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Abstract

Quantization can efficiently assist the deployment of neural networks on mobile
systems with constrained resources. However, directly quantizing a model to ultra
low precision could cause significant accuracy degradation. Most of the works
addressing this problem use first order information, along with expensive AutoML
search methods to find the bit precision for different layers. Here we introduce trace
weighted Hessian-aware Quantization, a new second order based method which
does not require any expensive search methods. We provide theoretical results
to show that the trace of the Hessian, under certain assumption, could be used to
determine sensitivity of different layers to quantization, and we use this information
to perform Hessian aware fine-tuning. We test our second-order approach, and
show that it exceeds industry-scale results which use expensive AutoML search
methods. In particular, we present quantization results on ImageNet dataset for
Inception-V3 (75.68% with 7.57MB model size) and ResNet50 (75.76% with
7.99MB model size). Both results are state-of-the-art for quantized models.

1 Introduction

One of the major challenges of deploying Neural Network (NN) models on embedded systems, is
their prohibitive model size, energy usage, and in some cases unacceptable latency. For example
many edge devices have limited memory size and battery capacity, and large models with high power
consumption cannot be deployed on them. Moreover, applications such as autonomous driving have
strict limitations on the acceptable inference latency. Quantization [10, 15, 16, 11, 3, 14, 4] is a
very promising approach to address these problems. Quantization reduces the memory footprint
of the model parameters and activations by using reduced precision storage instead of using 32-bit
floating point. This leads to smaller memory movement volume which can significantly reduce power
consumption [5]. Moreover, quantization allows use of reduced precision integer arithmetic instead
of floating-point arithmetic which can reduce inference latency.

Recently, mixed-precision quantization and progressive fine-tuning have been used for ultra-low
precision quantization to achieve negligible accuracy drop between quantized and original models [13].
In this approach, each layer is quantized with different bit precision. However, the search space for
choosing this bit setting is exponential in the number of layers. Existing approaches use expensive
AutoML methods to search this exponential space. However, these search methods require large
amounts of computational resources and are time-consuming.

A very promising technique to address the above problem is to use second order information. The
recent method [4] use the Hessian information as a sensitivity metric to determine the mixed-precision
bit setting for different layers, as well as a new fine-tuning order to automatically choose a quantization
sequence. This is achieved by computing the top eigenvalue of the Hessian of the loss with respect to
parameters of each block. However, as we will discuss later, just using the top Hessian eigenvalue is
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Figure 1: Mean trace of Hessian of different blocks in Inception-V3 and ResNet50 on ImageNet, along with
the loss landscape of the block 4 and 16 in Inception-V3 (block 1 and 53 in ResNet50). As one can see, the
mean trace of the Hessian is significantly different for different blocks. We use this information to determine the
quantization precision setting, i.e. we assign higher bits for blocks with larger mean Hessian trace, and fewer
bits for blocks with smaller mean Hessian trace.

not enough. One needs to consider the full Hessian spectrum and especially its trace. In particular,
our contributions are as follows:

• We prove that under assumptions specified in Assumption 1, the mean Hessian trace can determine
the relative sensitivity of different layers to quantization. In particular, we show that layers with
smaller mean Hessian trace can achieve better loss value after fine-tuning with quantized weights
as compared to layers with large mean Hessian trace.

• We compute the trace of Hessian using Huthinson algorithm, with a matrix free implementation in
PyTorch. We test the proposed algorithm on various novel models on ImageNet dataset including
ResNet50 and InceptionV3. We show that in all cases our new method achieves better results in
both accuracy and model size, even when compared to AutoML based methods.

Outline: In § 2, we discuss theoretical results related to the mean trace of Hessian. Then we test our
proposed method for various models on image classification task in § 3, followed by conclusions.

2 Methodology

For a supervised learning framework, the goal is to minimize the empirical risk loss,

L(θ) =
1

N

N∑
i=1

l(xi, yi, θ), (1)

where θ is the parameter, l(x, y, θ) is the loss for the input datum (x, y), and N is the cardinality of
the training set. Here we assume that the model is already trained by solving the above optimization
problem. That is we assume that all blocks of the model have converged to the local optimal point,
i.e. ∇WiL(θ) = 0, 1. The NN is partitioned into b blocks as {B1, B2, · · · , Bb}, with corresponding
learnable parameters {W1,W2, · · · ,Wb}. The goal is to quantize the parameters and activations of
these blocks to lower bit precision.

