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Announcements



Agenda

▸ HLS compilation flow

▸ Intermediate representation (IR)
– Control data flow graph 

▸ Control flow analysis
– Basic blocks
– Dominance relation: Finding loops

▸ Dataflow analysis
– Static single assignment (SSA)
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Intermediate Representation (IR)

▸ Purposes of creating and 
operating on an IR
– Encode the behavior of the program
– Facilitate analysis
– Facilitate optimization
– Facilitate retargeting

▸ The IR we will focus on is control 
data flow graph (CDFG)
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Program Flow Analysis
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Control flow analysis

▸ Control flow analysis: determine control structure of a 
program and build control flow graphs (CFGs) 

▸ Data flow analysis: determine the flow of data values 
and build data flow graphs (DFGs)



Basic Blocks

7

▸ Basic block: a sequence of consecutive intermediate 
language statements in which flow of control can only 
enter at the beginning and leave at the end

– Only the last statement of a basic block can be a branch 
statement and only the first statement of a basic block can be a 
target of a branch



Partitioning a Program into Basic Blocks

▸ Each basic block begins with a leader statement

▸ Identify leader statements (i.e., the first statements of 
basic blocks) by using the following rules:

– (i) The first statement in the program is a leader

– (ii) Any statement that is the target of a branch statement is a 
leader (for most intermediate languages these are statements 
with an associated label)

– (iii) Any statement that immediately follows a branch or return
statement is a leader
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Example: Forming the Basic Blocks
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Basic Blocks: 
B1

B2

B3

(1)   p = 0
(2)   i = 1
(3)   t1 = 4 * i
(4)   t2 = a[t1]
(5)   t3 = 4 * i
(6)   t4 = b[t3]
(7)   t5 = t2 * t4
(8)   t6 = p + t5
(9)   p = t6
(10) t7 = i + 1
(11) i = t7
(12) if i <= 20 goto (3)
(13) j = …

Leader statement is: 
(1) the first in the program
(2) any that is the target of a branch 
(3) any that immediately follows a branch



Control Flow Graph (CFG)

▸ A control flow graph (CFG), or simply a flow graph, is a 
directed graph in which: 
– (i) the nodes are basic blocks; and 
– (ii) the edges are induced from the possible flow of the program

▸ The basic block whose leader is the first intermediate 
language statement is called the entry node

▸ In a CFG we assume no information about data values 
– an edge in the CFG means that the program may take that path
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Example: Control Flow Graph Formation
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(1) p = 0
(2)  i = 1

(3)   t1 = 4 * i
(4)   t2 = a[t1]
(5)   t3 = 4 * i
(6)   t4 = b[t3]
(7)   t5 = t2 * t4
(8)   t6 = p + t5
(9)   p = t6
(10) t7 = i + 1
(11) i = t7
(12) if i <= 20 goto (3)

(13) j = …
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▸ A node p in a CFG dominates a node q if every path 
from the entry node to q goes through p. We say that 
node p is a dominator of node q

▸ The dominator set of node q, DOM(q), is formed by all 
nodes that dominate q
– Each node dominates itself by definition; thus q Î DOM(q)
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Dominators



▸ Definition: Let G = (N, E, s) denote a CFG, where 
N: set of nodes 
E: set of edges 
s: entry node and 
let p Î N, q Î N
– p dominates q, written p £ q

• p Î DOM(q)
– p properly (strictly) dominates q, written p < q if p £ q and p ¹ q
– p immediately (or directly) dominates q, written p <d q if p < q

and there is no t ÎN such that p < t < q
• p = IDOM(q)
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Dominance Relation



▸ Dominator sets:
DOM(1) = {1}
DOM(2) = {1, 2}
DOM(3) = {1, 2, 3}
DOM(10) = {1, 2, 10}

▸ Immediate domination:
1 <d 2, 2 <d 3, …
IDOM(2) = 1, IDOM(3) = 2 …
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Example: Dominance Relation
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▸Does a node strictly (or properly) dominate 
itself? 

▸Does a predecessor of a node B always 
dominate B?

