ECE5997 HARDWARE ACCELERATOR DESIGN AND AUTOMATION, FALL 2021
School of Electrical Computer Engineering, Cornell University

Lab 3: Digit Recognition System (Part 2)
Due Wednesday, December 1, 2021, 11:59pm
Late submission: 4% penalty per day; cannot be late by more than 6 days

1 Introduction

In the tutorial on Software-Hardware Codesign with CORDIC, you saw how we modified the
CORDIC design from Lab 1 to implement the synthesized RTL on the Xilinx Zynq field-
programmable system-on-chip (SoC). In this lab, you will be responsible for implementing
your digitrec design from Lab 2 on the same device. Furthermore, you will apply loop
pipelining to optimize the design and measure the execution time of the software-only,
baseline-FPGA, and optimized-FPGA implementations of digitrec. Finally, you will use
the information found in Vivado HLS’s generated reports to estimate the runtime of the
FPGA designs and compare your numbers with measurements made on the ZedBoard.

2 Materials

You are given a zip file named lab3.zip on ecelinuz under /classes/ece5997/labs, which
contains the following directories:

e ecelinux: contains an incomplete C++ project for you to build the digitrec HLS
design and synthesize it to a hardware module. This code should be completed on
ecelinux.

e zedboard: contains symbolic links to the files in the ecelinux directory required for
software execution of digitrec on CPU. Also contains an incomplete C++ project
to build the host program for invoking the digitrec module on FPGA.

Note that a symbolic link is a special file which points to another file — accessing the link basi-
cally accesses the original file. The files digitrec.h, digitrec.cpp, and digitrec_test.cpp
in the zedboard directory point to their counterparts in the ecelinux directory. This means
you only have to complete the digitrec design in the ecelinux directory and the changes will
be automatically propagated to the zedboard directory. Make sure to copy both directories
to the ZedBoard or else the link will be broken.



3 Design Overview

You will again use the k-nearest-neighbors (k-NN) algorithm for digit recognition (consult
the Lab 2 document for details on the k-NN algorithm). Because the focus in this lab is
the hardware implementation, the value of k will be fixed to 3. You will implement
and evaluate the performance for three designs:

e A baseline digitrec design that does not use any HLS optimization directives (vivado_hls
run_base.tcl).

e An unrolled digitrec design which is similar to what you did in Lab 2 where unrolling
and array partitioning are applied (vivado_hls run unroll.tcl).

e A pipelined digitrec design which applies loop pipelining in addition to the previous
optimizations (vivado_hls run pipeline.tcl).

You will use the information from the Vivado HLS synthesis report to estimate the perfor-
mance of your hardware design, and verify that the physical hardware achieves a performance
close to the estimate. You will also measure the performance of the software execution on both
the ZedBoard and ecelinux for comparison. Timers identical to those from the CORDIC
tutorial will be used.

4 Guidelines and Hints

4.1 Coding and Debugging

Your first task is to complete the software-only implementation on ecelinux. Similar to
Lab 2, the main body of the digitrec function is finished, and you only need to complete
update _knn and vote_knn. But this time you are required to only use constant-bound
loops in the update knn function.

To complete the hardware design, you will also need to fill in dut with code to communicate
with the FIFO channels. The digitrec_test.cpp testbench is responsible for running the
software-only implementation of digitrec. Timers have already been added to the csim.
If you add print statements to debug your code, make sure to remove them before doing
runtime measurement.

Your next task is to complete the FPGA implementation on a ZedBoard. The process of
generating the bitstream, logging onto a ZedBoard, and programming the ZedBoard using
the bitstream is identical to what we showed in the CORDIC tutorial. Be aware that it can
take 20-30 minutes to generate the bitstream.

You are also responsible for completing the host program. We have taken care of reading
the input and reference data sets from file and activating the timers. Make sure to use batch
data transfer in your code to minimize communication overhead.

4.2 Hardware Design Optimization

Use the provided scripts run_base.tcl, run unroll.tcl run pipeline.tcl. Your source
code will be identical between these designs. Note that we have already added the necessary
HLS optimization directives in each of these Tecl scripts.



