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Announcements

» Lab 1 due next Wed 10/27

> TA Office Hour on Tuesdays at 4:40pm

— Same zoom link



Agenda

> Motivation for specialized computing
— Key driving forces from applications and technology

— Main sources of inefficiency in general-purpose
computing

— Case study on convolution

> FPGA introduction
— Basic building blocks
— Classical homogeneous FPGA architectures
— Modern heterogeneous FPGA architectures



Best of Times for Specialized Computing

> Higher demand on efficient compute acceleration, esp.
for machine learning (ML) workloads

SQL

> Lower barrier with cloud FPGAs & open-source
hardware coming of age




Modern ML Models are Computationally Expensive

Compute Density
50‘5,, . . ..PolyNet
DNNs in academia without | VGG-19 .- pd
structural optimization (2014~ResNeXt-101 ‘ DPN-131 ‘/
P NASNet-A(N=7) ResNet152

20 |- DNNS in academia with 7" VGG-16 g (2015)
. structural optimization / ResNet110
© PP Xception ‘ Inception-v4
E 10 OverFeat /, e D .« W (2016)
g (2013) //, Inception-v3. V /o ~ResNet50
2 S AlexNet GoogLeNet ™ 7 NASNet-A(N=7
o (2012) (2014) w.
s ) ‘ NASNet-A(N=5)
= Inception-v2 . g
g
Ke]
IS
>
z

/ Inception-v1 ‘

ShuffleNet
MobileNet

NASNet-A(N=4)

20% 10% 4% >
Top-five error
X. Xu, Y. Ding, S. X. Hu, M. Niemier, J. Cong, Y. Hu, and Y. Shi. Scaling for Edge Inference of Neural Networks. Nature Electronics, vol 1, Apr 2018.

> Deep neural networks (DNNs) require enormous
amount of compute

— For example, ResNet50 (70 layers) performs 7.7 billion operations to
classify one image



On Crash Course with the End of “Cheap”
Technology Scaling

40 years of Processor Performance
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» End of Dennard scaling: power becomes the key
constraint

- Amdahl’s Law and dark silicon prevent “easy” multicore scaling



End of Dennard Scaling and Dark Silicon

» Classical scaling Classical Dennard scaling

—~ Frequencyincrease_s at Device (transistor) # | S2
constant power profiles

» Performance improves “for free"!
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— Vy, virtually stopped scaling
due to exponentially increasing
leakage power

— Vpp scaling nearly stopped as

well to maintain performance Leakage limited scaling
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» Dark silicon

_ o Voltage (V49) ~1
- Power constraints limit how Frequency 1
much of the chip can be
Total power S

activated at any one time
(not 100% anymore)




Tradeoff between Compute Efficiency and Flexibility

ASICs

<=LEXIBILITY EFFICIENC>

Why is general-
purpose CPU less
energy efficient?



Rough Energy Breakdown for an Instruction

Rough energy costs for various CPU operations (45nm at 0.9V)

integer | JNFP | [ Memory |
Add

FAdd Cache (64bit)
8 bit 0.03pJ 16 bit 0.4pJ 8KB 10pJ
32 bit 0.1pJ 32 bit 0.9pJ 32KB 20pJ
Mult FMult 1MB 100pJ
8 bit 0.2pJ 16 bit  1.1pJ DRAM 1.3-2.6nJ
32 bit 3.1pJ 32 bit  3.7pJ

Control overheads (decoding,
pipeline management, clocking, ....)

|
25pJ 6pJ Control I
1 f f
I-Cache Register 32-bit
access file access ALU

[Source] M. Horowitz, Computing's energy problem (and what
we can do about it), ISSCC’2014.



Reducing Compute Energy Overhead

A sequence of energy-inefficient instructions

I-Cache RF Control I
I-Cache RF Control I
I-Cache RF Control I

Single Instruction Multiple Data (SIMD): tens of operations per instruction

I-Cache RF Control ll . ll

Further specialization (what we achieve using accelerators)

I-Cache RF Control IIII .. Q;J?T(]i;regs

[Figure credit] W. Qadder, et al., Convolution Engine: Balancing Efficiency & Flexibility
in Specialized Computing, ISCA’2013.



