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Abstract
E-graphs have gained increasing popularity in compiler op-
timization, program synthesis, and theorem proving tasks.
They enable compact representation of many equivalent ex-
pressions and facilitate transformations via rewrite rules
without phase ordering limitations. A major benefit of using
e-graphs is the ability to explore a large space of equiva-
lent expressions, allowing the extraction of an expression
that best meets certain optimization objectives (or cost mod-
els). However, current e-graph extraction methods often face
unfavorable scalability-quality trade-offs and only support
simple linear cost functions, limiting their applicability to
more realistic optimization problems.

In this work, we propose SmoothE, a differentiable e-graph
extraction algorithm designed to handle complex cost mod-
els and optimized for GPU acceleration. More specifically, we
approach the e-graph extraction problem from a probabilis-
tic perspective, where the original discrete optimization is
relaxed to a continuous differentiable form. This formulation
supports any differentiable cost functions and enables effi-
cient searching for solutions using gradient descent. We im-
plement SmoothE in PyTorch to leverage the advancements
of the modern machine learning ecosystem. Additionally, we
introduce performance optimization techniques to exploit
sparsity and data parallelism. We evaluate SmoothE on a
variety of realistic e-graphs from five different applications
using three distinct cost models, including both linear and
non-linear ones. Our experiments demonstrate that SmoothE
consistently achieves a favorable trade-off between scalabil-
ity and solution quality.
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1 Introduction
Term rewriting [17], widely employed in compiler optimiza-
tions [8, 34, 44] and theorem proving [15, 18], transforms pro-
grams into functionally equivalent but more efficient forms.
Traditional methods apply the rewrites sequentially in a
predetermined order, significantly affecting performance—a
challenge known as the phase ordering problem [44, 50].
Equality saturation addresses the phase ordering issue

by using the equivalence graph (e-graph), a data structure
that compactly represents a set of expressions (i.e., e-nodes)
and their equivalence relations (i.e., e-classes) [6, 33]. The
rewrite rules are applied collectively, encoding all function-
ally equivalent solutions on a single e-graph. This enables
the selection of the most cost-efficient (or performant) one
during the e-graph extraction process. With the emergence of
state-of-the-art open-source equality saturation tools such as
egg [50] and egglog [56], e-graph has been successfully used
for tensor graph transformation [53], sparse linear algebra
optimization [49], code optimization [29, 41], digital signal
processor (DSP) compilation [45, 48], circuit datapath syn-
thesis [10, 12–14, 47], and floating-point arithmetic [11, 35].

Extracting a high-quality solution from an e-graph is chal-
lenging due to theoretical complexity (proven to be NP-
hard [42, 55] in general) and practical efficiency, particu-
larly given the typically large graph size. While a number of
exact and heuristic e-graph extraction methods have been
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proposed, existing approaches still have significant limita-
tions that restrict their applicability to even larger and more
realistic optimization problems:
(1) Unfavorable scalability-quality trade-off: Most

existing work uses integer linear programming (ILP) for-
mulations for e-graph extraction [10, 12, 14, 41, 47, 49, 53],
which suffer from limited scalability. Conversely, heuristic
algorithms like greedy and iterative methods [35] may yield
sub-optimal results. Additionally, current approaches are
primarily designed for CPU execution and cannot leverage
modern parallel computing devices like GPUs.
(2) Inadequate support of realistic cost models: Cur-

rent e-graph extraction algorithms rely on linear cost models
during optimization, where the overall cost is a weighted
sum of individual term costs. This simplified model may
fail to capture the complexities of real-world optimization
problems. Additionally, these algorithms cannot be easily
extended to incorporate data-driven, learned cost models.

To address these challenges, we propose SmoothE, a differ-
entiable e-graph extraction framework. More specifically, we
employ a probabilistic approach to the extraction problem by
transforming the binary decisions of e-node selection into
continuous variables that represent selection probabilities.
This transformation allows us to leverage gradient descent
for optimization, creating an efficient and highly paralleliz-
able method. Our approach further enables the optimization
of e-node selection probabilities in parallel, significantly ac-
celerating the process on devices like GPUs. After continuous
optimization, we perform sampling to convert these opti-
mized probabilities into discrete selections, ensuring that all
constraints are met for a valid e-graph extraction.

SmoothE distinguishes itself from existing extractionmeth-
ods in several key aspects. First, it provides a differentiable
formulation that enables scalable global optimization on
parallel computing resources, such as GPUs. Second, the
proposed optimization technique can incorporate complex
non-linear cost models, including those based on machine
learning (ML), which allows it to capture intricate depen-
dencies and interactions that simpler models cannot. Third,
SmoothE can seamlessly integrates with existing ML frame-
works like PyTorch, ensuring rapid and practical implementa-
tion. We believe this flexibility and scalability make SmoothE
a powerful tool for e-graph extraction, capable of achieving
high-quality solutions with fast execution times.

The major contributions of this paper are as follows:

• We present SmoothE, the first differentiable approach to
e-graph extraction. SmoothE relaxes the discrete optimiza-
tion problem of e-node selection into a continuous, prob-
abilistic formulation, enabling parallelizable global opti-
mization that supports any differentiable objectives.

• We implement SmoothE in PyTorch and further introduce
a set of performance optimization techniques to exploit

vectorized processing and sparsity to improve the effi-
ciency of GPU execution. We also introduce seed batching,
which runs a batch of optimizations with different random
seeds in parallel, improving both solution quality and GPU
utilization.

• We present a comprehensive comparative study of existing
e-graph extraction methods, including ILP-based formu-
lations, iterative heuristic methods, and our approach, on
five different real-world datasets using the conventional
linear cost model. Our results demonstrate that SmoothE
achieves a similar level of solution quality to ILP baselines,
with second-scale execution time on GPUs.

• We demonstrate that, unlike existing e-graph extraction
methods, SmoothE can flexibly handle non-linear cost
models, including learning-based ones, while maintain-
ing high solution quality.

The rest of the paper is organized as follows: Section 2
provides background on e-graphs and existing extraction
methods. Section 3 introduces our SmoothE differentiable
extraction approach. Section 4 details SmoothE implementa-
tion and GPU optimization. Section 5 evaluates various ex-
tractionmethods on a set of real-world and synthetic datasets.
We conclude in Section 6.

2 Preliminaries
E-graph is an extended union-find [43] data structure com-
pactly representing many equivalent terms. Originally devel-
oped for automated theorem provers (ATPs) [15, 32], e-graphs
haven been recently popularized by egg [50], which provides
a faster and flexible implementation for equality saturation.
In an e-graph, all functionally equivalent terms are orga-

nized in the same equivalent classes, known as e-classes.
Nodes within each e-class that represent values or operators
are called e-nodes. Edges in e-graphs are directed, which
point from e-nodes to their child e-classes, indicating the
dependency between operators and operands.

With equality saturation, an input program and a set of
rewrites are given. First, an initial e-graph is created from
the input. To apply rewrites, the patterns on the left-hand
side of the rewrites are matched and the terms on the right-
hand side are added. Note that the process is usually additive,
meaning the left-hand side is still represented in the e-graph.
When the rewriting saturates, the e-graph has encoded every
possible equivalent programs based on the given rewrites.
The primary benefit of using e-graphs is the ability to encode
and explore a large space of equivalent terms, allowing the
extraction of a term that best meets certain optimization
objectives without phase ordering limitations.
Figure 2 shows a concrete example of e-graphs and the

equality saturation process. The initial e-graph in Figure 1a
represents a simple term sec2 𝛼 + tan𝛼 . By applying rewrite
rule sec𝛼 → 1/cos𝛼 , the e-graph expands the e-class repre-
senting sec𝛼 to include 1/cos𝛼 , as illustrated in Figure 1b.
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(a) Initial e-graph contains sec2 𝛼 + tan𝛼 (b) After applying sec𝛼 → 1/cos𝛼 (c) After applying sec2 𝛼 → 1 + tan2 𝛼

Figure 1. An e-graph example with two rewrites — 𝛼 is the primary data input to the program; 𝑥2 and 1/𝑥 denote a square
and reciprocal function, respectively; e-classes are dashed boxes, each containing e-nodes as solid boxes; edges originate from
e-nodes to their children e-classes, indicating dependencies; the e-class containing + is the root; modifications by rewrites are
highlighted in black.

