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▸Lab 1 due next Wed 10/27

▸TA Office Hour on Tuesdays at 4:40pm
– Same zoom link
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Announcements



Agenda

▸Motivation for specialized computing
– Key driving forces from applications and technology
– Main sources of inefficiency in general-purpose 

computing 
– Case study on convolution

▸FPGA introduction
– Basic building blocks
– Classical homogeneous FPGA architectures
– Modern heterogeneous FPGA architectures
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▸ Higher demand on efficient compute acceleration, esp.
for machine learning (ML) workloads

▸ Lower barrier with cloud FPGAs & open-source 
hardware coming of age

Best of Times for Specialized Computing



▸ Deep neural networks (DNNs) require enormous 
amount of compute 
– For example, ResNet50 (70 layers) performs 7.7 billion operations to 

classify one image
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Modern ML Models are Computationally Expensive

X. Xu, Y. Ding, S. X. Hu, M. Niemier, J. Cong, Y. Hu, and Y. Shi. Scaling for Edge Inference of Neural Networks. Nature Electronics, vol 1, Apr 2018.

© 2018 Macmillan Publishers Limited, part of Springer Nature. All rights reserved. © 2018 Macmillan Publishers Limited, part of Springer Nature. All rights reserved.
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the interconnect. Neurocube44 stacked the hybrid memory cube 
die on a single-instruction multiple-data processor, while TETRIS45 
combined a hybrid memory cube with a spatial architecture. Unlike 
general DNN accelerators, near-data processing achieves optimal 
efficiency by using more area for computing. In order to achieve 
higher efficiency, some works have even moved the DRAM on 
chip. DaDianNao23 adopted embedded DRAM for high-density 
on-chip memory, which achieves a 150-fold reduction in energy at 
the cost of larger chip size. There are also some works that moved 
computing units to sensors, thereby further reducing the cost of 
memory access. ShiDiannao26 put vision processing in the sensor 
with no DRAM, yielding a 63-fold improvement in energy effi-
ciency. RedEye46 even omitted analogue-to-digital conversion and 
performed DNN computation in the analogue domain at the sensor.

Non-von Neumann architectures have also been explored to 
reduce computation and memory consumption. One such approach 
adopts non-volatile resistive memories as programmable resis-
tive elements. Because computation is performed in the analogue 
domain, it can be extremely fast with ReRAM arrays47. The approach 
also brings high density and high energy efficiency as computation 
and memory are packed in the same chip area, thereby involving 
minimal data movement. ISAAC48 adopted multicycle approach to 
perform high-precision calculations with limited memory using 

25.1 million memristors. PRIME49 employed a large memristor 
array for multi-level computation. Jain et al.50 and Wang et al.51  
proposed the use of spin-transfer torque magnetic RAM for  
DNN computation.

Recently, representative array-level demonstrations have been 
reported. These include IBM’s 500 ×  661 phase change mem-
ory array for handwritten-digit recognition using the Modified 
National Institute of Standards and Technology (MNIST) data-
base52, Tsinghua’s 128 ×  8 analogue resistive RAM array for face rec-
ognition53, UCSB’s 12 ×  12 crossbar array for pattern recognition54, 
and UCSB’s floating-gate array for MNIST image recognition55. 
Non-von Neumann architectures with memristors have several 
drawbacks: a large analogue-to-digital/digital-to-analogue conver-
sion overhead, limited size of the memristor array, and energy and 
time overheads for memristor writing. It was recently shown that 
the analogue-to-digital conversion overhead can be eliminated by 
training the networks in the analogue domain54, and memristor 
writing can also be mitigated56. Although non-von Neumann archi-
tectures with non-volatile resistive memories have considerable 
potential in both performance and energy efficiency, a number of 
requirements are yet to be met: special materials and device engi-
neering to support the requirements of synaptic devices, increased 
array size, DNN mapping and EDA tools, and large-scale prototype 
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On Crash Course with the End of “Cheap” 
Technology Scaling

End of Growth of Single Program Speed?

22

End of 
the 

Line?
2X / 

20 yrs
(3%/yr)

RISC
2X / 1.5 yrs

(52%/yr)

CISC
2X / 3.5 yrs

(22%/yr)

End of 
Dennard
Scaling

⇒
Multicore
2X / 3.5 

yrs
(23%/yr)

Am-
dahl’s
Law
⇒

2X / 
6 yrs
(12%/yr)

Based on SPECintCPU. Source: John Hennessy and David Patterson, Computer Architecture: A Quantitative Approach, 6/e. 2018

▸ End of Dennard scaling: power becomes the key 
constraint
– Amdahl’s Law and dark silicon prevent “easy” multicore scaling 



▸ Classical scaling
– Frequency increases at 

constant power profiles
• Performance improves “for free"!