Additional Energy Savings from Specialization

» Customized data types

— Exploit data range information to reduce bitwidth/precision and
simply arithmetic operations

» Customized memory hierarchy

- Exploit regular memory access patterns to minimize energy per
memory read/write

» Customized communication architecture

— Exploit data movement patterns to optimize the
structure/topology of on-chip interconnection network

These techniques combined can lead to another 10-
100X energy efficiency improvement over GPPs
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Customized Memory Hierarchy:
A Case Study on Convolution

> The main computation of image/video processing is
performed over overlapping stencils, termed as convolution

k—1k-1
(Img ®f)[n+k—1 Zlmg[nﬂ 1[m+j] f[l]
5—m
:O =0

01 23456 0123456
0 0
1 1
2 2
3 ® = B 3
4 4
5 -1(-21-1 5
6 0/0]0 6

1[2]1
Input image KxK convolution Output image

frame (K=3 here) frame
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Example Application: Edge Detection

> |dentifies discontinuities in an image where brightness
(or image intensity) changes sharply
— Very useful for feature extractions in computer vision

Sobel operator G=(Gy , Gy)

-1 -2 -1
Gye=[ 0 0 0

1

] Figures: Pilho Kim, GaTech
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CPU Implementation of a 3x3 Convolution

for (r=1;r<H; r++)
for (c=1;c<W,;c++)
for (i=0;i<K;i++)
for (j=0; <K, j++) H
out[r][c] += img[r+i-1][c+j-1] * f[i][j];
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General-Purpose Cache for Convolution

> Minimizes main memory accesses to improve performance

Address

W 3130---12111098---3210
I [ [ ]

22 48
Tag

Index

A
v

Index V Tag Data V Tag Data V Tag Data V Tag Data

253
254
255

Input picture il
(W pixels wide) EH

Hit Data

> A general-purpose cache is expensive in cost and incurs
nontrivial energy overhead
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Specializing Cache for Convolution

> Rearrange the rows as a 1D array of pixels

» Each time we move the window to right and push in
the new pixel to the “cache”

Oid

Oid
Pixel

Remove the edge pixels that are

not needed for computation
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A Specialized “Cache”: Line Buffer

> Line buffer: a fixed-width “cache” with (K-1)*W+K
pixels in flight
— Fixed addressing and simple replacement policy
— Low area/power and high performance

O_Id ; ¢ N_ew
Pixel ) R Pixel
2W+3 (K=3 in this example)

> In customized FPGA implementation, line buffers
can be efficiently implemented with on-chip BRAMs
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Tradeoff between Compute Efficiency and Flexibility

ASICs

<=LEXIBILITY EFFICIENC>

\

What makes FPGA
an interesting
compute substrate?
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What is an FPGA?

> FPGA: Field-Programmable Gate Array

-~ An integrated circuit designed to be configured by a customer or
a designer after manufacturing (wikipedia)
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Three Important Pieces

» SRAM-based implementation is popular
— Non-standard technology means older technology generation

E —

LUT [—
[ 1

Lookup table (LUT, Pass transistor Multiplexer
formed by SRAM bits) | (controlled by an SRAM bit) (controlled by SRAM bits)
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Multiplexer as a Universal Gate

> Any function of k variables can be implemented with a
2K:1 multiplexer
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=
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How Many Functions?

> How many distinct 3-input 1-output Boolean
functions exist?

» What about K inputs?
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Look-Up Table (LUT)

= Ak-input LUT (k-LUT) can be
configured to implement any k-
iInput 1-output combinational
logic
- 2k SRAM bits

-~ Delay is independent of logic
function

0/1

0/1

0/1

0/1

0/1

0/1

0/1

0/1

\
/

A 3-input LUT

Xo X; Xg
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Exercise: How Many LUTs? (2 mins)

(1) How many 3-input LUTs are needed to implement the
following full adder?

(2) How about using 4-input LUTs?

