
Introduction

Zhiru Zhang
School of Electrical and Computer Engineering

ECE 5997
Hardware Accelerator Design & Automation

Fall 2021

Agenda

▸ Important logistics

▸Course motivation

▸Basics of algorithm analysis and graphs

1

▸Course website
– https://www.csl.cornell.edu/~zhiruz/5997
– Lectures slides, handouts, and other readings

▸Ed Discussion
– Announcements and Q&A
– Enrollment information to come

▸CMS: course management system
– Assignments and grades
– Electronic submissions required

2

Class Resources

https://www.csl.cornell.edu/~zhiruz/5997

Course Texts

3

e-book available online

Selected paper &
software manuals

Get 1st edition
Overhead slides
available online

https://kastner.ucsd.edu/hlsbook/
http://si2.epfl.ch/~demichel/publications/mcgraw/

▸Ed Discussion
– Questions on lectures, assignments, projects, etc.
– Monitored by course staff

• PhD TAs: Shaojie Xiang (sx233), Yichi Zhang (yz2499)

▸ Instructor email
– Personal issues/appointment

▸(TA-led) office hours
– Tuesday 4:40-5:55pm, online (same zoom link)

4

Seeking Help After Class

Course Organization

▸ Refer to syllabus for course organization details

5

Course Syllabus
ECE 5997 Hardware Accelerator Design and Automation

Fall 2021, October 15th – December 7th

1. Course Information

Lectures: Friday 04:40-05:55pm
OH/Tutorial: Tuesday 04:40-5:55pm
Instructor: Zhiru Zhang, zhiruz@cornell.edu
Credits: 1 Credit

Course Texts:
� R. Kastner, J. Matai, and S. Neuendorffer, Parallel Programming for FPGAs, arXiv, 2018.

2. Course Description

Targeted specialization of functionality in hardware has become arguably the best means to
achieving improved compute performance and energy efficiency for a plethora of emerging
applications. Unfortunately, it is a very unproductive practice to design and implement special-
purpose accelerators using the conventional register transfer level (RTL) methodology. For this
reason, both academia and industry are seeing an increasing use of high-level synthesis (HLS)
to automatically generate hardware accelerators from software programs.

The course provides an introduction to the hardware accelerator design principles and the
modern HLS design methodologies and tools, focusing on FPGA targets. Specific topics in-
clude C-based HLS design methods, hardware specialization, scheduling, pipelining, resource
sharing, and case studies on deep learning acceleration. Commercial C-to-FPGA tools will be
provided to the students to implement real-life image/video processing and machine learning
applications on programmable system-on-chips that tightly integrate CPU and FPGA devices.

2.1. Prerequisites
This course assumes the student has a working knowledge of C/C++ and familiarity with basic
concepts of digital logic and computer architecture, such as sequential circuits, timing analysis,
pipelining, etc. A knowledge of basic algorithms and data structures is preferred. Experiences
with RTL design for either ASICs or FPGAs would be helpful, although not required.

2.2. Target Audience and Learning Outcomes
This course is open to graduate students and senior undergraduates, who are interested in
(1) learning application-/domain-specific hardware acceleration and (2) understanding the ca-
pabilities of current HLS tools and design methodologies. Upon completion of this course,
students will be able to use HLS tools to design realistic hardware accelerators on FPGAs.

3. Course Organization

This course includes a combination of lectures (Friday) and a few TA-led tutorials (Tuesday)
that cover the following topics.