▸Suppose a node A dominates all of B’s 
predecessors. Does A also dominate B?
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Dominance Relationship: True or False



Identifying Loops

▸ Motivation: Programs spend most of the execution time 
in loops, therefore there is a larger payoff for 
optimizations that exploit loop structure

▸ Goal: Identify loops in a CFG, not sensitive to syntax of 
the input language
– Create a uniform treatment for program loops written using 

different syntactical constructs (e.g., while, for, goto)

▸ Approach: Use a general approach based on analyzing 
graph-theoretical properties of the CFG
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▸Definition: A strongly connected component
(SCC) of the CFG, with
– a single entry point called the header which 

dominates all nodes in the SCC
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Loop Definition
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▸Question: In the CFG below, nodes 2 and 3 form 
an SCC; but do they form a loop? 
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Is it a Loop?
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Finding Loops

▸Loop identification algorithm
– Find an edge B®H where H dominates B; 

This edge is called a back-edge

– Find all nodes that (1) are dominated by H
and (2) can reach B through nodes dominated by H

– Add these nodes to the loop 
• H and B are naturally included
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Finding Loops
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Finding Loops (1)
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Finding Loops (1)
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Finding Loops (2)
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Intuition of Dominance Relation
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Imagine a source of light
at the entry node, and that
the edges are optical fibers

To find which nodes are 
dominated by a given node, 
place an opaque barrier at that 
node and observe which nodes 
become dark
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Finding Loops (2)
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Finding Loops (2)
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(7,4)
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Finding Loops (3)
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(7,4)
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Finding Loops (3)
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Finding Loops (3)
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Data Flow Analysis with SSA

▸Static single assignment (SSA) form is a 
restricted IR where
– Each variable definition has a unique name
– Each variable use refers to a single definition

▸SSA simplifies data flow analysis & many 
compiler optimizations 
– Eliminates artificial dependences (on scalars)

• Write-after-write
• Write-after-read
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SSA within a Basic Block

▸ Assign each variable definition a unique name
▸ Update the uses accordingly

x = read()
x = x * 5
x = x + 1
y = x * 9

x0 = read()
x1 = x0 * 5
x2 = x1 + 1
y = x2 * 9
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SSA with Control Flow

▸ Consider a situation where two control-flow paths merge
– e.g., due to an if-then-else statement or a loop

x = read()
if (x > 0) 

y = 5
else 

y = 10
x = y

y = 5 y = 10

x = y

x = read()
if (x > 0)

y0 = 5 y1 = 10

x1 = y

x0 = read()
if (x0 > 0)

should this be y0 or y1?
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Introducing ϕ-Node

▸ Inserts special join functions (called ϕ-nodes or PHI 
nodes) at points where different control flow paths 
converge

y0 = 5 y1 = 10

y2 = ϕ(y0, y1)
x1 = y2

if (x0 > 0) Note: ϕ is not an executable function!
To generate executable code from this form, 
appropriate copy statements need to be 
generated in the predecessors (in other words, 
reversing the SSA process for code generation)

33



SSA in a Loop

▸ Insert ϕ-nodes in the loop header block

x = 0   
i = 1      
while (i<10) {  

x = x+i
i = i+1

}

if (i < 10)

Outside
x = x + 1
i = i + 1

x = 0
i = 1

x1 = ϕ(x0, x2)
i1 = ϕ(i0, i2)
if (i1 < 10)

Outsidex2 = x1 + 1
i2 = i1 + 1

x0 = 0
i0 = 1
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▸SSA form simplifies data flow analysis and many 
code transformations
– Primarily due to explicit & simplified (sparse) def-use 

chains

▸Here we show a simple yet useful transformation
– Dead code elimination
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SSA Applications



Dead Code in CDFG

▸Dead code is either
– Unreachable code
– Definitions never used

▸Dead statements?

x = a + b
y = c + d

x = a – b

z = z + 1

y = c – d 
z = x + y

f(x, y)

B1

B2

B4

B5

B6
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Dead Code Elimination with SSA

x1 = a + b
y1 = c + d

x2 =  a – b 

z2 = z1 + 1

x3 = ϕ(x1, x2)
y2 = c – d

z1 = x3 + y2

f(x3, y2)

B1

B2

B3

B4

B5

x1 = a + b

x2 = a – b 

x3 = ϕ(x1, x2)
y2 = c – d 

f(x3, y2)

Iteratively remove unused definitions: 
remove y1, z2 (and B4) à then remove z1



▸ Importance of compilers
– Essential component of software development flow
– Essential component of high-level synthesis

▸ A good intermediate representation (IR) enables efficient 
and effective analysis and optimization
– Dominance relation helps effective CFG analysis
– SSA form facilitates efficient IR-level optimization
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Summary



▸Scheduling algorithms
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Next Lecture



▸These slides contain/adapt materials developed 
by
– Prof. José Amaral (Alberta)
– Forrest Brewer (UCSB)
– Ryan Kastner (UCSD)
– Prof. Scott Mahlke (UMich)
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