▸ Leakage limited scaling
– Vth virtually stopped scaling 

due to exponentially increasing 
leakage power

– VDD  scaling nearly stopped as 
well to maintain performance

▸ Dark silicon 
– Power constraints limit how 

much of the chip can be 
activated at any one time 
(not 100% anymore)
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End of Dennard Scaling and Dark Silicon
Classical Dennard scaling 
Device (transistor) # S2
Capacitance / device 1/S
Voltage (Vdd) 1/S
Frequency S
Total power 1

Leakage limited scaling
Device (transistor) # S2
Capacitance / device 1/S
Voltage (Vdd) ~1
Frequency ~1
Total power S
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Tradeoff between Compute Efficiency and Flexibility

Why is general-
purpose CPU less 
energy efficient?

EFFICIENCYFLEXIBILITY
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Rough Energy Breakdown for an Instruction

14 •  2014 IEEE International Solid-State Circuits Conference 978-1-4799-0920-9/14/$31.00 ©2014 IEEE

ISSCC 2014 / SESSION 1 / PLENARY / 1.1

Figure 1.1.7:  Power breakdown of an 8 core server chip. Figure 1.1.8:  Energy efficiency of specialized processing, from [10].

Figure 1.1.9: Rough energy costs for various operations in 45nm 0.9V.
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Reducing Compute Energy Overhead

I-Cache RF Control

I-Cache RF Control

I-Cache RF Control hundreds 
or more 

… … 

… 

Further specialization (what we achieve using accelerators)

Single Instruction Multiple Data (SIMD): tens of operations per instruction

I-Cache RF Control

… 

[Figure credit] W. Qadder, et al., Convolution Engine: Balancing Efficiency & Flexibility 
in Specialized Computing, ISCA’2013.

I-Cache RF Control

A sequence of energy-inefficient instructions
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Additional Energy Savings from Specialization

▸ Customized data types
– Exploit data range information to reduce bitwidth/precision and 

simply arithmetic operations 

▸ Customized memory hierarchy
– Exploit regular memory access patterns to minimize energy per 

memory read/write

▸ Customized communication architecture
– Exploit data movement patterns to optimize the 

structure/topology of on-chip interconnection network

These techniques combined can lead to another 10-
100X energy efficiency improvement over GPPs



Customized Memory Hierarchy: 
A Case Study on Convolution

▸ The main computation of image/video processing is 
performed over overlapping stencils, termed as convolution

-1 -2 -1

0 0 0
1 2 1

KxK convolution
(K=3 here)

Input image 
frame

Output image 
frame

0
1
2
3
4
5
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0  1   2  3  4   5  6
0
1
2
3
4
5
6

0   1   2   3   4   5   6

11



Example Application: Edge Detection

▸ Identifies discontinuities in an image where brightness 
(or image intensity) changes sharply
– Very useful for feature extractions in computer vision

Figures: Pilho Kim, GaTech

Sobel operator G=(GX , GY)

12



CPU Implementation of a 3x3 Convolution

CPU Main
Memory

Cache

for (r = 1; r < H; r++) 
for (c = 1; c < W; c++) 
for (i = 0; i < K; i++) 
for (j = 0; j < K; j++) 
out[r][c] += img[r+i-1][c+j-1] * f[i][j];

13

W

H



▸ Minimizes main memory accesses to improve performance

▸ A general-purpose cache is expensive in cost and incurs 
nontrivial energy overhead

General-Purpose Cache for Convolution

W

Input picture
(W pixels wide)

14

H
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Specializing Cache for Convolution

W W
Remove the edge pixels that are 
not needed for computation

Old 
Pixel

New 
Pixel

▸Rearrange the rows as a 1D array of pixels
▸Each time we move the window to right and push in 

the new pixel to the “cache”

15

New

Old



A Specialized “Cache”: Line Buffer

▸Line buffer: a fixed-width “cache” with (K-1)*W+K 
pixels in flight
– Fixed addressing and simple replacement policy
– Low area/power and high performance

▸ In customized FPGA implementation, line buffers 
can be efficiently implemented with on-chip BRAMs

2W+3 (K=3 in this example)

Old 
Pixel

New 
Pixel

16
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Tradeoff between Compute Efficiency and Flexibility

What makes FPGA 
an interesting 
compute substrate?

EFFICIENCYFLEXIBILITY
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What is an FPGA?