1

http://www.csl.cornell.edu/~zhiruz/5997/pdf/syllabus.pdf

▸ Specifying algorithms in software (SW) programming
languages

▸ Compiling SW descriptions into special-purpose
hardware (HW) architectures
– Automatic compilation & synthesis techniques
– Performance, area, power trade-offs

▸ Realizing SW & HW on reconfigurable system-on-chips
– FPGA-targeted implementation

6

This Course is About
Hardware/Software Co-Design

This Course Introduces EDA

▸ A general methodology for refining a high-level description
down to a detailed physical implementation for designs
ranging from
– integrated circuits (including system-on-chips),
– printed circuit boards (PCBs),
– and electronic systems

▸ Modeling, synthesis, and verification at every level of
abstraction

7[source: NSF’09 EDA Workshop]

Electronic Design Automation

8

High Impact of EDA

[source] Patrick Gelsinger, Desmond Kirkpatrick,
Avinoam Kolodny, and Gadi Singer. “Such a
CAD!” IEEE Solid-State Circuits Magazine, 2010.

 IEEE SOLID-STATE CIRCUITS MAGAZINE SUMMER 20 10 33

circuit, logic, and architecture. At
each abstraction level, the verifica-
tion problem was typically the most
painful; hence it was addressed first.
The synthesis problem at that level
was addressed much later.

This article is the story of the
coevolution of design methodolo-
gies, practices, and CAD tools in
Intel’s design environment as it
coped with increasing complexity in
the turbulent 1980s and up through
recent years. It is interesting to note
that at the beginning of this process
the engineering culture was advo-
cating a tall, thin design. Nowadays,
very large scale integration (VLSI)
engineers are highly specialized in
different areas of the design disci-
pline, where specialized tools are
used in each area. This is analogous
to the restructuring of the whole
computer industry from vertical to
horizontal.

In the 1980s, the CAD industry
itself was nascent at best. While
some areas like schematic or layout
entry had solid commercial offer-
ings, the rapidly evolving complex-
ity of this young industry meant
there could be little hope from
 commercial tool offerings. There-
fore most tools emerged from inter-
nal development, external university
research, or often a coevolving blend
of internal work with external tools
and research. While there were a
number of corporate-university
relationships at that time, none was
as prolific as that of Intel with the
University of California, Berkeley.
In particular, Alberto Sangiovanni-
Vincentelli and his collaborative
research team, which consisted of
Robert Brayton, Richard Newton, and
many graduate students, had devel-
oped a strong partnership with Intel
and its microprocessor teams. This
long partnership with Intel stands
as one of the most fruitful relation-
ships in EDA, bringing fundamental
breakthroughs in multiple elements
of microprocessor logic, synthesis,
and layout. Many of these early suc-
cesses resulted in enormous ben-
efits to Intel and eventually made

their way into the EDA industry as
key enablers of many EDA tools and
today’s fabless ASIC/SOC semicon-
ductor industry.

Design Environment for
the Early X86 Processors

Inherited Tools from Memory Chips
Intel’s initial design environment
was formed to serve the needs of
memory chips. During the 1970s,
the primary CAD tools were layout
capture and verification tools, used
by draftsmen to generate and check
mask layouts. These tools were put
in place because the layouts were
already too complicated to develop
and maintain solely on paper or
Mylar. Polygon-based layout repre-
sentations therefore had to be stored

and handled by computerized tools,
initially on dedicated systems such
as the Calma or Applicon.

Engineers were doing circuit and
logic designs at the transistor level,
usually by hand, producing hand-
drawn schematics at the transistor
level for the layout designers. The
engineers did most of their design
work using pencil and paper, but
they also had circuit simulation
tools derived from the industry-
standard SPICE [3] program. SPICE

originated in Don Pederson’s group
at Berkeley and later on was refined
by Richard Newton, Alberto, and
their students (Intel’s version was
known as ISPEC). It was possible to
simulate and check logic behavior
and timing waveforms for small cir-
cuits that incorporated up to a few
hundred transistors.

