
ECE5997 Hardware Accelerator Design & Automation, Fall 2021
School of Electrical Computer Engineering, Cornell University

Lab 1: CORDIC Design
Due Wednesday, October 27, 2021, 11:59pm

Late submission: 4% penalty per day; cannot be late by more than 6 days

1 Introduction

COordinate Rotation DIgital Computer (CORDIC) is a method for calculating a variety
of functions including trigonometric and hyperbolic. The various functions are calculated
through an iterative set of vector rotations. At the end of these rotations, the value of the
function is easily determined from the (x, y) coordinate. A CORDIC is often used to achieve
low-cost multiplierless sine/cosine implementations in FPGA as well as ASIC designs.

To obtain a good understanding of CORDIC for the purpose of this lab, please read Chap-
ter 3 of Parallel Programming for FPGAs [1] (in particular, Ch. 3.1-3.3). This book
chapter provides a detailed tutorial of the CORDIC algorithm. It also gives a reference
C/C++ code for the HLS implementation. You are encouraged to write your own program,
but allowed to reuse and modify the reference code from the book. The main purpose of
this lab is to help you get familiar with the HLS toolflow and practice the basic concepts of
fixed-point design.

2 Materials

You are given a zip file named lab1.zip in /classes/ece5997/labs/ on the ecelinux server,
which contains the following files for you to build the project.

• cordic.cpp: an incomplete source file where you write your synthesizable code.

• cordic.h: the header file with various macro and type definitions that may be useful
for developing your code.

• cordic test.cpp: a test bench that helps verify your code.

• Makefile: a makefile for you to easily (1) compile source code into an executable
named cordic and also (2) execute the program to generate results (e.g., make fixed).

• run {float/fixed/opt}.tcl: the template project Tcl scripts that allow you to run
Vivado HLS synthesis in command line (e.g., vivado hls -f run fixed.tcl). For
this assignment, it is sufficient to run the tool with this simple command without using
graphical user interface.

Before starting your assignment, please copy and unzip the zip file to your home
directory. Be sure to source the class setup script using the following command before

1



compiling your source code: source /classes/ece5997/setup-ece5997.sh.

Please refer to the Vivado HLS user guide [2] for more detailed descriptions of the Vivado
HLS synthesis flow and the Tcl commands used in run {float/fixed/opt}.tcl.

3 Goal

The goal of this assignment is to create and optimize a CORDIC core that calculates the sine
and cosine values of a given input angle. You will write the code in C++ for the CORDIC
core, perform design space exploration using Vivado HLS, and explore trade-offs between
area, performance, and accuracy.

The first part of this assignment is to write a functional CORDIC core using the double-
precision floating-point type. With this baseline design, you will explore the design trade-offs
by varying the iteration count of the main computation loop. Since CORDIC is an iterative
algorithm, the number of iterations will affect the output accuracy as well as the performance
of the synthesized hardware.

The second part is to use the fixed-point data type to optimize the CORDIC core for area,
performance, and accuracy. The primary design space exploration goal is to understand how
the bitwidth setting affects accuracy, as well as area and performance.

The third part asks you to maximize the throughput of the CORDIC core using optimization
directives in Vivado HLS. This exercise will help you familiarize with common HLS optimiza-
tions and understand the effect of each optimization on the microarchitecture, performance,
area, and timing of the design.

You will create a report describing the various trade-offs that you would make and how you
maximize the throughput of the CORDIC core. For each design point (or architecture) you
should provide its results including the area in terms of resource utilization (number of
BRAMs, DSP48s, LUTs, and FFs), and performance in throughput in terms of number
of CORDIC operations / second (i.e., number of input angles processed / second). The
throughput can be calculated based on the reported interval (in clock cycles) and the target
clock period (fixed to 10ns in this assignment).

4 Guidelines and Hints

4.1 Coding and Debugging

• The input arguments to the cordic function are typed theta type and cos sin type.
These are currently set as double-precision floating-point type (i.e., double)1. In the
second part of this assignment, you are expected to change them to a fixed-point type
to optimize your design. Please carefully consider the number of integer bits
necessary for representing the range of required values. Your fixed-point
design should be free of multiplication and division (i.e., NO usage of DSP48
in the synthesis report).

1You can either use a floating-point division x/(double)(1ULL<<SHIFT AMOUNT) to perform a right shift on
variable x of type double. Note that ULL means unsigned long long in C++ (64 bits). When SHIFT AMOUNT
≥ 64, the result will overflow. An alternative is using a for loop to realize the shift in an iterative fashion
for (int i=0; i<SHIFT AMOUNT; i++) {x=x*0.5;}

2



• Enter make or make float under the project folder to compile and execute the floating-
point program; Enter make fixed to run the fixed-point implementation (where the
FIXED TY PE macro is defined).

