
Control Data Flow Graph

ECE 5997
Hardware Accelerator Design & Automation

Fall 2021

▸ Lab 2 released (Due Nov 10th)

1

Announcements

Agenda

▸ HLS compilation flow

▸ Intermediate representation (IR)
– Control data flow graph

▸ Control flow analysis
– Basic blocks
– Dominance relation: Finding loops

▸ Dataflow analysis
– Static single assignment (SSA)

2

FPGA Design Flow with HLS
High-level Programming

Languages

Compilation

Scheduling/
Pipelining,

Binding

Logic Synth.,
Tech. Mapping,

P&R, STA

RTL

if (condition) {
…

} else {
t1 = a + b;
t2 = c * d;
t3 = e + f;
t4 = t1 * t2;
z = t4 – t3;

}

Untimed
high-level
description

Timed design

Bitstream

HLS
Flow

RTL
Flow

FPGA

ab

z

d

3

High-level Programming
Languages

(C/C++, OpenCL, SystemC, ...)

Parsing

Transformations

RTL
generation

S0

S1

S2

S0

S1

S2

ab

z

d

3 cycles

*–

Control data flow graph
(CDFG)

Finite state machines with datapath

BB3

BB1

BB2

BB4

T F

+

-

*
+

*

if (condition) {
…

} else {
t1 = a + b;
t2 = c * d;
t3 = e + f;
t4 = t1 * t2;
z = t4 – t3;

}

Scheduling Binding

Allocation

A Typical HLS Flow

4

Intermediate
Representation (IR)

Intermediate Representation (IR)

▸ Purposes of creating and
operating on an IR
– Encode the behavior of the program
– Facilitate analysis
– Facilitate optimization
– Facilitate retargeting

▸ The IR we will focus on is control
data flow graph (CDFG)

Front
end

Code
generation

Optimization

Source code

Target code

Analysis
IR

IR’

5

Program Flow Analysis

6

Basic block

Program

Function

Inter-procedural

Intra-procedural

Local

Flow analysis

Data flow analysis

Control flow analysis

▸ Control flow analysis: determine control structure of a
program and build control flow graphs (CFGs)

▸ Data flow analysis: determine the flow of data values
and build data flow graphs (DFGs)

Basic Blocks

7

▸ Basic block: a sequence of consecutive intermediate
language statements in which flow of control can only
enter at the beginning and leave at the end

– Only the last statement of a basic block can be a branch
statement and only the first statement of a basic block can be a
target of a branch

Partitioning a Program into Basic Blocks

▸ Each basic block begins with a leader statement

▸ Identify leader statements (i.e., the first statements of
basic blocks) by using the following rules:

– (i) The first statement in the program is a leader

– (ii) Any statement that is the target of a branch statement is a
leader (for most intermediate languages these are statements
with an associated label)

– (iii) Any statement that immediately follows a branch or return
statement is a leader

8

Example: Forming the Basic Blocks

9

Basic Blocks:
B1

B2

B3

(1) p = 0
(2) i = 1
(3) t1 = 4 * i
(4) t2 = a[t1]
(5) t3 = 4 * i
(6) t4 = b[t3]
(7) t5 = t2 * t4
(8) t6 = p + t5
(9) p = t6
(10) t7 = i + 1
(11) i = t7
(12) if i <= 20 goto (3)
(13) j = …

Leader statement is:
(1) the first in the program
(2) any that is the target of a branch
(3) any that immediately follows a branch

Control Flow Graph (CFG)

▸ A control flow graph (CFG), or simply a flow graph, is a
directed graph in which:
– (i) the nodes are basic blocks; and
– (ii) the edges are induced from the possible flow of the program

▸ The basic block whose leader is the first intermediate
language statement is called the entry node

▸ In a CFG we assume no information about data values
– an edge in the CFG means that the program may take that path

10

Example: Control Flow Graph Formation

11

(1) p = 0
(2) i = 1

(3) t1 = 4 * i
(4) t2 = a[t1]
(5) t3 = 4 * i
(6) t4 = b[t3]
(7) t5 = t2 * t4
(8) t6 = p + t5
(9) p = t6
(10) t7 = i + 1
(11) i = t7
(12) if i <= 20 goto (3)

(13) j = …

B1

B2

B3

Branch
Target

B1

B2

B3

Next Inst.