As Intel started designing logic
products, including the first micro-
processors (the Intel 4004, 8008,
and 8080), design engineers inher-
ited all of those tools and methods,
which had initially been conceived
for memory chip design. Some engi-
neers preferred to perform logic
design using gate-level schemat-
ics, but this generated some resis-
tance from the layout designers.
They were familiar with transistor

 representations, which directly
matched the layout. Translating logic
gate symbols into transistor struc-
tures was not a trivial task because
the early microprocessors and
numeric coprocessors (8087, 80387)
were designed in NMOS technology.
Circuit operation relied on device
strength ratios, so each gate symbol
had to be accompanied by specific
transistor sizes. In addition, the pre-
vailing design style supported many
complex gate pull-down devices,

TABLE 1. INTEL PROCESSORS, 1971–1993.

PROCESSOR INTRO DATE PROCESS TRANSISTORS FREQUENCY

4004 1971 10 mm 2,300 108 KHz

8080 1974 6 mm 6,000 2 MHz

8086 1978 3 mm 29,000 10 MHz

80286 1982 1.5 mm 134,000 12 MHz

80386 1985 1.5 mm 275,000 16 MHz

Intel 486 DX 1989 1 mm 1.2 M 33 MHz

Pentium 1993 0.8 mm 3.1 M 60 MHz

This article is the story of the coevolution of
design methodologies, practices, and CAD tools
in Intel’s design environment as it coped with
increasing complexity in the turbulent 1980s
and up through recent years.

“This incredible growth rate could not be
achieved by hiring an exponentially growing
number of design engineers. It was fulfilled by
adopting new design methodologies and by
introducing innovative design automation
software at every processor generation.”

▸ Exponential
– in complexity (or Extreme scale)

▸ Diverse
– increasing system heterogeneity
– multi-disciplinary

▸ Algorithmic
– intrinsically computational

E-D-A: My Other Interpretation

9

Exponential

AlgorithmicDiverse

10

Exponential: Moore’s Law

Transistors
(Thousands)

Frequency
(MHz)

Typical Power
(Watts)

MIPS R2K

Intel
Pentium 4

DEC Alpha
21264

Data partially collected by M. Horowitz, F. Labonte, O. Shacham, K. Olukotun, L. Hammond
1975 1980 1985 1990 1995 2000 2005 2010 2015

100

101

102

103

104

105

106

Sequential
Processor
Performance

107

Number
of Cores

Parallel Proc
Performance

Intel 48-Core
Prototype

AMD 4-Core
Opteron

[Figure credit: Christopher Batten, Cornell]

11

Era of Billion-Transistor Chips

NVIDIA A100 Ampere
~54B transistors

Xilinx Versal VP1802
~92B transistors

AMD EPYC Rome
~39B transistors

Apple A13
~8B transistors

Apple M1
~16B transistors

12

End of Dennard Scaling:
Power Becomes the Limiting Factor

Transistors
(Thousands)

Frequency
(MHz)

Typical Power
(Watts)

MIPS R2K

Intel
Pentium 4

DEC Alpha
21264

Data partially collected by M. Horowitz, F. Labonte, O. Shacham, K. Olukotun, L. Hammond
1975 1980 1985 1990 1995 2000 2005 2010 2015

100

101

102

103

104

105

106

Sequential
Processor
Performance

107

Number
of Cores

Parallel Proc
Performance

Intel 48-Core
Prototype

AMD 4-Core
Opteron

[Figure credit: Christopher Batten, Cornell]

13

Power-Constrained Modern Computers

Power = Energy
Second

=
Energy
Op

×
Ops

Second

▸ Energy efficiency (Ops/Joule) must improve!

▸ Limitations of general-purpose multicore scaling
– Amdahl’s law
– Dark silicon

<<1W/chip ~1W/chip ~15W/chip ~50W/chip ~100W/chip >100W/chip

14

Inefficiency of General-Purpose Computing

6%

24%
28%

42%
70%

Embedded Processor Energy
Breakdown

Arithmetic Clock and control
Data supply Instruction supply

[source: Dally et al. Efficient Embedded Computing, IEEE’08]

▸ Typical energy overhead
for every 10pJ arithmetic
operations
– 70pJ on instruction supply
– 47pJ on data supply