2.1 Quantization and Hessian Spectrum

A Hessian based method was proposed in [4] to achieve mixed-precision quantization. However,
the approach proposed there was only based on the top Hessian eigenvalue, and did not consider
the rest of Hessian spectrum. In [4], a higher bit precision is used for layers with larger top Hessian
eigenvalue, and vice versa. Since the direction of quantization perturbation is not necessarily the
same as the direction of top eigenvector during quantization-aware fine-tuning, we show that under
the assumptions outlined below, a better metric is to measure mean Hessian trace instead of just the
top Hessian eigenvalue.

Assumptions 1 Assume that:

• The model is twice differentiable, and has converged to a local minima such that the first and
second order optimality conditions are satisfied, i.e. the gradient is zero and the Hessian is positive
semi-definite.
1Here, we assume that the training process terminates until the model converges.
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• LetHi be the Hessian of i-th block and vi1, v
i
2, ..., v

i
ni

be the orthonormal eigenvectors ofHi. Then
we assume the fine-tuning perturbation, ∆W ∗i = arg minW∗

i +∆W∗
i ∈Q(·)L(W ∗i + ∆W ∗i ), satisfies

∆W ∗
i = αbitv

i
1 + αbitv

i
2 + ...+ αbitv

i
ni
. (2)

Here ni is the dimension of Wi, W ∗
i is the converging point of i-th block, Q(·) is the quantization function,

which maps floating point values to reduced precision values, and αbit is a constant number based on
quantization bit setting.

• After fine-tuning, the best solution is within the convex vicinity of the solution before quantization.

We could prove that,

Lemma 1 Suppose we quantize two blocks (for simplicity, assume they are B1 and B2) with same
amount of perturbation, namely ‖∆W ∗1 ‖22 = ‖∆W ∗2 ‖22. Under Assumption 1, we will have

L(W ∗
1 + ∆W ∗

1 ;W ∗
2 , · · · ,W ∗

b ) ≤ L(W ∗
1 ,W

∗
2 + ∆W ∗

2 ,W
∗
3 , · · · ,W ∗

b ), 2 (3)

if
1

n1
∇2

W1
L(W ∗

1 ) ≤ 1

n2
∇2

W2
L(W ∗

2 ). (4)

Proof Sketch: Denote g1 and H1 are the corresponding gradient and Hessian of first block. By
Taylor’s expansion, we have:

L(W ∗
1 + ∆W ∗

1 ) = L(W ∗
1 ) + gT1 ∆W ∗

1 +
1

2
∆W ∗

1
T
H1∆W ∗

1 = L(W ∗
1 ) +

1

2
∆W ∗

1
T
H1∆W ∗

1 .

Here we have used the fact that gradient at the optimum point is zero, and that the loss function
is locally convex. Also note that L(W ∗1 ) = L(W ∗2 ) since the model has the same loss before we
quantize any block. Based on assumption, ∆W ∗1 can be decomposed by the eigenvectors of the
Hessian. As a result we have:

∆W ∗
1
T
H1∆W ∗

1 =

n1∑
i=1

α2
bit,1v

1
i
T
H1v

1
i = α2

bit,1

n1∑
i=1

λ1
i ,

where λ1
i is the corresponding eigenvalue of v1i . Similarly, for the second layer we will have: ∆W ∗

2
TH2∆W ∗

2 =
α2
bit,2

∑n2
i=1 λ

2
i , where λ2

i is the i-th eigenvalues of H2. Since ‖∆W ∗
1 ‖2 = ‖∆W ∗

2 ‖2, we have
√
n1αbit,1 =√

n2αbit,2. Therefore, we have:

L(W ∗
2 + ∆W ∗

2 )− L(W ∗
1 + ∆W ∗

1 ) = α2
bit,2n2(

1

n2

n2∑
i=1

λ2
i −

1

n1

n1∑
i=1

λ1
i ) ≥ 0.

It is easy to see that the lemma holds since the sum of eigenvalues equals to the trace of the matrix. �

It is possible to compute the mean trace of the Hessian using matrix free methods to avoid the
prohibitive cost of forming it. Several works [1, 2] have proposed randomized algorithm to quickly
estimate the trace of matrix by transforming an algebra problem into a statistical problem. In
particular, we are interested in the trace of a symmetric matrix H ∈ Rd×d. Then, given a random
vector z ∈ Rd whose component is iid sampled Gaussian distribution (N(0, 1)) (or Rademacher
distribution), we have:

Trace(H) = Trace(HI) = Trace(H E[zzT ]) = E[Trace(HzzT )] = E[zTHz], (5)

where I is the identity matrix. Based on this, the Hutchinson algorithm [1] can be used to estimate
the trace of the Hessian:

Trace(H) ≈ 1

m

m∑
i=1

zTi Hzi = TraceEst(H). (6)

Using the above method, we have computed the mean trace of the Hessian for different blocks of
Inception-V3 and ResNet50, as shown in Figure 1. As one can see, there is a significant difference
between the mean Hessian trace of different blocks of the model. To better illustrate this, we have
also plotted the loss landscape of Inception-V3 and ResNet50 by perturbing the pre-trained model
along the first and second eigenvectors of the Hessian for each block. It is clear that different layers
have significantly different “sharpness”. For instance, the 4th block in Inception-V3 is very sensitive,
and thus needs to be kept at higher bit precision, whereas the 16th block exhibits a very “flat” loss
landscape and can be quantized more aggressively.