A B
A B C,|Cuit S . . | . .
0 0 0[]0 O l ! T ! 'T ! !
O 0 1 o 1
5 UUUUOU
o 1 1 1 0
1 0 O 0O 1
1 0 1 1 0
1 1 O 1 0
1 1 1 1 1 Cout S




A Logic Element

» A k-input LUT is usually followed by a flip-flop
(FF) that can be bypassed

» The LUT and FF combined form a logic element

LUT l
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A Logic Block

> Alogic block clusters multiple
COuT COuT

logic elements A A
_ - e o
» Example: In Xilinx .7 series S k o sLice
FPGAs, each configurable logic -
block (CLB) has two slices a )
— Two independent carry chains per =
CLB for implementing adders S K| SLICE
— Each slice contains four LUTs 3

CIN CIN
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Traditional Homogeneous FPGA Architecture

I i i
I i i

)
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A
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Modern Heterogeneous
Field-Programmable System-on-Chip

» Island-style configurable mesh routing

> Lots of dedicated components
— Memories/multipliers, 1/0Os, processors
— Specialization leads to higher performance and lower power

[Figure credit: embeddedrelated.com]
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Dedicated DSP Blocks

> Built-in components for fast arithmetic operation
optimized for DSP applications

— Essentially a multiply-accumulate core with many
other features

— Fixed logic and connections, functionality may be
configured using control signals at run time

— Much faster than LUT-based implementation (ASIC
vs. LUT)
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Example: Xilinx DSP48E Slice

OOV SOV DA OV . CARRYCASCOUT”
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“These signals are dedicated routing paths Intarnal to the DSPASE column. They 2

= 25x18 signed multlpller
= 48-bit add/subtract/accumulate

= 48-bit logic operations
= SIMD operations (12/24 bit)
= Pipeline registers for high speed

[source: Xilinx Inc.] 29



Dedicated Block RAMs (BRAMS)

> Example: Xilinx 18K/36K

block RAMSs

- 32kx1to512x 72 in one
36K block

— Simple dual-port and true
dual-port configurations

— Built-in FIFO logic

— 64-bit error correction
coding per 36K block

18K/36K block RAM

—_—
—_—
—_—
—_—
—_—

DIA
DIPA
ADDRA
WEA
ENA

> cLKA

]

DIB
DIPB
ADDRB
WEB
ENB

> cLkB

DOA
DOPA

DOB
DOPB

[source: Xilinx Inc.]
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Embedded FPGA System-on-Chip

Dual ARM Cortex-A9 + NEON Up to

SIMD extension @600MHz~1GHz 350K logic cells
2MB Block RAM

900 DSP48s

Processing System

Static Memory Controller Dynamic Memory Controller:
NOR, NAND, SRAM, QSPI DDR2, DDR3, LPDDR2

NEON™/FPU Engines | NEON™/FPU Engines

Cortex-A9 MPCore Cortex-A9 MPCore
32/32 KB I/D Caches | 32/32 KB I/D Caches

MultiStandards 10s (3.3V & High Speed 1.8V)

AXI Interconnect

SysMon/ADC

MultiStandards I0s (3.3V & High Speed 1.8V) Multi Gigabit Transceivers

i i

Xilinx Zynq All Programmable System-on-Chip
[Source: Xilinx Inc.] 31



FPGA Deployment in Datacenter

» FPGAs deployed in Microsoft datacenters to accelerate
various web, database, and Al services

- e.g., project BrainWave claimed ~40Teraflops on large recurrent
neural networks using Intel Stratix 10 FPGAs

Interconnected FPGAs form a
separate plane of computation

Can be managed and used

y Wil Lol | DRAM | | DRAM
Routers -
Hardware acceleration plane
.. ---- —— QPI
saL ——
o —— ....... gt .. ... -------------

Web search }%‘Q_’_’_’- E

i — - . SDN ofﬂoad .. 4

el _ulite i SRR, - Gen3 x8 Gen3 2x8

=R =Z@
H o H
= =l
o Je ____Jeo ____Je ___ Jeo | [T
it le  Te Je  Je Je
S L L — — QsFP | [QsFP [ QsFP |

Traditional software (CPU) server plane
40Gb/s 40Gb/s

[source: Microsoft, BrainWave] 32



Summary: FPGA as a Programmable Accelerator

> Massive amount of fine-grained parallelism

— Highly parallel and/or deeply pipelined to achieve maximum
parallelism

— Distributed data/control dispatch
> Silicon configurable to fit algorithm

— Compute the exact algorithm at the desired level of numerical
accuracy

- Bit-level sizing and sub-cycle chaining
— Customized memory hierarchy
> Performance/watt advantage

— Low power consumption compared to CPU and GPGPUs
* Low clock speed
» Specialized architecture blocks
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Next Class

> Front-end Compilation
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