▸ FPGA: Field-Programmable Gate Array
– An integrated circuit designed to be configured by a customer or 

a designer after manufacturing (wikipedia)

▸ Components in an FPGA Chip
– Programmable logic blocks
– Programmable interconnects
– Programmable I/Os

18



▸ SRAM-based implementation is popular
– Non-standard technology means older technology generation

19

Three Important Pieces

Pass transistor 
(controlled by an SRAM bit)

Multiplexer 
(controlled by SRAM bits)

Lookup table (LUT, 
formed by SRAM bits)

LUT



▸ Any function of k variables can be implemented with a 
2k:1 multiplexer
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Multiplexer as a Universal Gate
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▸How many distinct 3-input 1-output Boolean 
functions exist?

▸What about K inputs?

21

How Many Functions?
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Look-Up Table (LUT) 

0/1
0/1
0/1
0/1
0/1
0/1
0/1
0/1

M
UX… Y

x2

A 3-input LUT 

§ A k-input LUT (k-LUT) can be 
configured to implement any k-
input 1-output combinational 
logic 
– 2k SRAM bits
– Delay is independent of logic 

function 

x1 x0



(1) How many 3-input LUTs are needed to implement the 
following full adder?
(2) How about using 4-input LUTs?

23

Exercise: How Many LUTs? (2 mins)

A B Cin Cout S

0 0 0 0 0
0 0 1 0 1
0 1 0 0 1
0 1 1 1 0
1 0 0 0 1
1 0 1 1 0
1 1 0 1 0
1 1 1 1 1
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A Logic Element

LUT

▸A k-input LUT is usually followed by a flip-flop 
(FF) that can be bypassed

▸The LUT and FF combined form a logic element
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A Logic Block

▸ A logic block clusters multiple 
logic elements

▸ Example: In Xilinx 7-series 
FPGAs, each configurable logic 
block (CLB) has two slices 
– Two independent carry chains per 

CLB for implementing adders
– Each slice contains four LUTs

CIN CIN

COUT COUT

SLICE

SLICE

Crossbar Switch



Traditional Homogeneous FPGA Architecture

26

Logic 
block

Switch
block

Routing 
track



Modern Heterogeneous 
Field-Programmable System-on-Chip

[Figure credit: embeddedrelated.com]

▸ Island-style configurable mesh routing
▸ Lots of dedicated components

– Memories/multipliers, I/Os, processors
– Specialization leads to higher performance and lower power

27



▸Built-in components for fast arithmetic operation 
optimized for DSP applications 
– Essentially a multiply-accumulate core with many 

other features

– Fixed logic and connections, functionality may be 
configured using control signals at run time 

– Much faster than LUT-based implementation (ASIC 
vs. LUT) 

28

Dedicated DSP Blocks
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Example: Xilinx DSP48E Slice

§25x18 signed multiplier
§48-bit add/subtract/accumulate
§48-bit logic operations
§SIMD operations (12/24 bit)
§Pipeline registers for high speed

[source: Xilinx Inc.]



▸Example: Xilinx 18K/36K 
block RAMs 
– 32k x 1 to 512 x 72 in one 

36K block
– Simple dual-port and true 

dual-port configurations
– Built-in FIFO logic
– 64-bit error correction 

coding per 36K block

[source: Xilinx Inc.] 30

DIA
DIPA
ADDRA
WEA
ENA

CLKA

DIB
DIPB

WEB
ADDRB

ENB

DOA

CLKB

DOPA

DOPB
DOB

18K/36K block RAM

Dedicated Block RAMs (BRAMs)



Embedded FPGA System-on-Chip

Xilinx Zynq All Programmable System-on-Chip
[Source: Xilinx Inc.]

Dual ARM Cortex-A9 + NEON 
SIMD extension @600MHz~1GHz 

Up to 
350K logic cells
2MB Block RAM 
900 DSP48s

31
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FPGA Deployment in Datacenter

[source: Microsoft, BrainWave]

▸ FPGAs deployed in Microsoft datacenters to accelerate 
various web, database, and AI services
– e.g., project BrainWave claimed ~40Teraflops on large recurrent 

neural networks using Intel Stratix 10 FPGAs



▸ Massive amount of fine-grained parallelism
– Highly parallel and/or deeply pipelined to achieve maximum 

parallelism
– Distributed data/control dispatch

▸ Silicon configurable to fit algorithm
– Compute the exact algorithm at the desired level of numerical 

accuracy
• Bit-level sizing and sub-cycle chaining

– Customized memory hierarchy

▸ Performance/watt advantage
– Low power consumption compared to CPU and GPGPUs

• Low clock speed
• Specialized architecture blocks

33

Summary: FPGA as a Programmable Accelerator



▸Front-end Compilation

34

Next Class



▸These slides contain/adapt materials developed 
by
– Prof. Jason Cong (UCLA)
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