Then sec2 𝛼 → 1 + tan2 𝛼 is applied, which expands the
e-class representing sec2 𝛼 as shown in Figure 1c.

E-graph extraction aims to to extract an optimized term
from an e-graph after rewrites, based on a user-defined cost
model. The goal is to produce a functionally equivalent but
improved implementation of the original input program. The
e-graph extraction problem is proven to be NP-hard when
common sub-expressions are considered [42, 55]. Both exact
optimization methods based on ILP and heuristic algorithms
have been proposed, offering different trade-offs between
solution quality and scalability. Next, we will provide a more
formal statement of the e-graph extraction problem, before
describing the popular optimization methods.
Notations and Problem Formulation. We first intro-

duce the notations used throughout the rest of the paper.

• Let {𝑛𝑖 }𝑁−1
𝑖=0 denote the set of all e-nodes in the e-graph.

• Let {𝑚 𝑗 }𝑀−1
𝑗=0 denote the set of all e-classes, where the root

e-class containing the top-level operator is indexed by 0.
• Each e-class𝑚 𝑗 contains a set of e-nodes:𝑚 𝑗 = {𝑛𝑘 } and
|𝑚 𝑗 | denotes the cardinality of this set.

• 𝑐ℎ𝑖 denotes the set of child e-classes for e-node of index 𝑖 .
• 𝑝𝑎 𝑗 denotes the set of parent e-nodes that depend on
e-class of index 𝑗 .

• 𝑒𝑐 (𝑖) returns the index of the e-class that contains e-node
of index 𝑖 , namely, 𝑛𝑖 ∈𝑚𝑒𝑐 (𝑖 ) .

• Let 𝑠 ∈ {0, 1}𝑁 represent the binary decision variable
for e-node selection: 𝑠𝑖 = 1 means that the 𝑖-th e-node is
selected after extraction, and 𝑠𝑖 = 0 indicates otherwise.

• 𝑓𝑏 (·) : {0, 1}𝑁 → R denotes a function that translates the
e-node selection into a real-valued cost. Here the subscrip-
tion 𝑏 means the input vector is assumed to be binary.

• We call a cost function linear if and only if it can be written
in the following form: 𝑓𝑏 (𝑠) = 𝑢𝑇 𝑠,𝑢 ∈ R𝑁 , where 𝑢𝑛 is
the cost associated with e-node 𝑛.

To ensure the extracted program is functionally equivalent
to the input, the following constraints must be satisfied [44]:

(a) Exactly one e-node is selected from the root e-class.
(b) If an e-node is selected, exactly one e-node must be se-
lected from each of its child e-classes.
(c) No cycles are included in the extracted e-graph.

Constraint (b) ensures that if an operator e-node is selected,
all its the operand e-classes are also present in the extracted
graph. Together with constraint (a), these ensure the ex-
tracted program is functionally equivalent to the input pro-
gram. In this paper, we call them completeness constraints.
A cycle within an e-graph would imply that an operand of an
operator eventually depends on the operator itself, creating
a circular dependency. In many cases, this would lead to an
infinite loop during evaluation, rendering the program incor-
rect or non-terminating. Thus the acyclicity constraint is
required in (c). Next, we introduce two most popular e-graph
extraction methods: ILP and heuristic algorithm.

ILP or mixed-integer linear programming (MILP) formu-
lations have been used for a number of e-graph extraction
tasks [12, 40, 47, 49, 53]. A representative form [26] is intro-
duced by TenSat [53], which formulates the e-graph extrac-
tion problem as follows:

minimize𝑠∈{0,1}𝑁 𝑓𝑏 (𝑠) = 𝑢𝑇 𝑠 (1a)

s.t.
∑︁

𝑛𝑘 ∈𝑚0

𝑠𝑘 = 1 (1b)

∀𝑖,∀𝑗 ∈ 𝑐ℎ𝑖 , 𝑠𝑖 ≤
∑︁

𝑛𝑘 ∈𝑚 𝑗

𝑠𝑘 (1c)

∀𝑖, 𝑠𝑖 ∈ {0, 1}𝑁 (1d)
∀𝑖,∀𝑗 ∈ 𝑐ℎ𝑖 , 𝑡𝑒𝑐 (𝑖 ) − 𝑡 𝑗 − 𝜖 +𝐴(1 − 𝑠𝑖 ) ≥ 0 (1e)

∀𝑗, 𝑡 𝑗 ∈ [0, 1]𝑀 (1f)
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Here 𝑠𝑖 means whether e-node 𝑛𝑖 is selected or not; 𝑡 𝑗 en-
codes the order of e-classes being selected; 𝜖 < 1/𝑀 is a
small constant and𝐴 > 1+𝜖 is a large constant. Eq. (1b), (1c),
and (1d) correspond to completeness constraints. Eq. (1e) and
(1f) enforce a topological order on all the chosen e-classes,
ensuring no cycles exist within the extracted e-graph.

While the ILP approach is generally flexible and produces
an optimal solution if the solver terminates before timing
out, it does not scale well on large e-graphs. Even state-of-
the-art commercial solvers can easily take hours to solve
medium-sized extraction problems.

Heuristic Methods. A popular heuristic method for fast
e-graph extraction involves updating estimated costs on
e-classes and selecting e-nodes iteratively using a queue-
based worklist [35]. The algorithm begins by initializing the
cost of all e-classes to infinity. The goal is to minimize the
cost for the root e-class. An aggregated cost of selecting an
e-node 𝑛𝑖 is defined as the sum of its predefined individual
cost and the costs of all its child e-classes in 𝑐ℎ𝑖 . Since all
e-nodes within an e-class are functionally equivalent, the
cost associated with the e-class is determined by the mini-
mum aggregated cost of selecting any e-node within it. To
get the cost of the root e-class, a working queue is initialized
with all leaf e-nodes (those without child e-classes). When
an e-node 𝑛𝑖 is dequeued, we update its aggregated cost. If
the new cost is lower than the current cost of its belonging
e-class 𝑒𝑐 (𝑖), we update the cost of the e-class as well as the
selected e-node within it accordingly. The parent e-nodes
𝑝𝑎𝑒𝑐 (𝑖 ) are then added to the queue. This process repeats un-
til the queue is empty. This algorithm is sometimes referred
to as a greedy approach in some existing implementations.

Amajor limitation of the heuristic algorithm tends to over-
estimate costs by ignoring the reuse of common subexpres-
sions, resulting in suboptimal solutions. Figure 2 illustrates
an example where a common subexpression impacts the
performance of the heuristic algorithm, where the tan𝛼 can
be reused by two parent e-nodes to save the cost. However,
the heuristic algorithm (Figure 2b) fails to identify this reuse
opportunity resulting in sub-optimal solution.

