
Efficient Timing Channel Protection for On-Chip Networks

Yao Wang and G. Edward Suh
Computer Systems Laboratory

Cornell University
Ithaca, NY 14853, USA

{yao, suh}@csl.cornell.edu

Abstract—On-chip network is often dynamically shared
among applications that are concurrently running on a chip-
multiprocessor (CMP). In general, such shared resources imply
that applications can affect each other’s timing characteristics
through interference in shared resources. For example, in on-
chip networks, multiple flows can compete for links and buffers.
We show that this interference is an attack vector through
which a malicious application may be able to infer data-
dependent information about other applications (side channel
attacks), or two applications can exchange information covertly
when direct communications are prohibited (covert channel
attacks). To prevent these timing channel attacks, we propose
an efficient scheme which uses priority-based arbitration and
a static limit mechanism to provide one-way information-leak
protection. The proposed technique requires minimal changes
to the router hardware. The simulation results show that the
protection scheme effectively eliminates a timing channel from
high-security to low-security domains with minimal perfor-
mance overheads for realistic traffic patterns.

Keywords-on-chip network, security, side channel, covert
channel

I. INTRODUCTION

Future computing systems are expected to integrate a large
number of processing and memory elements on a die in order
to continue scaling the overall throughput within a limited
power budget. Today’s processors often contain two to eight
cores on a chip. More specialized processors such as the
Intel Single-chip Cloud Computer (SCC) [7] or the Tilera
TILE64 family [14] already contain several tens of cores.
For efficient communications, such many-core systems are
likely to rely on an on-chip interconnect network and often
called network-on-chip (NOC).

To fully utilize a large number of processing elements,
many-core systems need to execute a number of parallel
workloads and share resources dynamically. For example,
cloud computing infrastructures may support multiple virtual
machines with shared physical resources. Therefore, appli-
cations on a NOC system can interfere with one another’s
execution through contention on the network; an applica-
tion’s communication traffic may experience contention and
delays that would not have occurred if each application had
been run individually. The network contention over shared
channels is obviously a concern from the performance, and
also introduces fairness and quality-of-service issues, which
have been studied recently [11], [5].

In this paper, we study the implications of the shared
on-chip network from a security point of view, namely
information leak through network interference, and proposes
an efficient protection mechanism. In general, the latency
and throughput variations from network interferences can
be used as timing channels by an attacker either to infer
confidential information from a protected high-security pro-
gram (side channel attacks) or to have a malicious program
deliberately leak information covertly when direct communi-
cation channels are protected (covert channel attacks). While
a potential denial-of-service (DoS) attack on the network
has been studied, to the best of our knowledge, this paper
represents the first study on timing channels.

Handling of both side channel and covert channel con-
cerns is critical for systems that require high levels of assur-
ance. For example, consider cloud computing infrastructures
that allow virtual machines from multiple customers to share
physical hardware. In order for such systems to be viable for
business or military customers, a system must provide an
assurance that critical trade secret cannot be leaked. In fact,
today’s cloud computing service contracts may prevent a
service provider from sharing physical systems among mul-
tiple customers to handle such a concern. Similarly, safety
critical systems such as an automobile engine controller
cannot make use of multi-core platforms for multiple tasks
unless there is a strong guarantee of isolation in order to
meet timing deadlines.

Unfortunately, eliminating the network interference can
result in a significant performance degradation due to ineffi-
cient resource management even when there is no malicious
traffic. For example, static partitioning implies that a network
can never be fully utilized by one program. In essence,
non-interference requires that resource allocation decisions
should be independent from application demands.

In this paper, we present an efficient solution to remove
the timing channel based on the observation that practical
systems often need to prevent only one-way information
flows from high security to low security levels. In this case,
we found that the network capacity can be dynamically
allocated based on application demands without a security
concern by giving a strict priority to the low-security traffic.
The priority ensures that the low-security traffic is not
affected by the high-security traffic demands. The priority



(a) Network and flow setup.

(b) A’s throughput, varying B’s de-
mand.

(c) B’s throughput, varying A’s de-
mand.