CFG

▸ A node p in a CFG dominates a node q if every path
from the entry node to q goes through p. We say that
node p is a dominator of node q

▸ The dominator set of node q, DOM(q), is formed by all
nodes that dominate q
– Each node dominates itself by definition; thus q Î DOM(q)

12

Dominators

▸ Definition: Let G = (N, E, s) denote a CFG, where
N: set of nodes
E: set of edges
s: entry node and
let p Î N, q Î N
– p dominates q, written p £ q

• p Î DOM(q)
– p properly (strictly) dominates q, written p < q if p £ q and p ¹ q
– p immediately (or directly) dominates q, written p <d q if p < q

and there is no t ÎN such that p < t < q
• p = IDOM(q)

13

Dominance Relation

▸ Dominator sets:
DOM(1) = {1}
DOM(2) = {1, 2}
DOM(3) = {1, 2, 3}
DOM(10) = {1, 2, 10}

▸ Immediate domination:
1 <d 2, 2 <d 3, …
IDOM(2) = 1, IDOM(3) = 2 …

14

Example: Dominance Relation

1

2

3

4

5

6 7

8

9

10

entry

▸Does a node strictly (or properly) dominate
itself?

▸Does a predecessor of a node B always
dominate B?

▸Suppose a node A dominates all of B’s
predecessors. Does A also dominate B?

15

Dominance Relationship: True or False

Identifying Loops

▸ Motivation: Programs spend most of the execution time
in loops, therefore there is a larger payoff for
optimizations that exploit loop structure

▸ Goal: Identify loops in a CFG, not sensitive to syntax of
the input language
– Create a uniform treatment for program loops written using

different syntactical constructs (e.g., while, for, goto)

▸ Approach: Use a general approach based on analyzing
graph-theoretical properties of the CFG

16

▸Definition: A strongly connected component
(SCC) of the CFG, with
– a single entry point called the header which

dominates all nodes in the SCC

17

Loop Definition

1

2

5

3 4

6

Loop
Header

▸Question: In the CFG below, nodes 2 and 3 form
an SCC; but do they form a loop?

18

Is it a Loop?

1

2 3

Finding Loops

▸Loop identification algorithm
– Find an edge B®H where H dominates B;

This edge is called a back-edge

– Find all nodes that (1) are dominated by H
and (2) can reach B through nodes dominated by H

– Add these nodes to the loop
• H and B are naturally included

19

20

Finding Loops

1

2

3

5 6

8

9 10

Find all back edges in this graph
and the natural loop associated
with each back edge

4

7

21

Finding Loops (1)

1

2

3

5 6

8

9 10

Find all back edges in this graph
and the natural loop associated
with each back edge

(9,1)4

7

22

Finding Loops (1)

1

2

3

5 6

8

9 10

Find all back edges in this graph
and the natural loop associated
with each back edge

(9,1) Entire graph4

7

23

Finding Loops (2)

1

2

5 6

8

9 10

Find all back edges in this graph
and the natural loop associated
with each back edge

(9,1) Entire graph
(10,7)

3

4

7

Intuition of Dominance Relation

24

Imagine a source of light
at the entry node, and that
the edges are optical fibers

To find which nodes are
dominated by a given node,
place an opaque barrier at that
node and observe which nodes
become dark

1

2

5 6

8

9 10

3

4

7

entry

25

Finding Loops (2)

1

2

3

4

7

5 6

8

9 10

Find all back edges in this graph
and the natural loop associated
with each back edge

(9,1) Entire graph
(10,7)

26

Finding Loops (2)

1

2

3

4

7

5 6

8

9 10

Find all back edges in this graph
and the natural loop associated
with each back edge

(9,1) Entire graph
(10,7) {7,8,10}

(7,4)

27

Finding Loops (3)

1

2

3

4

5 6

8

9 10

Find all back edges in this graph
and the natural loop associated
with each back edge