Other ExtractionMethods. Several task-specific e-graph
extraction methods have been proposed, e.g., NSGA-II [16],
a genetic algorithm, is introduced in HL-HELM [52]. The
authors of [26] propose a MAXSAT-based formulation for
e-graph extraction. However, it requires enumerating all
the cycles within the e-graph, whose number grows expo-
nentially with the number of e-nodes. Tensat [53] prunes
e-graphs by removing all cycles as a preprocessing step, al-
lowing the acyclicity constraint to be ignored and signifi-
cantly reducing the time required by ILP. Babble [5] similarly
prunes candidate patterns using approximations. However,
such preprocessing reduces the feasible solution space, po-
tentially compromising the quality of the final solution.

Limitations of Linear CostModels. Current e-graph ex-
traction methods predominantly assume linear cost models

for their simplicity, where the overall cost is a weighted sum
of the per-e-node cost estimates. For some tasks, costs such
as resource usage can be reasonably approximated using
an additive linear function. However, linear models cannot
capture the higher-order interactions at the sub-graph level
among different e-nodes. Therefore, there are many scenar-
ios where using a non-linear cost model would be beneficial.
For instance, the recent work E-syn [7] uses e-graph to im-
prove technology mapping-aware logic synthesis. Since a
linear cost function cannot capture the clustering effects of
multiple operations during technology mapping, E-syn gen-
erates a pool of extraction candidates and uses an ML model
based on XGBoost [9] to rank the solutions. Another exam-
ple is ROVER [14], which relies on RTL simulation to obtain
toggle rates for optimizing power consumption of arithmetic
circuits during the e-graph extraction process. In this case,
a non-linear proxy cost model [54, 58] could significantly
speed up the optimization.

3 A Differentiable Approach to E-Graph
Extraction

In this section, we describe howwe formulate the e-graph ex-
traction problem in a differentiable manner by transforming
the original discrete optimization into a continuous and prob-
abilistic process, which we call SmoothE. We break down the
original discrete optimization problem into four key compo-
nents: 1) variables for e-node selection, 2) objective function,
3) completeness constraints, and 4) acyclicity constraint, and
transform each component separately. In the following, we
first discuss how each component is transformed (Section 3.1
through Section 3.4). Afterwards, in Section 3.5, we describe
the optimization of the continuous problem and how we
obtain the discrete solutions.

3.1 Continuous Variables for E-Node Selection
We first relax the variable to be optimized (i.e., 𝑠) to be a
continuous variable and interpret its value as the probability
of e-node being selected in the extracted graph, namely,

𝑝𝑖 ≔ 𝑃 (𝑛𝑖 is chosen), (2)

where 𝑝 ∈ [0, 1]𝑁 is a real-valued probability vector, and is
the variable to be optimized in the relaxed form. To obtain the
discrete solution variable 𝑠 from 𝑝 , we use a sample process,
which will be introduced in Section 3.5.

3.2 Differentiable Objective Function
The binary cost function 𝑓𝑏 (𝑠) introduced in the previous
section is non-differentiable, as it takes a binary vector as
input. In SmoothE, we assume that the cost function (or
optimization objective) is relaxed into a differentiable form
𝑓 (·) with continuous input [0, 1]𝑁 . Note that in this case,
the linear cost 𝑓 (𝑝) = 𝑢𝑇𝑝 is naturally differentiable.
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(a) Solution 1: tan𝛼 + (1/cos𝛼)2,
total cost = 2 + 5 + 5 + 10 + 10 = 32
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(b) Solution 2: (heuristic): sec2 𝛼 + tan𝛼 ,
total cost = 2 + 5 + 10 + 10 = 27

2
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(c) Solution 3: (optimal): tan𝛼 + 1 + tan2 𝛼 ,
total cost = 2 + 2 + 0 + 5 + 10 = 19

Figure 2. Three extraction solutions for e-graph in Figure 2 — the colored boxes indicate the selected e-nodes after
extraction; The circled numbers are the costs associated with each e-node; tan𝛼 is a common subexpression that can be reused
by 1 + tan2 𝛼 and tan𝛼 ; Figure 2b shows that the heuristic method fails to reuse this term, resulting in a sub-optimal solution.

3.3 Handling Completeness Constraints
We first handle the completeness constraints (a) and (b) in-
troduced in Section 2. For constraint (a), we use the same
form as Eq. (1b) in the ILP formulation, which ensures the
probabilities of choosing any e-nodes in the root e-class sum
up to 1. For constraint (b), we also adopt the same form as Eq.
(1c), which enforces the probability of choosing an e-node
𝑛 to be smaller than the sum of the probabilities of e-nodes
in its child e-classes. These constraints only specify the sum
probabilities of e-nodes within each e-class. However, how
to assign these probabilities remains unknown. Furthermore,
the assignment needs to be differentiable.

To tackle this problem, we introduce an intermediate vari-
able 𝑐𝑝 to assign probabilities of e-nodes within each e-class.
𝑐𝑝 represents the conditional probability of choosing e-node
𝑛𝑖 given that its belonging e-class𝑚𝑒𝑐 (𝑖 ) is selected:

𝑐𝑝𝑖 ≔ 𝑃 (𝑛𝑖 is chosen | 𝑚𝑒𝑐 (𝑖 ) is chosen)

=
𝑝𝑖

𝑃 (𝑚𝑒𝑐 (𝑖 ) is chosen) (3a)

𝑐𝑝𝑘 ∈ [0, 1],
∑︁

𝑛𝑘 ∈𝑚𝑒𝑐 (𝑖 )

𝑐𝑝𝑘 = 1, (3b)

Eq. (3b) imposes necessary constraints on the conditional
probability 𝑐𝑝: it must be a real number between 0 and 1,
and 𝑐𝑝 of all e-nodes from the same e-class sum up to 1. We
use a softmax function to ensure Eq. (3b) in practice.
Then we change the variable to be optimized from 𝑝 to

𝑐𝑝 and use a differentiable function 𝜙 : 𝑐𝑝 ↦→ 𝑝 to compute
probabilities 𝑝 according to conditional probabilities 𝑐𝑝 . Af-
ter that, the optimization problem changes to the following:

minimize𝑐𝑝∈[0,1]𝑁 𝑓 (𝑝), (4a)
s.t. 𝑝 = 𝜙 (𝑐𝑝), (4b)

acyclicity constraint, (4c)

Next we will discuss how to compute function 𝜙 differen-
tiably. Computing 𝜙 exactly on a cyclic graph can be done
with the Junction Tree algorithm [36]. However, it has a ex-
ponential time complexity of 𝑂 (2𝑘 ), where 𝑘 is the size of
the largest clique, making it not scalable for large problems.
Thus loopy belief propagation (LBP) [28, 31], as an approxi-
mate method, is often used to compute such 𝜙 in graphical
models with cycles. For acyclic graphs, LBP is guaranteed
to converge to the exact value in a linear time complexity.
However, for cyclic graphs, convergence is theoretically as-
sured only under specific conditions [27]. Despite this, it has
been observed that LBP typically converges effectively in
practice [31]. LBP iteratively updates the beliefs of the target
node based on the conditional probabilities of its neighbor-
ing nodes; these beliefs are then used to compute marginal
probabilities. Thus we adapt BP to the e-graph setting for
computing 𝜙 .
More concretely, by rewriting Eq. (3a), we have:

𝑝𝑖 = 𝑐𝑝𝑖 · 𝑃 (𝑚𝑒𝑐 (𝑖 ) is chosen), (5)

which means computing 𝜙 is essentially equivalent to calcu-
lating 𝑃 (𝑚𝑒𝑐 (𝑖 ) is chosen). However, the probability of choos-
ing an e-class (i.e.,𝑚𝑒𝑐 (𝑖 ) ) depends on its parent e-nodes and
their correlations, which can be very complex. Therefore, we
make an assumption about the correlations among the par-
ent e-nodes of any e-class. First, we discuss the assumption
that all parent e-nodes are independent. Subsequently, we
will consider alternative assumptions.