• The test bench creates an out.dat file which is useful for debugging 2. This file lists
the golden sine/cosine values from math.h, the sine/cosine values computed from your
function, and the normalized difference (error). You will be able to assess the cor-
rectness and/or accuracy of your code based on the error reported by the test bench.
Note that the errors are expected to be close to but NOT exactly zero even with the
correct code. The accuracy should be improved by increasing the number of iterations.
Otherwise, your code is not working.

• There is a constant array called cordic ctab in cordic.h. You may find this useful
although you do not necessarily have to use it.

• Please include meaningful comments in your code.

4.2 Design Exploration

• In this assignment, you will use a fixed 10ns clock period targeting a specific Xilinx
FPGA device. Clock period and target device have been specified in the run Tcl script.

• The number of iterations in your cordic function will play an important role in the accu-
racy and performance of the design. You should explore this aspect with your floating-
point design. You are expected to specify the list of iteration counts in run float.tcl
to run simulation and synthesis in batch. The script will also automatically col-
lect important stats (i.e., accuracy, performance, and resource usage) from
the Vivado HLS reports and generate a float result.csv file under the result
folder.

• The data types of the variables in your cordic function would also make a significant
difference in area, accuracy, and performance. This should be another form of your
design space exploration. For this part, the number of iterations is fixed to 20.
You should experiment extensively with the data types and your report should show
how different data types affect the accuracy as well as area and performance. You are
expected to specify the list of bitwidth settings in run fixed.tcl to run simulation and
synthesis in batch. Similar to run float.tcl, the script will also automatically collect
important stats from the Vivado HLS reports and generate a fixed result.csv file under
the result folder.

• Although synthesis takes some time to initialize after the vivado hls run.tcl command,
it should finish within 1-2 minutes for each design point based on our past experience
with ecelinux. It is not normal if Vivado HLS runs for more than 10 minutes. You
can use the top command to check the real-time system usage to see if ecelinux is
overloaded with other processes.

4.3 Report

• Please write your report in a single-column and single-space format with a 10pt
font size. Page limit is ONE, including necessary figures and tables.

2You are welcome to use gdb as well.

3



• The report should concisely summarize your experiments by comparing and contrasting
the various design points that you generated. You are encouraged to create a
table and additional plots to that clearly show the design choices, resulting
performance, area/resource allocation, and accuracy.

• All of the figures and tables should have captions. These captions should do their best
to explain the figures (explain axis, units, etc.). Ideally you can understand the report
just by looking at the figures and captions. But please avoid just putting some results
and never saying anything about them.

• The report should only show screenshots from the tool when they demonstrate some
significant idea. If you do use screenshots, make sure they are readable (e.g., not blurry).
In general, you are expected to create your own figures. While more time consuming,
it allows you to show the exact results, figures, and ideas you wish to present.

5 Deliverables

Please submit your assignment on CMS. You are expected to submit your report, code,
and scripts in a single zipped file named cordic.zip that contains the following contents:

• report.pdf : the project report in pdf.

• A folder named solution: the set of source files and scripts required to reproduce your
experiments. Note that only these files should be submitted. Please run make clean
to remove all the automatically generated output files.

6 Acknowledgement

This document is adapted from a project description originally developed by Prof. Ryan
Kastner for CSE 237C at UCSD.

References

[1] Ryan Kastner, Jannarbek Matal, and Stephen Neuendorffer, Parallel Programming for
FPGAs, arXiv, 2018.

[2] Xilinx Inc., Vivado Design Suite User Guide: High-Level Synthesis UG902 (v2019.1),
Available at https://www.xilinx.com/support/documentation/sw manuals/xilinx2
019 1/ug902-vivado-high-level-synthesis.pdf

4

https://www.xilinx.com/support/documentation/sw_manuals/xilinx2019_1/ug902-vivado-high-level-synthesis.pdf
https://www.xilinx.com/support/documentation/sw_manuals/xilinx2019_1/ug902-vivado-high-level-synthesis.pdf
https://www.xilinx.com/support/documentation/sw_manuals/xilinx2019_1/ug902-vivado-high-level-synthesis.pdf
https://www.xilinx.com/support/documentation/sw_manuals/xilinx2019_1/ug902-vivado-high-level-synthesis.pdf

	Introduction
	Materials
	Goal
	Guidelines and Hints
	Coding and Debugging
	Design Exploration
	Report

	Deliverables
	Acknowledgement