Figure 1. A simple network-interference example.

scheme can be easily incorporated into a network router
in a manner similar to traditional quality-of-service (QoS)
mechanisms. To prevent the low-security traffic to cause a
denial-of-service (DoS) attack, we throttle the low-security
traffic based on conditions that do not depend on the high-
security traffic. For example, the network can enforce a static
bandwidth limit on the low-security traffic.

Simulation studies show that the proposed technique
indeed eliminates one-way information flows from high-
security to low-security levels. Also, the technique only
requires minor changes to traditional router designs to add a
simple priority-based arbitration and a static virtual channel
allocation along with a bandwidth limit. Moreover, the
simulation results indicate that the performance overhead
of the proposed protection can be minimal, especially when
communication demands change over time. The technique
allows high-security traffic to fully utilize the network ca-
pacity as long as there is no low-security traffic. Similarly,
the low-security traffic can utilize the network up to its limit.

The rest of the paper is organized as follows. Section II
discusses the timing channel problem in on-chip networks.
Section III and Section IV present simple static partitioning
approaches as well as our proposal to address this prob-
lem. Section V evaluates the effectiveness and performance
overheads of the protection techniques. Section VI discusses
related works, and Section VII presents our conclusions.

II. TIMING CHANNELS IN ON-CHIP NETWORKS

A. On-chip Network Interference

Network interference happens when flows from multiple
applications contend for shared resources such as links and
buffers. As an example, Figure 1(a) illustrates a simple
scenario where two flows, Flow A and Flow B, share a
common link between Node 1 and 2 on a typical 1-D mesh
with 4 virtual channels. Because only one flow can use

(a) A platform setup.

0 0.2 0.4 0.6 0.8 1
220

230

240

250

260

270

280

Fraction of bit ’1’ in RSA key

Ti
m

e 
to

 e
xe

cu
te

 1
00

0 
ite

ra
tio

ns
 in

 A
tta

ck
er

 P
ro

gr
am

/ (
10

00
 c

yc
le

s)

(b) Attack program’s execution time.
Figure 2. A side-channel attack on RSA.

the link in each cycle, the network performance of one
flow, such as throughput and latency, can be affected by
the other flow’s demand. Figure 1(b) and Figure 1(c) show
the throughput of Flow A and B respectively as a function
of the other flow’s injection rate. In the experiments, we
fixed one flow’s injection rate (0.2, 0.5, or 1 flit/cycle) and
measured its delivered throughput while varying the other
flow’s injection rate from 0 to 1 flit/cycle. The experiments
uses a cycle-level network simulator, named Darsim [12]. As
shown in the figure, when a flow has a low injection rate (0.2
flit/cycle), its throughput is not significantly affected by the
other flow’s injection rate because a round-robin arbitration
allocates roughly half of the link capacity to each flow,
which is enough to satisfy the demand. However, when the
injection rate is high (1 flit/cycle), a flow’s throughput is
highly dependent on the other flow’s injection rate.

The network interference creates a potential timing chan-
nel where sensitive information can be leaked intention-
ally or unintentionally even when legitimate communication
channels are disallowed. For example, a program with a high
security clearance may covertly leak confidential informa-
tion to a low-security program by controlling the amount of
network traffic to reflect the secret (say, high demand for 1
and low demand for 0). The low-security program can obtain
the secret by measuring the throughput or latency of its own
flow through the shared network. This covert channel allows
the two programs to communicate covertly even when they
are not allowed to explicitly send messages to each other or
access the same memory locations.

The timing channel can also be exploited to extract secrets
from a program, which leaks information unintentionally.
This scenario is often called a side channel. As an example,
Figure 2(a) shows a case where an RSA algorithm (Core



