ECE 5997
Hardware Accelerator Design & Automation
Fall 2021

Introduction

Zhiru Zhang

School of Electrical and Computer Engineering

UNJ)
$ o= y@%@
19 % 1 1
gz) Cornell University H
&\ /s -
AN "

Agenda

> Important logistics
» Course motivation

» Basics of algorithm analysis and graphs

Class Resources

» Course website
— https://www.csl.cornell.edu/~zhiruz/5997
— Lectures slides, handouts, and other readings

» Ed Discussion
— Announcements and Q&A
— Enrollment information to come

» CMS: course management system
— Assignments and grades
— Electronic submissions required

https://www.csl.cornell.edu/~zhiruz/5997

Course Texts

Parallel Programming for FPGAs
The HLS Book

e-book available online

SYNTHESIS AND
OPTIMIZATION OF
DIGITAL CIRCUITS

Giovanni De Micheli

Get 1st edition

Overhead slides

available online

Selected paper &
software manuals

https://kastner.ucsd.edu/hlsbook/
http://si2.epfl.ch/~demichel/publications/mcgraw/

Seeking Help After Class

» Ed Discussion
— Questions on lectures, assignments, projects, etc.

— Monitored by course staff
* PhD TAs: Shaojie Xiang (sx233), Yichi Zhang (yz2499)

> [nstructor email
— Personal issues/appointment

> (TA-led) office hours
— Tuesday 4:40-5:55pm, online (same zoom link)

Course Organization

> Refer to syllabus for course organization details

1. Course Information

Lectures: Friday 04:40-05:55pm
OH/Tutorial: Tuesday 04:40-5:55pm
Instructor: Zhiru Zhang, zhiruz@cornell.edu
Credits: 1 Credit

Course Texts:
o R. Kastner,]. Matai, and S. Neuendorffer, Parallel Programming for FPGAs, arXiv, 2018.

2. Course Description

Targeted specialization of functionality in hardware has become arguably the best means to
achieving improved compute performance and energy efficiency for a plethora of emerging
applications. Unfortunately, it is a very unproductive practice to design and implement special-
purpose accelerators using the conventional register transfer level (RTL) methodology. For this
reason, both academia and industry are seeing an increasing use of high-level synthesis (HLS)
to automatically generate hardware accelerators from software programs.

The course provides an introduction to the hardware accelerator design principles and the
modern HLS design methodologies and tools, focusing on FPGA targets. Specific topics in-
clude C-based HLS design methods, hardware specialization, scheduling, pipelining, resource
sharing, and case studies on deep learning acceleration. Commercial C-to-FPGA tools will be
provided to the students to implement real-life image/video processing and machine learning
applications on programmable system-on-chips that tightly integrate CPU and FPGA devices.

2.1. Prerequisites

This course assumes the student has a working knowledge of C/C++ and familiarity with basic
concepts of digital logic and computer architecture, such as sequential circuits, timing analysis,
pipelining, etc. A knowledge of basic algorithms and data structures is preferred. Experiences
with RTL design for either ASICs or FPGAs would be helpful, although not required.

2.2. Target Audience and Learning Outcomes

This course is open to graduate students and senior undergraduates, who are interested in
(1) learning application-/domain-specific hardware acceleration and (2) understanding the ca-
pabilities of current HLS tools and design methodologies. Upon completion of this course,
students will be able to use HLS tools to design realistic hardware accelerators on FPGAs.

3. Course Organization

This course includes a combination of lectures (Friday) and a few TA-led tutorials (Tuesday)
that cover the following topics.

http://www.csl.cornell.edu/~zhiruz/5997/pdf/syllabus.pdf

This Course is About
Hardware/Software Co-Design

» Specifying algorithms in software (SW) programming
languages

» Compiling SW descriptions into special-purpose
hardware (HW) architectures
— Automatic compilation & synthesis techniques
- Performance, area, power trade-offs

> Realizing SW & HW on reconfigurable system-on-chips
- FPGA-targeted implementation

This Course Introduces EDA

Electronic Design Automation

> A general methodology for refining a high-level description

down to a detailed physical implementation for designs
ranging from

— integrated circuits (including system-on-chips),
— printed circuit boards (PCBs),
— and electronic systems

> Modeling, synthesis, and verification at every level of
abstraction

[source: NSF'09 EDA Workshop] 7

High Impact of EDA

Patrick Gelsinger, Desmond Kirkpatrick,
Avinoam Kolodny, and Gadi Singer

Such a
CAD!

Coping with the
complexity of
microprocessor
design at Intel.