ASPLOS ’25, March 30-April 3, 2025, Rotterdam, Netherlands Yaohui Cai, Kaixin Yang, Chenhui Deng, Cunxi Yu, and Zhiru Zhang

With the independence assumption, we have:

𝑃 (𝑚𝑒𝑐 (𝑖 ) is chosen) = 1 −
∏

𝑛𝑘 ∈𝑝𝑎𝑒𝑐 (𝑖 )
𝑃 (𝑛𝑘 is not chosen)

(6a)

= 1 −
∏

𝑛𝑘 ∈𝑝𝑎𝑒𝑐 (𝑖 )
(1 − 𝑝𝑘 ), (6b)

which requires knowing the probability of all the parent
e-nodes. In e-graphs without cycles, we can compute Eq.
(5) and (6) following a topological order. This means before
computing the probability of an e-class, probabilities of all
the parent e-nodes are computed first.
However, for e-graphs containing cycles, circular depen-

dencies prevent topological ordering, making the above se-
quential update impossible. To tackle this problem, we pro-
pose a parallel schedule: first, the probabilities of all e-classes
are initialized to 0, except for the root e-class, which is set to
1 since it is always selected. Then by applying Eq. (5) and (6)
to all e-nodes and e-classes in parallel, we can propagate the
probability from the root e-class to the whole e-graph with-
out an explicit order. The process repeats until convergence
of the probability values.

When probabilities converge, Eq. (5) and (6) will hold for
all e-nodes, indicating that the completeness constraints are
met. While parallel schedule imposes greater computational
demands, it is friendly for GPU acceleration by eliminating
compute dependencies and leveraging parallel computing
units through vectorization (to be discussed in Section 4.2).
In contrast to independence assumption, an alternative

option is to assume the parent e-nodes of 𝑚𝑒𝑐 (𝑛) are fully
(positively) correlated — if the e-node with the highest prob-
ability is not chosen, none of other e-nodes will not chosen
either. Therefore, we only consider the parent e-node with
the highest probability:

𝑃 (𝑚𝑒𝑐 (𝑖 ) is chosen) = max
𝑘∈𝑝𝑎𝑒𝑐 (𝑖 )

𝑝𝑘 , (7)

Alternatively, we can also use a hybrid assumption — a
case in between of independence and fully positively cor-
related assumption. Then the probability of e-class 𝑚𝑒𝑐 (𝑖 )
is computed as the arithmetic average of the results from
two previous assumptions. No matter which assumption is
adopted, this whole process is differentiable as every step
within it is differentiable.

Figure 3 illustrates a concrete example how to compute
probabilities 𝜙 . In this example, there are only two e-classes
containing more than one e-node: the e-class containing
e-nodes 𝑛1 and 𝑛2, and the one containing e-nodes 𝑛4 and
𝑛5. For each of these e-classes, we only need to solve 𝑐𝑝

for one of the two e-nodes since their sum always equals 1.
Assuming we pick 𝑐𝑝1 and 𝑐𝑝4 as variables to be optimized,
we can use them to compute the unconditional (or marginal)

2

5 2 5

10 5 0 10

10

Figure 3. e-graph from Figure 2 with hypothetical prob-
abilities — in each e-node, operator is replaced with num-
bered e-node ID. Diamonds show conditional probabilities
(𝑐𝑝) as variables to be optimized. All conditional probabilities
and computed unconditional probabilities (𝑝) are summa-
rized on the right.

probabilities 𝑝1 and 𝑝7 in the following way:
𝑝1 = 𝑐𝑝1 · 𝑃 (𝑚𝑒𝑐 (1) is chosen) = 𝑐𝑝1 · 𝑝0 = 𝑐𝑝1,

𝑝7 = 𝑐𝑝7 · 𝑃 (𝑚𝑒𝑐 (7) is chosen) = 𝑐𝑝7 ·max(𝑝0, 𝑝3) = 1
Here 𝑛0 and 𝑛3 are fully correlated.

If we use the hypothetical cost in Figure 3, the final cost of
this e-graphwould be: 𝑓 (𝑝) = 𝑢𝑇𝑝 = 19+13𝑐𝑝1−5𝑐𝑝1𝑐𝑝4. It is
obvious that when 𝑐𝑝1 = 0, 𝑓 (𝑝) achieves minimum: 𝑓 (𝑝∗) =
19. This corresponds to the optimal binary solution 3 in
Figure 2c. By optimizing 𝑓 (𝑝), we can obtain the probability
corresponding to the optimal solution.

3.4 Handling Acyclicity Constraint
Enforcing the acyclicity constraint during e-graph extrac-
tion presents a significant challenge due to the combinatorial
nature of the problem, especially within the scope of this
research. To address this, we make use of a method called
NOTEARS [57], which reformulates the combinatorial prob-
lem of extracting a directed acyclic graph into a continuous
optimization problem.
To explain the core idea of NOTEARS, we include the

following theorem and a brief proof:

Theorem 3.1. Let𝐴𝑡 be the transition matrix for a connected
directed graph 𝐺 with 𝑑 vertices. 𝐺 is acyclic if and only if

ℎ(𝐴𝑡 ) = tr(𝑒𝐴𝑡 ) − 𝑑 = 0, (8)
where tr(·) is the trace operator, 𝑒𝐴𝑡 is the matrix exponential
operator, 𝑑 the number of nodes in this graph.

Proof. For any positive integer 𝑘 , 𝐴𝑘
𝑡 [𝑖, 𝑗] = 0 is the sum of

products along all 𝑘-hop paths from 𝑖-th node to 𝑗-th node.
Since 𝐴𝑡 is non-negative, tr(𝐴𝑘

𝑡 ) = 0 if and only if there are
no 𝑘-hop cycles in the graph. Using Taylor expansion for the
matrix exponential, we have

tr(𝑒𝐴𝑡 ) = tr(𝐼 ) + tr(𝐴𝑡 ) +
1
2!
tr(𝐴2

𝑡 ) + · · · ≥ 𝑑, (9)
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and the equality is attained if and only if 𝐺 has no cycles of
any number of hops. □

In our case, the transition matrix 𝐴𝑡 captures the prob-
abilities of dependency among e-classes, where 𝐴𝑡 [𝑖, 𝑗] is
the probability of e-class 𝑚𝑖 depends e-class 𝑚 𝑗 . Specifi-
cally, 𝐴𝑡 [𝑖, 𝑗] is equal to the sum of the conditional probabil-
ities of all e-nodes 𝑛𝑘 in𝑚𝑖 that depends on𝑚 𝑗 : 𝐴𝑡 [𝑖, 𝑗] =∑

𝑘,𝑛𝑘 ∈𝑚𝑖 ,𝑚 𝑗 ∈𝑐ℎ𝑘 𝑐𝑝𝑘 . To enforce acyclicity, the NOTEARS
term ℎ(𝐴𝑡 ) is added as a penalty term to the primary ob-
jective, 𝑓 , where a coefficient 𝜆 is used to control its relative
scale. Thus we obtain the final form of the continuous opti-
mization as follows:

minimize 𝑐𝑝∈[0,1]𝑛L = 𝑓 (𝑝) + 𝜆 · ℎ(𝐴𝑡 ) (10a)
s.t. 𝑝 = 𝜙 (𝑐𝑝) (10b)

Here L is the objective function, 𝜆 is a hyper-parameter to
control the scale of the NOTEARS term. With a sufficiently
large 𝜆, it is provable that the probability of the solution to
Eq. (10) containing cycles is zero.