Plus, only 59% of the
instructions are arithmetic

Advance of Civilization

?
▸For humans, Moore’s Law scaling of the brain has

ended a long time ago
– Number of neurons and their firing rate did not change

significantly

▸Remarkable advancement of civilization via
specialization

15

16

Computers are Following the Same Path:
Diverse Range of Integrated Functionalities

▸ Modern SoCs integrate a
rich set of special-purpose
accelerators
– Speed up critical tasks
– Reduce power

consumption and cost
– Increase energy

efficiency

System on chip (SoC)

Apple 12 (iPhone X)

▸Target of specialization is moving rapidly

17

Increasing Specialization Demands Higher
Design Productivity

Can custom hardware evolve
fast enough to keep up?

Number of machine learning papers published
on arXiv has outpaced Moore’s Law
[Dean et al., IEEE Micro 2018]

WORKSHOPS ON EXTREME SCALE DESIGN AUTOMATION (ESDA) CHALLENGES AND OPPORTUNITIES FOR 2025 AND BEYOND

4

Of the many technology challenges solved by EDA, the
80nm barrier was predicted at one point to be the physical
fabrication limit. Today, projections are that beyond 5nm
feature sizes do not look compelling, and even more
near-term technologies require major changes such as
FinFET transistors and relevant infrastructure. While
many technology barriers have been overcome, each
such leap aggravated the challenges for designers and
EDA tools. The priority for the earliest EDA tools was to
maximize what could be realized in a small die area. At
some point, performance became the dominant metric.
Sub-80nm technologies required careful control of power
dissipation, especially due to current leakage. Technologies
below 32nm add reliability concerns for transistors and
interconnect. Such increasing design considerations
(power, performance, cost, reliability), coupled with design
complexity, have exacerbated the already widening
productivity gap between tools and technology.

While EDA is faced with the challenges of new CMOS
technology nodes, many new and emerging technologies
are competing to augment and potentially replace silicon
in an effort to continue Moore’s Law. These devices
and technologies require research investment into
device models, abstractions, design tools, and validation
mechanisms to enable their integration into hybrid CMOS
flows. However, the EDA field itself has lost much of the
excitement of the early years of continued innovation.
The three largest EDA companies hold a dramatically high
percentage of the $4 billion market while also having
dramatically reduced their investment in research.
Moreover, the naturally cyclic IC market experiences
particularly severe peaks and valleys compared to other
technology fields. Such market trends tend to disrupt the
workforce pipeline severely. Ongoing hiring is focused
on established and near-term expertise in areas such as
place-and-route, low-power optimizations, hardware and
software security, and cloud computing [5]. Furthermore,
start-up companies no longer thrive in the EDA realm.
Those few with useful technologies are often starved
and eventually assimilated into one of the top-3

companies, without providing rewards for new ideas and
encouragement for further innovation.

As part of this process, the workshops examined both
the successes and open challenges for EDA. Further,
EDA needs were considered in the context of technology
scaling and hybrid technology electronic systems. From
these discussions, it became evident that the EDA field
has and continues to develop a powerful and scalable
toolkit of abstractions, algorithms, and design flows
relevant to support and enable the design of current
and future electronic ICs. However, this toolkit can be
applied more broadly in the context of similarly complex
problem domains in which abstractions are possible and
algorithms for efficient design require heuristic solutions.
In particular, the workshop series identified three key
directions to achieve effective EDA development to the
year 2025 and beyond:

Extreme-Scale EDA: EDA is perceived as a technically
mature field where continued dedicated effort will only
lead to modest progress in the field with limited impact.
In contrast, the analysis suggests that critical and deep
problems remain primarily unsolved. A focused effort to
address the most relevant challenges has an opportunity
for transformative impact. For example, verification of
designs with billions of transistors is a grand challenge
for EDA in the coming decade. Further, as scaling slows,
there is an opportunity for EDA to explore methods to
extract better results from existing technology nodes.
The driver of Moore’s law can be shifted from leveraging
scaling to dramatic advancements from improved tools.