0) runs on a multi-core platform along with a malicious
program (Core 1). RSA [13] is a public key cryptographic
algorithm that is widely used to secure electronic commu-
nications through encryption or digital signatures. The core
of the RSA algorithm performs a modulo multiplication of
two large numbers (often 1024 or 2048 bits) depends on
each bit in a secret key, and is shown to be prone to timing
attacks [8]. Essentially, the algorithm examines each bits in
the key and only performs a multiplication if the bit is 1.
In our example, we studied a case where the multiplication
operation in RSA causes additional network traffic to the
memory controller 2 (MC2) due to cache conflicts. Mean-
while, the attack program runs a loop which causes cache
misses in every iteration, which also sends memory requests
to MC2. Packets from the RSA program and the attack
program share the output port of the crossbar and experience
network interference. The experiments were performed using
McSim [1], which provides timing models for a multi-core
platform based on Intel’s Pin tool. Figure 2(b) shows the
attack program’s execution time as the number of 1s in the
RSA key varies. As shown in the figure, the execution time
has a high correlation with the fraction of 1s in the key.
This result suggests that the attacker can roughly estimate
the number of 1s from its own execution time, which can
greatly reduce the search space to find the correct key.

B. Security Model

The objective of our timing channel protection technique
is to prevent sensitive information flows from a high-security
domain to a low-security domain through network interfer-
ence. In particular, our goal is to remove dynamic data-
dependent network interference. For example, an application
in the low-security domain may still be able to observe that
there is another application, but should not be able to observe
run-time changes in the high-security domain. In this way,
an on-chip network can still be shared among multiple
applications. Instead of referring to individual applications,
we use the term domain to refer to a set of applications that
do not need to be isolated from each other.

The security model is based on the traditional multi-level
security model (MLS) for confidentiality where information
can flow from a lower security level to a higher security
level, but not in the other way. As we will discuss later, only
preventing high-to-low information flows instead of flows in
both directions is essential in enabling efficient techniques
that can allow dynamic resource management. Fortunately,
the multi-level security model with the one-way protection is
applicable to a wide range of applications. In fact, the model
is the standard for military and is also widely adopted by
industry. For example, the model can be applied to cloud
computing by placing security-sensitive corporate virtual
machines in a high-security level and common compute
workloads in a low-security level, allowing more efficient
utilization. While our technique is applicable to multiple

(a) Baseline. (b) Spatial partitioning.
Figure 3. Non-interference through spatial network partitioning.

security levels, for simplicity, our discussion will focus on
the case with two levels - a high-security level and a low-
security level.

In this work, we assume that an attacker controls software
on a subset of processing cores along with its placement
and scheduling. We also assume that the attacker knows
the characteristics of high-security programs including their
placement, scheduling, and traffic patterns. In that sense, we
assume that attackers can cause its flow to share the network
resources with arbitrary flows in the high-security domain.
However, the attack program is assumed to be in the low-
security domain. Because he only has access to software,
the attacker can only observe the network traffic through
the latency and the throughput of its own flows.

III. STATIC NETWORK PARTITIONING

To remove a timing channel via on-chip networks, the
communication latency and throughput of the low-security
domain should be independent from the dynamic behavior of
applications in the high-security domain. This independence
condition implies that all shared network resources, both link
bandwidth and buffer space, must be allocated between the
security domains in a way that is independent from run-time
demands. The most straightforward approach to achieve this
goal is to statically partition resources.

Spatial Network Partitioning (SNP) As shown in Fig-
ure 3, a network can be partitioned in space to remove
interference. The example shows two security domains, A
and B, where each domain is allocated with a subset of cores.
In the baseline without any timing channel protection, some
flows from the two domains can use the same link using
the traditional Y-X routing as shown in Figure 3(a). The
interference can be removed by requiring each domain to
only use the routers that are associated with the nodes that
are allocated to itself as shown in Figure 3(b).

Temporal Network Partitioning (TNP) Instead of re-
stricting routers for each security domain, a more flexible
partitioning approach can allow sharing of the routers and
links while still statically allocate their resources. In this ap-
proach, we statically allocate virtual channels (VCs) in each
input port to security domains and use temporal scheduling
to have security domains take pre-determined turns on a
per-cycle basis. For example, each security domain can be
allocated with a half of input virtual channels for exclusive
use, and be allowed in the switch allocation and link traversal



in every other cycle. Effectively, this scheme statically
allocates a half of network resources to each domain.