After synthesizing the unrolled design, you should check that the latency is reduced by around
10x in the synthesis report. In pipelined design, we are pipelining the outer loop (labeled
as L1800, which iterates 1800 times). So please verify after pipelining that the L1800
loop is indeed pipelined to an II of 1 in the report.

If you are interested to learning more about the pipelining directive, check out the following
reference:

e Vivado Design Suite User Guide, High-Level Synthesis, UG902 (v2019.1) [I]

4.3

— set_directive_pipeline p.453

You can find examples of code snippets using the pipeline pragma throughput the user
guide.

Report

Please write your report in a single-column and single-space format with a 10pt
font size. Page limit is 2. Please include your names and NetIDs on the
report.

There should be a section describing how you implemented the digitrec system. Ex-
plain how you communicated data between the processor and FPGA, as well as what
preprocessing was necessary to put the data in the right format.

There should be a section discussing the effects of each design (baseline, unrolled, and
pipelined) on the synthesized hardware. This section should contain a table which
reports the latency and resource usage of each design. Compare these numbers discuss
them using your understanding of how the unrolling and pipelining optimizations work.

There should be a section reporting the measured performance of each digitrec sys-
tem implementation. Specifically, this section should contain a table which
lists the observed runtime for each implementation, including ecelinux-
software, zedboard-software (i.e., ARM), zedboard-fpga-baseline, zedboard-
fpga-unrolled, and zedboard-fpga-pipeline. This table should also have a column
that reports the runtime speedup normalized against zedboard-software.

In addition, for the FPGA implementations, please use the synthesis report to estimate
execution time in hardware (note that the FPGA clock is operating at 100MHz in this
particular setup). Please discuss how you obtained your estimations, and com-
pare your theoretical and observed results and explain any discrepancies.

All of the figures and tables should have captions. These captions should do their best
to explain the figure (explain axis, units, etc.). Ideally you can understand the report
just by looking at the figures and captions. But please avoid just putting some results
and never saying anything about them.

The report should only show screenshots from the tool when they demonstrate some
significant idea. If you do use screenshots, make sure they are readable (e.g., not blurry).
In general, you are expected to create your own figures. While more time consuming,
it allows you to show the exact results, figures, and ideas you wish to present.



5 Deliverables

Please submit your lab on CMS. You are expected to submit your report and your code
and scripts (and only these files, not the project files generated by the tool) in a zipped file
named digitrec2.zip that contains the following contents:

e report.pdf: the project report in pdf format.

e The folders ecelinux, zedboard, and bonus. These should contain the completed
source files for the software-only, FPGA, and optimized software-only implementations
of the digitrec design. Make sure the design can be built using the Makefile and
scripts in the folders. Please run make clean to remove all the generated output files.

6 Acknowledgement

The baseline FPGA+Linux setup used in tutorial is based on the Xillinux distribution pro-
vided by Xillybus Ltd. (http://xillybus.com /xillinux)

References

[1] Xilinx Inc., Vivado Design Suite User Guide: High-Level Synthesis UG902 (v2019.1),
Available at https://www.xilinx.com/support/documentation/sw manuals/xilinx2

019_1/ug902-vivado-high-level-synthesis.pdf


https://www.xilinx.com/support/documentation/sw_manuals/xilinx2019_1/ug902-vivado-high-level-synthesis.pdf
https://www.xilinx.com/support/documentation/sw_manuals/xilinx2019_1/ug902-vivado-high-level-synthesis.pdf
https://www.xilinx.com/support/documentation/sw_manuals/xilinx2019_1/ug902-vivado-high-level-synthesis.pdf
https://www.xilinx.com/support/documentation/sw_manuals/xilinx2019_1/ug902-vivado-high-level-synthesis.pdf

	Introduction
	Materials
	Design Overview
	Guidelines and Hints
	Coding and Debugging
	Hardware Design Optimization
	Report

	Deliverables
	Acknowledgement