3.5 Optimization and Sampling
At a high level, we use gradient descent to optimize the ob-
jective function (i.e., Eq. (10a)). Subsequently, a sampling
stage is used to extract a discrete solution based on the prob-
abilities assigned to the e-node selection variables.

In the optimization stage, we search for the solution that
minimizes the objective function of the relaxed problem
in Eq. (10). First, to obtain the conditional probability 𝑐𝑝 ,
we apply softmax function to a free variable 𝜃 of the same
shape of 𝑐𝑝 . Then, unconditional probability 𝑝 is computed
according to 𝑐𝑝 with function 𝜙 using hybrid assumptions
by default. Finally, 𝑝 is used to compute the loss function L.
The gradient of the loss function is backward propagated to
update the free parameters 𝜃 , thus updating 𝑐𝑝 .
In the sampling stage, we extract a discrete binary solu-

tion 𝑠 according to the conditional probabilities 𝑐𝑝 assigned
by the optimizer. Sampling is performed after each itera-
tion of optimization. Concretely, we use the following sam-
pling schedule: To satisfy constraint (a), we start from the
selection of the root e-class 𝑚0. For each selected e-class
𝑚 𝑗 , we select e-node 𝑛∗𝑘 ∈ 𝑚 𝑗 with the largest probability
𝑐𝑝∗

𝑘
= max𝑘∈𝑚 𝑗

𝑐𝑝𝑘 . For each selected e-node, we select all
its child e-classes. Thus constraint (b) is also satisfied. This
process is repeated until all selected e-nodes have no unse-
lected dependent e-classes. Note that the sampling process
only guarantees completeness constraints, (a) and (b). For the
acyclicity constraint, we rely on the additional objective in
the optimization process introduced in Section 3.4. SmoothE
will terminate if (1) the cost of sampled solution does not
improve for a certain number of iterations (i.e., based on
a patience parameter), or (2) after a predefined number of
iterations (i.e., a timeout).

4 Implementation and Performance
Optimization

We introduce the algorithmic framework of SmoothE in the
previous section. In this section, we discuss how we achieve
a high-performance implementation on GPUs by exploiting
sparsity and data parallelism.

4.1 Vectorization and Sparsity
Since our approach is fully differentiable, adopting PyTorch [37]
is an attractive option for leveraging the modern machine
learning ecosystem and GPU acceleration for gradient com-
putation. To optimize GPU utilization, it is essential to vec-
torize intensive computations and memory operations. Ad-
ditionally, e-graphs exhibit high sparsity, which is evident
from the average edge density in the datasets we evaluated
(refer to Table 1). Therefore, exploiting sparsity is also crucial
to minimize memory usage and enhance overall efficiency.

In our implementation, the e-nodes and e-classes are rep-
resented by a vector of shape 𝑁 × 1 and𝑀 × 1, respectively,
where𝑀 is the number of e-classes and 𝑁 is the number of
e-nodes. Since the size of the e-graph is usually large and
the edge density is low, we avoid instantiating any dense ten-
sors equal or larger than shape of min(𝑀, 𝑁 )2. For example,
the function 𝑒𝑐 (𝑖), which maps e-classes to child e-nodes, is
represented by a {0, 1}𝑀×𝑁 sparse tensor. In this case, trans-
lating from e-classes to child e-nodes can be performed by a
sparse matrix–vector multiplication (SpMV) operator. The
implementation of 𝑐ℎ𝑖 and 𝑝𝑎 𝑗 follows a similar approach.

4.2 Seed Batching
It is challenging to parallelize graph algorithm on GPUs
due to irregular memory access [3] in traditional parallel
schemes. Naive data parallelism requires dividing variables
to different devices, which would incur non-trivial commu-
nication overhead among devices, because all e-nodes and
e-classes are interconnected.

Therefore, we adopt a different technique called seed batch-
ing to fully utilize GPU power. We refer one instantiation
of 𝜃 as one seed, whose initialization point depends on the
random seed. With different 𝜃 , the conditional probability 𝑐𝑝
starts from different initializations. Since the optimization
and sampling results are affected by the initialization, by
optimizing and sampling more than one seed, we expect to
find a seed leads to a solution with better quality.
At the beginning of optimization, 𝐵 seeds are initialized,

which later are optimized in parallel using a batch fashion.
The discrete solution 𝑠 with the lowest cost is selected from
discrete solutions sampled from all 𝐵 seeds. During sampling,
we sample discrete solutions from all 𝐵 seeds in parallel and
select the one with the lowest cost as the final solution.
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Table 1. Dataset Statistics — #𝐺 denotes the number of different e-graphs in this dataset. 𝑑 (𝑣) represents the average e-node
degree. max(𝑁 ) and max(𝑀) indicate the maximum number of e-nodes and e-classes, respectively, in any e-graph within this
dataset. Avg. Density represents the average edge density of all e-graphs in this dataset.

Dataset Task Description #𝐺 𝑑 (𝑣) max(𝑁 ) max(𝑀) Avg. Density Representative Workload(s)
diospyros [48] DSP vectorization 12 2.5 218933 9584 4.8 ×10−3 Linear algebra kernels
flexc [51] CGRA mapping 14 1.8 19830 4892 2.5 ×10−4 Bzip2 [38], FFmpeg [46]
impress [47] FPGA HLS 3 2.0 102030 90312 4.7 ×10−5 Large integer multiplication
rover [12] Datapath 9 5.5 16960 2852 1.4 ×10−3 DSP and graphics kernels
tensat [53] Tensor graph 5 2.3 57800 34800 2.6 ×10−4 ResNet-50 [25], BERT [19]

set NP-hard problem 4 1.0 996738 104632 1.2 ×10−2 Minimum set covering
maxsat NP-hard problem 6 1.8 3851 3781 4.0 ×10−4 Maximum satisfiability

4.3 Matrix Exponential Optimization
The computation of NOTEARS, which enforces the acyclic-
ity constraint, primarily relies on the matrix exponential
operation. Modern implementations of matrix exponential
typically use the Padé approximation [20], which primar-
ily involves matrix-matrix multiplication and solving linear
systems. In practice, it often becomes the bottleneck of the
entire optimization process. This is due to the fact that linear
system solvers are typically memory-bound, posing chal-
lenges for efficient GPU optimization. We make efforts from
two aspects to reduce the overhead of this operator:
Strongly Connected Component (SCC) Decomposi-

tion. Any directed graph can be decomposed into sub-graphs
such that within each sub-graph and every node is reachable
from every other node. These sub-graphs are known as SCCs
and cycles can only occur within a single SCC. We decom-
pose the e-graph into SCCs and sum up NOTEARS terms
in Eq. (8) from each SCC. As long as the sum of NOTEARS
terms is 0, each SCC will be cycle-free, ensuring that the
extracted e-graph is acyclic. This significantly reduces the
complexity of the matrix exponential computation.
Batched Approximation Solving linear systems is bot-

tlenecked by irregular memory access, making it challenging
to accelerate through batching. To address this, we adopt
a batched approximation strategy: given a batch size of 𝐵,
instead of averaging the matrix exponentials of all 𝐵 matri-
ces, we approximate by computing the exponential of the
average of the 𝐵 matrices.

1
𝐵

𝐵∑︁
𝑖=1

tr(𝑒𝐴𝑡 [𝑖 ]) ≈ tr(𝑒 1
𝐵

∑𝐵
𝑖=1𝐴𝑡 [𝑖 ]), (11)

where the 𝐴𝑡 [𝑖] is the 𝑖-th seed of 𝐴𝑡 . This approximation
reduces the overhead of the matrix exponential operation by
a factor of 𝐵.

