1≥ 0
5xn,5 − 2x11,2 −3x11,3 − 4x11,4 −1≥ 0
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ILP Formulation: Resource Constraints
▸ Resource constraints (assuming 2 ALUs and 2 multipliers)
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▸Pros: versatile modeling ability
– Can be extended to handle almost every design 

aspects
• Resource allocation 
• Module selection
• Area, power, etc.

▸Cons: computationally expensive
– #variables = O( #nodes * #c-steps)
– 0-1 assignment variables: need extensive search to 

find optimal solution
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ILP Summary



▸More scheduling algorithms
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Next Lecture



▸These slides contain/adapt materials developed 
by
– Ryan Kastner (UCSD)
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