2We will leave L(W ∗
i ;W ∗

1 , · · ·W ∗
i−1,W

∗
i+1 · · · ,W ∗

b ) as L(W ∗
i ) without confusion.
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Figure 2: Relationship between the convergence of Hutchinson and the number of data points (Left) as well as
the number of steps (Right) used for trace estimation on block 21 in ResNet50.

3 Results

In Figure 2, we show how the convergence of Hutchinson algorithm related to the number of data
points and the number of Hutchinson steps used for trace estimation. It can be clearly seen that 4096
data points with 50 Hutchinson steps can already give a very accurate approximation.

We first start with ResNet50 [7] quantization, which is a common benchmark problem. The results are
shown in Table 1, along with other quantization methods proposed in the literature [16, 3, 14, 6, 13, 4].
Noted that [16, 3, 14, 6] followed traditional rules which set the precision for the first and last layer
to 8-bit, and quantize other layers to an identical precision. Furthermore, both [13, 4] use mixed-
precision quantization methods, and [13] uses reinforcement learning to search for a good precision
setting, while [4] uses second-order information to guide the precision selection as well as the block-
wise fine-tuning. Although [4] uses second-order information to obtain a relative order of quantization
precision for each block, it is, as mentioned before, limited to top eigenvalue computation. In contrast,
our method uses the Hessian trace information for each block. We can clearly see that our method
exceeds the performance of all the other approaches. To the best of our knowledge, this is the state-of-
the-art quantization result for ResNet50. Moreover, we also apply our method on InceptionV3 [12].
Direct quantization of InceptionV3 (i.e., without use of second-order information), results in 7.69%
accuracy degradation. Using the approach proposed in [8] results in more than 2% accuracy drop,
even though it uses higher bit precision. [4] results in a 2% accuracy gap with a compression ratio of
12.04×, both of which are better than previous work [8, 9]. As we can see, our method can achieve
75.68% accuracy with the same model size as [4].

Table 1: Quantization results of ResNet50 and Inception-V3 on ImageNet. We show results of state-of-the-art
methods [16, 3, 14, 6, 8, 9]. In particular, we also compare with the recent AutoML approach of [13]. Compared
to [13], we achieve higher compression ratio with higher testing accuracy. Also note that [16, 3, 14, 6] use 8-bit
for first and last layers.

(a) ResNet50

Method w-bits a-bits Top-1 W-Comp Size

Baseline 32 32 77.39 1.00× 97.8

Dorefa [16] 3 3 69.90 10.67× 9.17
PACT [3] 3 3 75.30 10.67× 9.17
LQ-Nets [14] 3 3 74.20 10.67× 9.17
DeepComp. [6] 3 MP 75.10 10.41× 9.36
HAQ [13] MP MP 75.30 10.57× 9.22
HAWQ [4] 2 MP 4 MP 75.48 12.28× 7.96

OURS 2 MP 4 MP 75.76 12.24× 7.99

(b) Inception-V3

Method w-bits a-bits Top-1 W-Comp Size

Baseline 32 32 77.45 1.00× 91.2

IntegerOnly [8] 8 8 75.40 4.00× 22.8
IntegerOnly [8] 7 7 75.00 4.57× 20.0
RVQuant [9] 3 MP 3 MP 74.14 10.67× 8.55
Direct 2 MP 4 MP 69.76 15.88× 5.74
HAWQ [4] 2 MP 4 MP 75.52 12.04× 7.57

OURS 2 MP 4 MP 75.68 12.04× 7.57

4 Conclusions

In this work, we proposed a new framework for quantizing NNs. Despite existing approaches which
use zeroth order or first order methods, we use second order information. We proved that under certain
assumptions a good metric to measure quantization sensitivity of different blocks is the mean trace
of Hessian matrix. Despite the fact that the theoretical assumptions are very strong, the empirical
results showed that our second order method can exceed the state-of-the-art (even when compared to
AutoML based methods) for various model architectures including ResNet50 and Inception-V3.
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