5 Evaluation
5.1 Experimental Setup
Environment Settings. All the experiments are performed
on a Linux server equipped two NVIDIA A100 GPUs with

80 GB memory and two AMD EPYC 9124 CPUs (2×16 cores)
running at 3.7 GHz, 1.5 TB of RAM. For softwares, we use
PyTorch 2.0.1 with CUDA 11.7 and torch_sparse [21] 0.6.17.
Baseline Methods. We compare SmoothE with three

baselines: ILP, the default heuristic in egg, and an improved
heuristic algorithm from the extraction gym [22], which we
call heuristic+.
We evaluate three ILP solvers: COIN-OR branch-and-cut

(CBC) [23], solving constraint integer programs (SCIP) [1],
and CPLEX [4]. CBC and SCIP are open-source ILP solvers,
while CPLEX is a commercial solver from IBM which sup-
ports multi-threaded. The thread number is set to 32 for
CPLEX. The ILP formulation used in evaluation is the same
as Eq. (1). All ILP solvers are invoked using Python APIs, and
we count the time after the solvers are invoked. For heuristic
algorithms, we use the original implementations in Rust.

Hyper-parameter SettingsWefind that using the hybrid
assumption by default performs well enough across e-graphs
from different datasets. To further improve the results, we
conduct a simple grid search for all hyper-parameters, in-
cluding assumption used, on a randomly selected e-graph
from the dataset to improve extraction quality.

5.2 Real-World Datasets
We conduct a comprehensive comparative study of existing
e-graph extraction methods and SmoothE on several real-
world datasets, along with a adversarial dataset that provides
additional insights into when the heuristic is less effective.

Table 1 provides a description of datasets and summarizes
key statistics of e-graphs in each dataset. We select five differ-
ent realistic datasets from prior work that utilizes e-graphs
to perform various optimizations for software compilation or
hardware synthesis. Specifically, rover [12] focuses on datap-
ath synthesis tominimize area of several arithmetic-intensive
kernels [24, 30]; tensat [53] optimizes the tensor computa-
tion graphs from deep learning models [19, 39]; flexc [51]
optimizes the performance of loop kernels on coarse-grained
reconfigurable arrays (CGRAs); impress [47] optimizes the re-
source usage of large integer multiplications on FPGAs lever-
aging high-level synthesis (HLS); diospyros [48] searches
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Table 2. Comparative results using the linear cost model across 5 realistic datasets — Increases in solution quality are
normalized to the oracle obtained by running CPLEX for 10 hours. The time limit is set as 15 minutes for all ILP methods. In
each dataset, time is reported in second. worst indicates the statistic of the worst performing e-graph, and avg. reports the
geometric mean across e-graphs with feasible solutions. The red number in parentheses indicates the number of e-graphs for
which the solver fails to provide a valid solution. The maximum difference for SmoothE is based on 3 runs. For diospyros, flexc,
impress, rover, and tensat, we use independent, correlated, correlated, independent, and independent assumption respectively.

Dataset
CPLEX ILP SCIP ILP CBC ILP Heuristic (egg) Heuristic+[22] SmoothE (ours)
time (fails) time (fails) time (fails) time (fails) time (fails) time (fails)
worst / avg. worst / avg. worst / avg. worst / avg. worst / avg. worst / avg.

diospyros 211.8 240.5 (1) 350.4 (1) 0.3 0.2 8.4±0.7
19.6% / 1.4% Failed / 7.5% Failed / 2.5% 0.0% / 0.1% 0.0% / 0.1% 0.1%±0.0% / 0.1%±0.0%

flexc 5.2 41.6 585.4 (5) 0.0 0.1 19.3±1.7
0.0% / 0.0% 0.0% / 0.0% Failed / 66.6% 2.8% / 1.2% 2.8% / 1.2% 0.7%±0.0% / 0.2%±0.0%

impress 39.5 69.8 384.5 0.4 1.0 4.6±0.0
0.0% / 0.0% 0.0% / 0.0% 220% / 30.8% 280% / 53.0% 0.0% / 0.0% 0.0%±0.0% / 0.0%±0.0%

rover 520.4 671.8 677.6 0.1 0.1 20.6±1.3
4.3% / 0.5% 45.6% / 17.2% 58.6% / 19.6% 11.0% / 2.9% 11.0% / 2.9% 4.4%±1.2% / 0.2%±0.1%

tensat 678.2 900.0 (1) 900.0 (1) 0.4 1.3 24.4±2.5
9.7% / 1.9% Failed / 260% Failed / 67.2% 46.4% / 12.1% 46.4% / 11.9% 17.0%±0.0% / 4.6%±0.1%

for efficient vectorizations to speed up execution of linear
algebra kernels on DSP architectures. Three of these datasets
are available in the e-graph extraction gym [22], an open-
source repository. We contacted the authors of impress [47]
to get their codebase. Using the impress codebase along with
open-sourced diospyros, we constructed the e-graphs.

5.3 Adversarial Datasets
To study the limitations of the heuristic methods, we con-
struct two adversarial datasets with e-graphs rich in common
sub-expressions. We converted two NP-hard problems, min-
imum set covering and maxsat, to e-graph extraction. The
original problems are obtained from Frequent ItemsetMining
Dataset Repository [55] and MaxSAT Evaluations [2], respec-
tively. The conversion process follows the prior works [42,
55]. Compared to e-graphs in realistic datasets, the e-graphs
converted from these NP-hard problems contains less graph-
ical information, thus more suitable for ILP solvers.

5.4 Comparison Using Linear Cost Models
Results on Real-World Datasets. We first test on the most
widely used linear cost models. For all the real-world datasets,
the cost for each operator is application specific. For example,
the cost for operators in tensat corresponds to their execution
time on GPU, while the cost of operators in impress represent
their resource usage on FPGAs.
Since we do not control the internal stopping criteria of

ILP solvers and they may take hours or even days to produce
results (if they complete at all), we set a hard time limit, 15
minutes, for all ILP solvers.

The results are shown in Table 2. We first run the CPLEX
for 10 hours for each e-graph to obtain a good solution as an
oracle baseline. We then compare the quality of the extracted
solutions from different extractionmethods with the baseline
to obtain the normalized cost increase on each data. CPLEX,
a commercial solver with multi-threading support, is able to
obtain good solutions on flexc, impress and rover. The open-
source ILP solvers, SCIP and CBC, on the other hand fail
to obtain reasonable solutions on most datasets. Heuristic
algorithm, is able to achieve good solutions on flexc and
diospyros. The improved version of it, Heuristic+, can also
find descent solutions on impress. This is due to 1) lack of
potential common subexpressions and/or 2) reuse of common
subexpression does not exist in the optimal terms.

SmoothE generates high-quality solutions on all five datasets.
Compared to ILP solvers on all datasets, SmoothE achieves
comparable or better quality, except flexc, with an 8× to 37×
speedup. Compared with the heuristic baselines, SmoothE
consistently provide better extraction quality, while keep-
ing the extraction time much shorter than ILP. In summary,
SmoothE offers similar solution quality to ILP baselines with
much faster GPU execution, significantly surpassing the ex-
traction quality of heuristic and heuristic+.

Anytime Results. Similar to ILP, SmoothE keeps refining
the solution and is able to sample discrete solution at an any
given time. In Figure 4, we include an anytime comparison
between SmoothE and CPLEX on several e-graphs from two
different datasets. We ignore other ILP solvers because they
hardly produce a valid solution on this given time scale for
these e-graphs. This experiment clearly shows that SmoothE
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Table 3. TenSat and Rover results breakdown— the solution produced by the ILP solver before the timeout (15 min) is
optimal; otherwise, it is a best-effort solution. time is reported in second.