PICTURED, FROM LEFT, ARE PATRICK GELSINGER,
GENE HILL, AND ALBERTO SANGIOVANNI-VINCEN-
TELLI. PHOTO COURTESY OF INTEL

[source] Patrick Gelsinger, Desmond Kirkpatrick,
Avinoam Kolodny, and Gadi Singer. “Such a
CAD"” IEEE Solid-State Circuits Magazine, 2010.

TABLE 1. INTEL PROCESSORS, 1971-1993.

PROCESSOR INTRO DATE
4004 1971
8080 1974
8086 1978
80286 1982
80386 1985
Intel 486 DX 1989
Pentium 1993

“This incredible growth rate could not be

PROCESS
10 wm

6 um

3 pum

1.5 um
1.5 pm

1 wm

0.8 um

TRANSISTORS
2,300

6,000

29,000
134,000
275,000

12M

3IM

FREQUENCY
108 KHz

2 MHz

10 MHz

12 MHz

16 MHz

33 MHz

60 MHz

achieved by hiring an exponentially growing
number of design engineers. It was fulfilled by
adopting new design methodologies and by

introducing innovative design automation
software at every processor generation.”

E-D-A: My Other Interpretation

» Exponential

— in complexity (or Extreme scale) Exponentla,l
> Diverse /
— increasing system heterogeneity
— multi-disciplinary Bzl IS0
T
[
> Algorithmic Diverse « pr Algorithmic

— intrinsically computational

Exponential: Moore’s Law

7

10

10

10

10

10

10

10

10

65
5:
4l
3 [
2:
1:

ol

T

Intel 48-Core
Prototype

Transistors

| | ~ |(Thousands)

rrrrr Ly ; > Parallel Proc
3 5 ' - - : Performance

,,,,,,,,,, ol Pl T Sequential
| : Processor
Performance

Fréquency
(MHz)

Typical Power
(Watts)

Number
of Cores

1075 1980 1985 1990 1995 2000 2005 2010 2015

Data partially collected by M. Horowitz, F. Labonte, O. Shacham, K. Olukotun, L. Hammond

[Figure credit: Christopher Batten, Cornell] 10

Era of Billion-Transistor Chips

Apple A13
~8B transistors ~16B transistors

AMD EPYC Rome
~39B transistors

ADAPTABLE INTELLIGENT
ENGINES ENGINES

VERSAL™
DSP
ADAPTABLE
HARDWARE ENGINES

PROGRAMMABLE NETWORK ON CHIP

nnnnnn

...........

NVIDIA A100 Ampere Xilinx Versal VP1802
~b54B transistors ~92B transistors

11

End of Dennard Scaling:
Power Becomes the Limiting Factor

7

10

10

10

10

10

10

10

10

6:
5:
4l
3 |
2:
1:

ol

T

Transistors

| | : (Thousands)

rrrrr § Becrore 7. Parallel Proc
r z | | '~ Performance

rrrrrrrrrrr el Pl = Sequential
| : ‘ ‘ | — Processor
Performance

Fréquency
(MHz)

Typical Power
(Watts)

Number
of Cores -

1075 1980 1985 1990 1995 2000 2005 2010 2015

Data partially collected by M. Horowitz, F. Labonte, O. Shacham, K. Olukotun, L. Hammond

[Figure credit: Christopher Batten, Cornell] 12

Power-Constrained Modern Computers

<<1iW/chip ~1W/chip ~15W/chip ~50W/chip ~100W/chip >100W/chip

Energy |Energy| | Ops
Second ll Op Second T

Power =

> Energy efficiency (Ops/Joule) must improve!

> Limitations of general-purpose multicore scaling

— Amdahl’s law
— Dark silicon

13

Inefficiency of General-Purpose Computing

> Typical energy overhead Embedded Processor Energy
for every 10pJ arithmetic Breakdown
operations u Arithmetic u Clock and control

_ 70pJ on instruction supply D2t SUPPIY «Instruction supply

— 47pd on data supply

28%

42%

Plus, only 59% of the
instructions are arithmetic

[source: Dally et al. Efficient Embedded Computing, IEEE’08]
14

Advance of Civilization

> For humans, Moore’s Law scaling of the brain has
ended a long time ago

— Number of neurons and their firing rate did not change
significantly

» Remarkable advancement of civilization via
specialization ”

15

Computers are Following the Same Path:
Diverse Range of Integrated Functionalities

System on chip (SoC) > Modern SoCs integrate a
ermen e rich set of special-purpose
GPUCore0 || GPUCore2 CPU CPU
Tempest | Tempest accelerators
GPUCorel || GPUCore3 . — .y
L2 — Speed up critical tasks
CC Fabric
ISP ortexVortex — Reduce power
NPU CPU | CPU . d
e _ consumption and cost
rveemeen) [2R) Lain | [y - Increase energy
Secam Enciave | [Avaveen] | orante, | | IMC | [EROINE efficiency

Apple 12 (iPhone X)

16

Increasing Specialization Demands Higher
Design Productivity

3000/
2000/

1000}

4000 |

1994.01

2007.01

2020.09

Log

Number of machine learning papers published
on arXiv has outpaced Moore’s Law
[Dean et al., IEEE Micro 2018]

Can custom hardware evolve

fast enough to keep up?