(9,1) Entire graph
(10,7) {7,8,10}

7

(7,4)

28

Finding Loops (3)

1

2

3

4

7

5 6

8

9 10

Find all back edges in this graph
and the natural loop associated
with each back edge

(9,1) Entire graph
(10,7) {7,8,10}

29

Finding Loops (3)

1

2

3

4

7

5 6

8

9 10

Find all back edges in this graph
and the natural loop associated
with each back edge

(9,1) Entire graph
(10,7) {7,8,10}
(7,4) {4,5,6,7,8,10}

Data Flow Analysis with SSA

▸Static single assignment (SSA) form is a
restricted IR where
– Each variable definition has a unique name
– Each variable use refers to a single definition

▸SSA simplifies data flow analysis & many
compiler optimizations
– Eliminates artificial dependences (on scalars)

• Write-after-write
• Write-after-read

30

SSA within a Basic Block

▸ Assign each variable definition a unique name
▸ Update the uses accordingly

x = read()
x = x * 5
x = x + 1
y = x * 9

x0 = read()
x1 = x0 * 5
x2 = x1 + 1
y = x2 * 9

31

×

+

×

5

x1

x0

x2

1

9

yOriginal code SSA form

Corresponding
data flow graph

SSA with Control Flow

▸ Consider a situation where two control-flow paths merge
– e.g., due to an if-then-else statement or a loop

x = read()
if (x > 0)

y = 5
else

y = 10
x = y

y = 5 y = 10

x = y

x = read()
if (x > 0)

y0 = 5 y1 = 10

x1 = y

x0 = read()
if (x0 > 0)

should this be y0 or y1?

32

Introducing ϕ-Node

▸ Inserts special join functions (called ϕ-nodes or PHI
nodes) at points where different control flow paths
converge

y0 = 5 y1 = 10

y2 = ϕ(y0, y1)
x1 = y2

if (x0 > 0) Note: ϕ is not an executable function!
To generate executable code from this form,
appropriate copy statements need to be
generated in the predecessors (in other words,
reversing the SSA process for code generation)

33

SSA in a Loop

▸ Insert ϕ-nodes in the loop header block

x = 0
i = 1
while (i<10) {

x = x+i
i = i+1

}

if (i < 10)

Outside
x = x + 1
i = i + 1

x = 0
i = 1

x1 = ϕ(x0, x2)
i1 = ϕ(i0, i2)
if (i1 < 10)

Outsidex2 = x1 + 1
i2 = i1 + 1

x0 = 0
i0 = 1

34

▸SSA form simplifies data flow analysis and many
code transformations
– Primarily due to explicit & simplified (sparse) def-use

chains

▸Here we show a simple yet useful transformation
– Dead code elimination

35

SSA Applications

Dead Code in CDFG

▸Dead code is either
– Unreachable code
– Definitions never used

▸Dead statements?

x = a + b
y = c + d

x = a – b

z = z + 1

y = c – d
z = x + y

f(x, y)

B1

B2

B4

B5

B6

36

37

Dead Code Elimination with SSA

x1 = a + b
y1 = c + d

x2 = a – b

z2 = z1 + 1

x3 = ϕ(x1, x2)
y2 = c – d

z1 = x3 + y2

f(x3, y2)

B1

B2

B3

B4

B5

x1 = a + b

x2 = a – b

x3 = ϕ(x1, x2)
y2 = c – d

f(x3, y2)

Iteratively remove unused definitions:
remove y1, z2 (and B4) à then remove z1

▸ Importance of compilers
– Essential component of software development flow
– Essential component of high-level synthesis

▸ A good intermediate representation (IR) enables efficient
and effective analysis and optimization
– Dominance relation helps effective CFG analysis
– SSA form facilitates efficient IR-level optimization

38

Summary

▸Scheduling algorithms

39

Next Lecture

▸These slides contain/adapt materials developed
by
– Prof. José Amaral (Alberta)
– Forrest Brewer (UCSB)
– Ryan Kastner (UCSD)
– Prof. Scott Mahlke (UMich)

40

Acknowledgements