EDA for Hybrid Post-CMOS Electronics: Integration
of a particular emerging technology may or may not
bring about new ways of computing. For instance,

Figure 1: The design productivity gap [6]

The purpose of this workshop series was to take an
introspective look at the EDA field while crystalizing
a vision for both the near and long term.

19
81

19
85

19
89

19
93

19
97

20
01

20
05

20
09

20
13

20
17

20
21

20
25

20
29 Time

Technology Capabilities
2x/36 months

HW Design Productivity
Filling with IP and Memory

HW Design Productivity

HW Design Gap

Log
Gates/Chip

Gates/Day

The design productivity gap
[Source: Workshops on Extreme Scale Design Automation:
Challenges and Opportunities for 2025 and Beyond]

Evolution of Design Abstraction

18

Design productivity

EDA tool effortMcKinsey S-Curve

Transistor-level entry

Gate-level entry

Register-Transfer-Level (RTL)

What’s next?

[source: Kurt Keutzer, UCB]

Motivation for High-Level Synthesis (HLS)

19

An 8-bit counter

+1 0

clk

rst

c 8

1

0
q

module dut(rst, clk, q);
input rst;
input clk;
output q;
reg [7:0] c;

always @ (posedge clk)
begin
if (rst == 1b’1) begin
c <= 8'b00000000;

end
else begin
c <= c + 1;

end

assign q = c;
endmodule

RTL Verilog

vs.

automatically?

uint8 dut() {
static uint8 c;
c+=1;

}

▸ Significant code size reduction
▸ Shorter simulation/verification cycle

20

High-Level Design Automation to Manage
Design Complexity

300KL

1Mgate

40KL

Logic Synthesizer

C

High-Level Synthesis

RTL

Layout

RTL Sim.
!100"1KHz#

Cycle Sim.
!10K"100KHz#

System Design

Logic Sim.
!10"100Hz#

Behavioral Sim.
!"1MHz#

Code Size Simulation Speed

Gate

C-based

RTL-based

7X

4X

10X

100X

10X

[source: Wakabayashi, DAC’05 tutorial]

Algorithms Drive Automation

21

Key Algorithms in EDA
[source: Andreas Kuehlmann, Synopsys Inc.]

subject matter are lost to other disciplines. The work-

shop attendees agreed that a good design back-

ground is important in EDA, and for the most part,

such courses are being offered; however, these mainly

teach the use of canned CAD tools and cannot cover

EDA algorithm topics in any depth. Workshop

attendees felt that a good senior-level introductory

CAD class could be developed and offered more

broadly in the US.

Exactly what subset to teach is a challenge be-

cause EDA is a broad, interdisciplinary field that con-

tinues to expand; for example, embedded systems is

a relatively new EDA topic. An ideal undergraduate

course should develop this breadth but avoid being

just an enumeration of disparate topics; it should em-

phasize a set of problem areas containing common

underlying algorithmic themes. This would allow in-

depth exposure to some algorithms and also introduce

the algorithmic and theoretic foundations of EDA.

At the graduate level, few universities have the

manpower to address all possible EDA topics. Figure 1

illustrates the skill sets an employer in the EDA field

needs and that delineate the kinds of skills and

knowledge that should be taught. The top layer lists

the set of products that are part of an EDA company’s

current offerings. These include extraction, simula-

tion, static timing analysis, place and route, synthesis,

engineering change, and formal verification. The

next layers of the graph (oval nodes) show software

that is used in these tools. For instance, synthesis

needs timing analysis, placement, logic synthesis,

and model checking. Extraction needs function-

approximation methods, PDE solvers, model-order

reduction, and machine learning. The next layer

lists the academic disciplines required by the people

who implement state-of-the-art tools in the listed

areas. For example, discrete optimization is used in

machine learning, placement, routing, search, and

logic optimization. The bottom layer categorizes

the underlying mathematics as either continuous

or discrete.