Dataset E-Graph CPLEX SCIP CBC Heuristic Heuristic+ SmoothE (ours)
cost / time cost / time cost / time cost / time cost / time cost / time

tensat

NASNet-A 11.199 / 16.6 14.098 / 900.0 11.271 / 900.0 16.399 / 3.4 16.399 / 0.5 11.857±0.086 / 27.6±4.5
NASRNN 1.036 / 900.0 1.590 / 900.0 Fails / 894.3 0.972 / 2.4 0.963 / 1.2 0.956±0.001 / 42.4±0.7
BERT 0.705 / 900.0 14.151 / 900.0 3.516 / 897.7 0.825 / 0.3 0.825 / 0.1 0.825±0.000 / 18.4±8.7
VGG 4.851 / 900.0 Fails / 900.0 7.425 / 900.0 4.852 / 0.0 4.851 / 0.0 4.851±0.000 / 27.2±17.8
ResNet-50 4.386 / 674.4 4.386 / 900.0 4.457 / 899.6 4.397 / 0.1 4.397 / 0.0 4.387±0.001 / 6.2±0.5

rover

fir_5 5936 / 900.0 7549 / 900.0 7296 / 900.0 5936 / 0.0 5936 / 0.1 5936±0 / 22.6±6.1
fir_6 6191 / 900.0 8641 / 900.0 8317 / 900.0 5936 / 0.1 5936 / 0.1 5936±0 / 23.6±7.6
fir_7 6011 / 900.0 8512 / 900.0 9617 / 900.0 5936 / 0.1 5936 / 0.2 5936±0 / 17.8±3.4
fir_8 6011 / 900.0 8509 / 900.0 8994 / 900.0 5936 / 0.1 5936 / 0.2 5936±0 / 29.2±2.8
box_3 1701 / 47.9 1701 / 900.0 1761 / 900.0 1701 / 0.0 1701 / 0.0 1701±0 / 7.8±1.1
box_4 1635 / 900.0 1827 / 900.0 1913 / 900.0 1762 / 0.1 1762 / 0.1 1707±20 / 35.3±2.1
box_5 1819 / 3.9 1819 / 454.6 1819 / 581.4 1819 / 0.0 1819 / 0.0 1819±0 / 2.0±0.3
mcm_8 1050 / 60.8 1050 / 96.5 1050 / 57.7 1165 / 0.1 1165 / 0.1 1050±0 / 21.9±1.0
mcm_9 1050 / 70.9 1050 / 95.1 1050 / 59.7 1165 / 0.1 1165 / 0.1 1050±0 / 25.3±2.9

Table 4. Comparative results using the synthetic model across 2 datasets — we use both × and % to represent the
normalized increase. For example, 6.3× is equivalent to 630%. Other notations follow Table 2

Dataset
CPLEX ILP SCIP ILP CBC ILP Heuristic (egg) Heuristic+[22] SmoothE (ours)

time time time time time time
worst / avg. worst / avg. worst / avg. worst / avg. worst / avg. worst / avg.

set 33.3 17.1 32.6 1.0 0.6 16.5±0.7
0.0% / 0.0% 0.0% / 0.0% 0.0% / 0.0% 6.3× / 2.6× 6.3× / 2.6× 50.0%±0.0% / 21.9%±0.5%

maxsat 0.4 0.2 0.3 0.0 0.0 2.3±0.5
0.0% / 0.0% 0.0% / 0.0% 0.0% / 0.0% 2.0× / 2.0× 2.0× / 2.0× 31.1%±0.4% / 22.9%±0.2%

is able to find a comparable solution, if not better than ILP,
within a much faster time.

Results onAdversarial Datasets. On adversarial datasets,
all ILP solvers are able to extract the optimal solutionwithin a
minute, because these e-graphs converted from the NP-hard
problems contains less graphical information, thus more suit-
able for ILP solvers. The heuristic methods fail to extract
solutionwith reasonable quality, because there aremore com-
mon sub-expressions in these converted datasets. SmoothE
performs much better than the heuristic baselines.

5.5 Comparison Using Non-linear Cost Models
Since the code and datasets from recent efforts using non-
linear cost models [7, 14, 52] are not open-sourced, for the
evaluation, we generate an adversarial non-linear cost model,
multi-layer perceptron (MLP), on the same set of e-graphs
as in Section 5.4. The non-linear cost is added as a correction
term to linear cost model: 𝑓 (𝑥) = 𝑓linear (𝑥) + 𝑓non-linear (𝑥)

For a fair comparison, we further implement genetic al-
gorithm, a commonly-used meta heuristic. The genetic algo-
rithm can flexibly support non-linear cost models; however,
it may get stuck in local minima and fail to effectively ex-
plore a large search space. We did not include the genetic
algorithm in Table 1 because (1) it does not perform better
than the other heuristic baselines in terms of solution quality,
and (2) our implementation is purely in Python, making the
run time comparison less fair.

We primarily comparewith genetic algorithm and ILP∗. Be-
cause heuristic algorithm and ILP cannot handle non-linear
terms. We directly use the oracle solutions obtained in Sec-
tion 5.4 as an approximation by ignoring the non-linear
terms, denoted as ILP∗.

Learning-based Cost Model. ML-based models is capa-
ble of modeling more complex interactions of any pair of
e-nodes in an e-graph. Furthermore, an ML-based model can
also act as a fast proxy model to avoid some time-consuming
compilation or synthesis. Popular learning-based model are
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Figure 4. Anytime results — comparing SmoothE with CPLEX. The cutoff time for both algorithm is set to be 15 min. The
x-axes are truncated if no further improvement is made.
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Figure 5. Comparative results using MLP costs across
5 datasets — increases are normalized to SmoothE results.
The maximum difference of genetic algorithm is based on 3
runs. ILP∗ means using the oracle solution obtained by ILP.

differentiable, making them easy to incorporate into the end-
to-end optimization flow of SmoothE.

In our evaluation, we use a simple multi-layer perceptron
with 4 layers: an input layer of size 𝑁 mapped to 64 neu-
rons, followed by two hidden layers of 64 and 8 neurons
each with ReLU non-linearity, and a final output layer of
the predicted scalar cost. To train the MLP, we generate a
synthetic dataset for each e-graph: the training data consists
of random discrete valid solutions, and the target values are
set as random negative numbers representing savings for
these solutions. Regression is performed to optimize the MLP
using this synthetic dataset.

Results on non-linear costs are shown in Figure 5. For all
datasets, SmoothE consistently extracts the best solutions.
While genetic algorithm is able to extract high-quality so-
lutions on e-graphs in tensat, it fails to explore the large
space for other datasets. The solution obtained from the ap-
proximated linear model consistently performs worse than
SmoothE, because the interactions among e-nodes are more
complex which cannot be captured by linear model, making

the approximation inaccurate. This experiment showcases
that SmoothE is capable of optimizing more complicated
cost models other than linear cost models. In terms of the
run time, when switching from linear models to non-linear
models, the per-iteration update time of SmoothE remains
approximately the same, as the cost model does not alter the
overall workflow. Although SmoothE requires more itera-
tions of optimization for the non-linear model due to its more
complex dependencies, SmoothE finishes the extraction for
any e-graph in Figure 5 within a minute.

5.6 Evaluation of Performance Optimizations
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Figure 6. Speedup results normalized to the CPU base-
line using tensat dataset — +GPU means switching the
GPU execution, corresponding to Section 4.1; +MatExp cor-
responds to matrix exponential optimization corresponding
to Section 4.3. OOM denotes GPU out of memory.