» Target of specialization is moving rapidly

ML+AI arXiv papers per month

A

Gates/Chi

_ Technology Capabilities
2x/36 months

HW Design Gap - /

HW Design Productivity
_ = " Filling with IP and Memory

__ — — HW Design Productivity

v

—_— N O M N = 1IN O

o —_— = N .

©c 8 8 3 5 o 8 8 Time
—_ - = = —_= N NN NN N NN

The design productivity gap

[Source: Workshops on Extreme Scale Design Automation:
Challenges and Opportunities for 2025 and Beyond]

17

Evolution of Design Abstraction

Design productivity What’s next?

\
e

Register-Transfer-Level (RTL)

2:;? Gate-level entry

Transistor-level entry

>
McKinsey S-Curve EDA tool effort

[source: Kurt Keutzer, UCB]

18

Motivation for High-Level Synthesis (HLS)

module dut(rst, clk, q);
input rst; uint8 dut() {

input Clki static uint8 c;
output q; .
reg [70] o VS- C+=1 ’

}

always @ (posedge clk)
begin

if (rst == 1b’1) begin @) 0
¢ <= 8'b00000000: automatically*

end
else begin
c<=cCc+1;

end
— o —{=] [.]|8
assign q = c; o A
endmodule r |

RTL Verilog clk

rst 1

An 8-bit counter
19

High-Level Design Automation to Manage
Desigh Complexity

> Significant code size reduction
» Shorter simulation/verification cycle

Code Size System Design Simulation Speed
£ Y C-based |
_ Behavioral Sim.
40KL < C " (~1MHz)
10X
7X High-Level Synthesis ~, Cycle Sim.
(10K ~100KHz)
4 JRTL-based
RTL Sim 100X
) R im.
300KL < RTL ~ (100~1KHz)

1
Logic Synthesizer
4X 10X
Logic Sim.
1Mgate <« iQGJat_eﬁ‘—' (190 ~100Hz)
@ [source: Wakabayashi, DAC’05 tutorial]

Algorithms Drive Automation

Topics touched in this course

(gt) e
et
3

DAE PDE
solvers solvers
— N
P _—— ‘
Function Model
approximations reduction
N>

Nonlinear F gst Continuous Discrete Combinatoria RN Logic and
linear Y R) automata and .
solvers optimization |[[}optimization algorithms semantics
solvers concurrency
Continuous mathematics Discrete mathematics

G

Key Algorithms in EDA
[source: Andreas Kuehlmann, Synopsys Inc.]

21

Analysis of Algorithms

> Need a systematic way to compare two algorithms
— Execution time is typically the most common criterion used
- Space (memory) usage is also important in most cases

— But difficult to compare in practice since algorithms may be
implemented on different machines, use different
languages, etc.

— Additionally, runtime is usually input-dependent

> big-O notation is widely used for asymptotic analysis

- Complexity is represented with respect to some natural &
abstract measure of the problem size n

22

Big-O Notation

» EXxpress run time as a function of input size n
— Run time F(n) is of order G(n), written as F(n) = O(G(n)) when
ang, YN =ng, F(n) = KG(n) for some constant K

- Fwill not grow larger than G by more than a constant factor
— G@Gis often called an “upper bound” for F

> Interested in the worst-case input & the growth rate for
large input size

23

Big-O Notation (cont.)

> How to determine the order of a function?
— lIgnore lower order terms
— Ignore multiplicative constants

- Examples:
3+ 6n+ 2.7 is O(n?)
n'1+ 10000000000n is O(n'1), n'-1is also O(r?)

- n!l>C">n®>logn>loglognh>C
—n! >n'%;nlogn>n;n>logn

» What do asymptotic notations mean in practice?
— If algorithm A is O(n?) and algorithm B is O(n log n),
we usually say algorithm B is more scalable.