It was informative to look at a similar graph (not

included in this article) for some of the adjacent or

emerging technologies that might be part of the fu-

ture. That graph differed only in the first layer and

the interdependencies. Some of the future technolo-

gies listed were multidomain microsystems (such as

micromechanics), new device and process model-

ing, software verification, systems biology, parallel

computation, and so on. In addition, the types of

complexities to be met, and the problem scale to

be addressed, will be similar to those already encoun-

tered in EDA and so have already been solved to

some extent.

Perspectives

Machine
learning

Discrete mathematics

Logic and
semantics

F. Lang.,
automata and
concurrency

Combinatorial
algorithms

Discrete
optimization

Continuous mathematics

Continuous
optimization

Fast
linear

solvers

Nonlinear
solvers

Decision
procedures

Compilers Concurrency

Model
reduction

Model
checking

Logic
optimization

RoutingPlacementCircuit
analysis

Extraction Timing
analysis

Search

PDE
solvers

DAE
solvers

Function
approximations

FormalSynthesis ECPlace and
route

STASimToolExtTool

Figure 1. Fundamental areas and domain knowledge in EDA. (Courtesy Andreas Kuehlmann, Cadence

Design Systems, Inc.)

68 IEEE Design & Test of Computers

[3B2-14] mdt2010030062.3d 4/5/010 16:1 Page 68

Authorized licensed use limited to: Univ of Calif Los Angeles. Downloaded on July 15,2010 at 19:54:36 UTC from IEEE Xplore. Restrictions apply.

Topics touched in this course

Analysis of Algorithms

▸Need a systematic way to compare two algorithms
– Execution time is typically the most common criterion used
– Space (memory) usage is also important in most cases

– But difficult to compare in practice since algorithms may be
implemented on different machines, use different
languages, etc.

– Additionally, runtime is usually input-dependent

▸big-O notation is widely used for asymptotic analysis
– Complexity is represented with respect to some natural &

abstract measure of the problem size n

22

Big-O Notation

▸ Express run time as a function of input size n
– Run time F(n) is of order G(n), written as F(n) = O(G(n)) when

• ∃n0, "n ≥ n0, F(n) ≤ KG(n) for some constant K

– F will not grow larger than G by more than a constant factor
– G is often called an “upper bound” for F

▸ Interested in the worst-case input & the growth rate for
large input size

23

Big-O Notation (cont.)

▸ How to determine the order of a function?
– Ignore lower order terms
– Ignore multiplicative constants

– Examples:
3n2 + 6n + 2.7 is
n1.1 + 10000000000n is O(n1.1), n1.1 is also O(n2)

– n! > Cn > nC > log n > log log n > C
Þ n! > n10 ; n log n > n; n > log n

▸ What do asymptotic notations mean in practice?
– If algorithm A is O(n2) and algorithm B is O(n log n),

we usually say algorithm B is more scalable.

24

O(n2)

Exponential Growth

▸ Consider a 1GHz processor (1ns per clock cycle)
running 2n operations (assuming each op requires one cycle)

n 2n 1ns (/op) x 2n
10 103 1 us
20 106 1 ms
30 109 1 s
40 1012 16.7 mins
50 1015 11.6 years
60 1018 31.7 years
70 1021 31710 years

25

NP-Complete

▸ The class NP-complete (NPC) is the set of decision
problems which we “believe” there is no polynomial time
algorithms (hardest problem in NP)

▸ NP-hard is another class of problems, which are at least
as hard as the problems in NPC (also containing NPC)

▸ If we know a problem is in NPC or NP-hard, there is
(very) little hope to solve it exactly in an efficient way

26

27

How to Identify an NP-Complete Problem

§ I can’t find an efficient
algorithm, I guess I’m just
too dumb.

§ I can’t find an efficient
algorithm, but neither can all
these famous people.