Ablation Study. Figure 6 breaks down how each compo-
nent described in Section 4 contributes to the efficient execu-
tion of SmoothE. It shows the extraction time of SmoothE on
e-graphs in tensat with different performance optimizations.
For CPU baseline, we use the same algorithm described in
Section 3 on a CPU backend without any performance opti-
mization. Optimized GPU execution and matrix exponential
optimization each provide approximately a 10× speedup.
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The matrix exponential optimization is particularly crucial,
not only for latency but also for memory usage. Without it,
SmoothE will run out of GPU memory for large e-graphs.
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Figure 7. Averaged cost and latency of SmoothE with
varying number of seeds (𝐵) — this experiment is per-
formed on an e-graph named box_3 from the rover dataset.
The orange line shows the average cost and variance across
on 3 runs, while the blue line indicates the latency.

Seed Batching. In Figure 7, we demonstrate the benefits
of seed batching. When increasing the number of seeds used,
the average cost and variance consistently decrease, meaning
better and more consistent solution can be achieved. When
the number of seeds is fewer than 64, the latency increase
is far less than linear — doubling the number of seeds re-
sults in much less than 2× increase in latency, indicating the
GPU is underutilized. Eventually, the cost converges to a low
value with zero variance when using 256 seeds, meaning
that consistent good solutions are extracted.
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Figure 8. Run time profiling of SmoothE — this experi-
ment shows how each component of SmoothE contributes
to the runtime. Both Loss Calculation and Gradient De-
scent are parts of optimization. The reported number is the
geometric average across all e-graphs within each dataset.
All reported times are wall-clock measurements.

Profiling results are presented in Figure 8 to understand
how each component of SmoothE contributes to the run
time. The sampling process accounts for only 4.8% to 21.8%
of the total run time. In contrast, the optimization process
constitutes the majority of the run time. In optimization pro-
cess, loss calculation is the most time-consuming component,
except for flexc, where gradient descent is the slowest step.

5.7 Performance Portability
In this subsection, we analyze how the performance of SmoothE
changes on lower-endGPUs. This primarily impacts SmoothE
by reducing the number of seeds per batch due to smaller
memory capacities, potentially affecting extraction quality.
As long as the memory usage per seed remains within the
GPU’s limits—which is true for most e-graphs—SmoothE
will still perform effectively.

We compare the performance of SmoothE on an NVIDIA
GeForce RTX 2080 Ti and an A100, with results shown in Ta-
ble 5. Due to the RTX 2080 Ti’s 11 GBmemory—approximately
8× smaller than the A100’s 80 GB—batch size is reduced by
8×. Despite this, SmoothE produces effective solutions for
most e-graphs in our evaluation, except for four cases where
the memory required per seed exceeds the GPU’s capacity.
The run time remains largely unchanged and is sometimes
even lower, as the compute requirements for optimization
are reduced proportionally. Overall, SmoothE performs com-
petitively on lower-end GPUs, though memory constraints
may limit its ability to handle larger e-graphs.

5.8 Effectiveness of Sampling
In this experiment, we show that the sampling loss 𝑓𝑏 (𝑠)
in discrete form is close to the optimization loss 𝑓 (𝑝) in re-
laxed form, indicating that the sampling process effectively
extracts discrete solutions that are close to the relaxed solu-
tions. In Figure 9, we compare the two losses on four e-graphs
from tensat and rover. As can be seen from the figure, the
optimization loss remains close to the sampling loss through-
out all steps of the optimization process. This consistency
highlights the effectiveness of our sampling method.

6 Conclusion
In this work, we propose SmoothE, the first differentiable
approach to e-graph extraction. Our approach is well suited
for GPU acceleration and can incorporate more expressive
and realistic cost models, leading to higher solution quality
on more complex extraction tasks. For future work, we plan
to incorporate realistic non-linear cost models. We are also
interested in leveraging advanced probabilistic graphical
models to improve the probability computation.
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Table 5. Comparative results using different GPU targets – notations follow Table 2 and Table 3.

Dataset diospyros flexc impress rover tensat
time (fails) time (fails) time (fails) time (fails) time (fails)

GPU Type worst / avg. worst / avg. worst / avg. worst / avg. worst / avg.

A100 8.4±0.7 19.3±1.7 4.6±0.0 20.6±1.3 24.4±2.5
0.1%±0.0% / 0.1%±0.0% 0.7%±0.0% / 0.2%±0.0% 0.0%±0.0% / 0.0%±0.0% 4.4%±1.2% / 0.2%±0.1% 17.0%±0.0% / 4.6%±0.1%

RTX 2080 Ti 2.5±0.1 (3) 28.7±5.8 15.2±0.1 13.4±1.2 18.9±2.7 (1)
Failed / 0.1%±0.0% 1.7%±1.0% / 0.1%±0.1% 0.0%±0.0% / 0.0%±0.0% 11.0%±0.0% / 1.9%±0.1% Failed / 6.2%±0.5%
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Figure 9. Optimization loss vs. sampling loss

A Artifact Appendix
A.1 Abstract
This artifact includes the SmoothE source code and the nec-
essary scripts to reproduce the experiments in the paper.
To facilitate artifact evaluation, we have automated the en-
tire environment setup and experimental processes. Run-
ning the experiments requires a machine equipped with
an NVIDIA A100 GPU with > 80GB memory. Reproducing
SmoothE takes approximately one hour, while executing all
baselines in the paper requires an additional four days.

A.2 Artifact check-list (meta-information)
• Datasets: All datasets are available within this artifact.
• Run-time environment: Specified in the conda yaml file.
• Hardware: A machine equipped with NVIDIA A100 GPUs.
• Metrics: Cost of the extracted e-graph (lower is better), run
time (lower is better).

• How much time is needed to prepare workflow (ap-
proximately)?: About 30 minutes.

• How much time is needed to complete experiments
(approximately)?: It takes about an hour to reproduce
SmoothE results, and 4 days for the baseslines.

• Publicly available?: Yes.
• Code and data licenses (if publicly available)?: BSD
3-Clause License.

• Archived (provideDOI)?: https://zenodo.org/records/14052997

A.3 Description
A.3.1 How to access. Downloadable from: https://zenodo.
org/records/14052997

A.3.2 Hardware dependencies. Amachine equippedwith
an A100 NVIDIA GPU with >80 GB memory is highly recom-
mended. Machine equipped with a lower-end GPU can also

be used to run the experiments, but performance degradation
similar to Table 5 is expected.

A.3.3 Software dependencies. We provide a conda yaml
file for building the necessary Python dependencies needed
by SmoothE. We use CPLEX 22.1.1.0, a commercial solver,
for obtaining our baseline and oracle results.

A.3.4 Datasets. We include following datasets used to
evaluate SmoothE and the baselines: (1) Realistic linear costs
and synthetic MLP costs on diospyros, flexc, impress, rover,
and tensat; (2) Linear costs on synthetic datasets converted
from NP-hard problems, including set and maxsat.

A.4 Installation
Install all the required dependencies listed in env.yaml:
$ conda env create -f env.yaml
(Optional) Follow the CPLEX installation guide for free

education version.

A.5 Experiment workflow
A set of Python scripts will generate the tables and figures
in the paper. The complete instructions can be found in the
README.md file included within the artifact repository.

A.6 Evaluation and expected results
We provide scripts for reproducing the results presented in
Table 2, Table 3, Table 4, Figure 5, and Figure 4.

We execute SmoothE three times and report the max dif-
ference. The outcomes of the ILP and genetic baselines may
exhibit variability due to their nondeterministic nature.

https://zenodo.org/records/14052997
https://zenodo.org/records/14052997
https://zenodo.org/records/14052997
https://github.com/academic-initiative/documentation/blob/main/academic-initiative/how-to/How-to-download-IBM-ILOG-CPLEX/readme.md
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