24

Exponential Growth

» Consider a 1GHz processor (1ns per clock cycle)
running 2" operations (assuming each op requires one cycle)

n 2" 1ns (/op) x 2"
10 10° 1 us

20 106 1ms

30 10° 1s

40 1072 16.7 mins
50 1075 11.6 years
60 1018 31.7 years
70 1021 31710 years

25

NP-Complete

> The class NP-complete (NPC) is the set of decision
problems which we “believe” there is no polynomial time
algorithms (hardest problem in NP)

> NP-hard is another class of problems, which are at least
as hard as the problems in NPC (also containing NPC)

> If we know a problem is in NPC or NP-hard, there is
(very) little hope to solve it exactly in an efficient way

26

How to Identify an NP-Complete Problem

= | can’t find an efficient
algorithm, | guess I’'m just
too dumb. _ o
= | can’t find an efficient
algorithm, but neither can all

these famous people.

gL LL L
.@ »

| .l'}'(M
|

17
x4 _(

= | can’t find an efficient

L
7 =
e N The
’J/ . | /.1 N\ [25*?%3_ 86 A/’
]'[} @ Q ,- l—-

algorithm, because no such M
algorithm is possible. =

[source: Computers and Intractibility by Garey and Johnson]
27

Problem Intractability

> Most of the nontrivial EDA problems are intractable (NP-

complete or NP-hard)

- Best-known algorithm complexities that grow exponentially with
n, e.g., O(n!), O(n"), and O(2").

— No known algorithms can ensure, in a time-efficient manner,
globally optimal solution

» Heuristic algorithms are used to find near-optimal

solutions
— Be content with a “reasonably good” solution

28

Types of Algorithms

» There are many ways to categorize different types of
algorithms
— Polynomial vs. Exponential, in terms of computational effort
— Optimal (or Exact) vs. Heuristic, in solution quality
— Deterministic vs. Stochastic, in decision making
— Constructive vs. lterative, in structure

29

Broader Classification of Algorithms

> Combinatorial algorithms

- ‘Graph algorithms

Topics touched in this course

» Computational mathematics
= ‘Optimization algorithms
— Numerical algorithms

» Computational science
— Bioinformatics
— Linguistics
— Statistics

> Information theory & signal processing
> Many more

[source: en.wikipedia.org/wiki/List_of_algorithms]

30

Graph Definition

» Graph: a set of objects and their connections
— Importance: any binary relation can be represented as a graph

» Formal definition:
- G=(V,E),V={vq, V,, ..., vV}, E={eq, €, ..., €5}
* V : set of vertices (nodes), E : set of edges (arcs)
- Undirected graph: an edge {u, v} also implies {v, u}
- Directed graph: each edge (u, v) has a direction

31

Simple Graph

> Loops, multi edges, and simple graphs
-~ An edge of the form (v, v) is said to be a self-loop

— A graph permitted to have multiple edges (or parallel edges)
between two vertices is called a multigraph

— Agraph is said to be simple if it contains no self-loops or
multiedges

Simple graph Multigraph

O :

oo Y4

32

Graph Connectivity

> Paths
-~ A path is a sequence of edges connecting two vertices
-~ A simple path never goes through any vertex more than once

» Connectivity

— Agraph is connected if there is there is a path between any two
vertices

— Any subgraph that is connected can be referred to as a
connected component

- Adirected graph is strongly connected if there is always a
directed path between vertices

33

Trees and DAGs

> Acycle is a path starting and ending at the same vertex.
A cycle in which no vertex is repeated other than the
starting vertex is said to be a simple cycle

> An undirected graph with no cycles is a tree if it is
connected, or a forest otherwise

- Adirected tree is a directed graph which would be a tree if the
directions on the edges were ignored

> Adirected graph with no directed cycles is said to be a
directed acyclic graph (DAG)

34

o b

Examples
()

Topological Sort

> A topological sort (or order) of a directed graph is an
ordering of nodes where all edges go from an earlier
vertex (left) to a later vertex (right)
— Feasible if and only if the subject graph is a DAG

36

Takeaway Points

» Exponential growth in silicon capacity calls for
higher level of design abstraction

» End of Dennard scaling leads to increasing
specialization to sustain improvement in
hardware performance and energy efficiency

» EDA tools are fueled by highly sophisticated and
yet scalable CAD algorithms

37

Before Next Lecture

» Actions
— Check out the course website
— Read through the course syllabus

— Verify your login on ecelinux
* ssh -X <netid>@ecelinux-01.ece.cornell.edu

HLS tutorial on Tuesday (10/19) at 4:40pm

38

Acknowledgements

> These slides contain/adapt materials developed by
— Prof. Jason Cong (UCLA)
— Prof. David Z. Pan (UT Austin)

39