[source: Computers and Intractibility by Garey and Johnson]

§ I can’t find an efficient
algorithm, because no such
algorithm is possible.

Problem Intractability

▸ Most of the nontrivial EDA problems are intractable (NP-
complete or NP-hard)
– Best-known algorithm complexities that grow exponentially with

n, e.g., O(n!), O(nn), and O(2n).
– No known algorithms can ensure, in a time-efficient manner,

globally optimal solution

▸ Heuristic algorithms are used to find near-optimal
solutions
– Be content with a “reasonably good” solution

28

Types of Algorithms

▸ There are many ways to categorize different types of
algorithms
– Polynomial vs. Exponential, in terms of computational effort
– Optimal (or Exact) vs. Heuristic, in solution quality
– Deterministic vs. Stochastic, in decision making
– Constructive vs. Iterative, in structure
…

29

▸ Combinatorial algorithms
– Graph algorithms
…

▸ Computational mathematics
– Optimization algorithms
– Numerical algorithms
…

▸ Computational science
– Bioinformatics
– Linguistics
– Statistics
…

▸ Information theory & signal processing
▸ Many more

30

Broader Classification of Algorithms

[source: en.wikipedia.org/wiki/List_of_algorithms]

Topics touched in this course

Graph Definition

▸ Graph: a set of objects and their connections
– Importance: any binary relation can be represented as a graph

▸ Formal definition:
– G = (V, E), V = {v1, v2, ..., vn}, E = {e1, e2, ..., em}

• V : set of vertices (nodes), E : set of edges (arcs)
– Undirected graph: an edge {u, v} also implies {v, u}
– Directed graph: each edge (u, v) has a direction

31

Simple Graph

▸ Loops, multi edges, and simple graphs
– An edge of the form (v, v) is said to be a self-loop
– A graph permitted to have multiple edges (or parallel edges)

between two vertices is called a multigraph
– A graph is said to be simple if it contains no self-loops or

multiedges

32

Simple graph Multigraph

b
a

c

ed g

f
b

a

c

Graph Connectivity

▸ Paths
– A path is a sequence of edges connecting two vertices
– A simple path never goes through any vertex more than once

▸ Connectivity
– A graph is connected if there is there is a path between any two

vertices
– Any subgraph that is connected can be referred to as a

connected component
– A directed graph is strongly connected if there is always a

directed path between vertices

33

Trees and DAGs

▸ A cycle is a path starting and ending at the same vertex.
A cycle in which no vertex is repeated other than the
starting vertex is said to be a simple cycle

▸ An undirected graph with no cycles is a tree if it is
connected, or a forest otherwise
– A directed tree is a directed graph which would be a tree if the

directions on the edges were ignored

▸ A directed graph with no directed cycles is said to be a
directed acyclic graph (DAG)

34

Examples

35

c
a

b d

e

f

g

c
a

b d

e

f

g

a

b c d

e f g h i j k

▸ A topological sort (or order) of a directed graph is an
ordering of nodes where all edges go from an earlier
vertex (left) to a later vertex (right)
– Feasible if and only if the subject graph is a DAG

36

Topological Sort

a

c d

b
a cdb

Takeaway Points

▸Exponential growth in silicon capacity calls for
higher level of design abstraction

▸End of Dennard scaling leads to increasing
specialization to sustain improvement in
hardware performance and energy efficiency

▸EDA tools are fueled by highly sophisticated and
yet scalable CAD algorithms

37

▸Actions
– Check out the course website
– Read through the course syllabus
– Verify your login on ecelinux

• ssh -X <netid>@ecelinux-01.ece.cornell.edu

HLS tutorial on Tuesday (10/19) at 4:40pm

38

Before Next Lecture

▸These slides contain/adapt materials developed by
– Prof. Jason Cong (UCLA)
– Prof. David Z. Pan (UT Austin)

39

Acknowledgements