Strengths and Weaknesses Both spatial and temporal
partitioning schemes eliminate network interference between
the security domains. In fact, the static partitioning remove
a timing channel in both directions, not only from high-
security to low-security domains. However, both schemes
can incur significant performance overheads because re-
source allocation cannot be dynamically adjusted to match
the actual demands from each security domain. For example,
even if one security domain has a large bandwidth demand
while the other domain has a very small demand, the
simple partitioning only allows the domain with the large
demand to use at most the half of the output bandwidth.
Even if application’s traffic patterns are known, the static
partitioning cannot efficiently deal with bursts or changes in
application phases.

IV. ONE-WAY INFORMATION LEAK PROTECTION:
REVERSED PRIORITY WITH STATIC LIMITS (RPSL)

In this section, we propose an efficient mechanism to
eliminate a timing channel from high-security to low-
security domain. As shown in the previous section, elim-
inating network interference in both directions suffers from
inefficiency because resource managements cannot reflect
run-time demands from either domain. On the other hand,
protection in one direction allows at least the low-security
domain’s demand to be used in resource allocation.

A. Overview

In the multi-level security model, the goal is to prevent
information flows from the high-security domain to the low-
security domain. To achieve this goal without statically allo-
cating resources, our scheme uses a priority-based arbitration
for resources such as the router crossbar along with static
allocation of virtual channels. The basic idea is to assign a
high priority to low-security traffic so that its behavior is not
affected by high-security traffic. In other words, when flows
from two different security levels compete for the switch
traversal, the low-security flow always wins, in both input
port and output port arbitrations in a separable allocator. To
remove interference in buffers, virtual channels are statically
allocated to each security domain. This static allocation
removes head-of-line blocking between packets from the two
different security domains. In this way, the low security-level
flows are not affected by the dynamic demands of the high-
security domain. At the same time, the approach allows each
security domain to use more network resources dynamically
when the other domain has low demands.

While assigning a higher priority to a lower-security
domain can prevent the information leak without statically
restricting network resources, the approach introduces an
obvious concern for fairness. In fact, the strictly higher
priority allows a malicious program in the low-security

Round-robin 
Arbiter

G0

G1

r3

r2

Round-robin 
Arbiter

G2

G3

r0

r1

(a) Input arbiter.

r0

r1

r2

r3

Round-robin 
Arbiter

G0

G1

G2

G3

h0

h1

h2

h3

h0h1h2h3

(b) Output arbiter.
Figure 4. A priority-based switch allocator design.

domain to easily perform a Denial-of-Service (Dos) attack
on high-security programs by sending packets at a high
injection rate and occupying all network resources.

To prevent the DoS attack, we add an additional mech-
anism that monitors and limits the traffic amount of the
low-security domain in a way that is independent from the
demand from the high-security domain. This mechanism sets
a static limit per port on the number of flits that can be sent
by the low-security domain over a certain interval. Once the
limit is reached, the port does not send the low-security flits
until the next interval, allowing the high-security flits to go
through. Note that the static limit does not create a timing
channel because it does not depend on the high-security
traffic. Also, the limit can change over time as long as it
does not reflect sensitive information - network demands
from the high-security level.

The rest of the section discusses in detail how this overall
approach can be efficiently realized in a modern router
architecture, and how the technique differs from traditional
quality-of-service schemes.

B. Information Leak Protection

To provide one-way information leak protection, our
scheme requires a priority-based allocator that gives a high
priority to a lower security traffic. Here, we describe how this
mechanism can be implemented based on a typical separable
allocator, which consists of input arbiters and output arbiters
[3], with statically allocated virtual channels. The input
arbiter decides which virtual channel can use each input port
to the crossbar, and the output arbiter decides which input
port can use each output channel. For simplicity, we illustrate
our design for a router with four virtual channel buffers per
input port, which are numbered from 0 to 3. To avoid the
interference from head-of-line blocking as discussed above,
we statically allocate virtual channel 0 and 1 to the low-
security domain (domain A), and 2 and 3 to the high-security
security domain (domain B).

Figure 4(a) shows our design of an input arbiter. In the
diagram, r0-r3 are request signals from virtual channels,
which compete for the input port to the crossbar. G0-G3



r1
I0

O0
O1
O2
O3

r0
I0

O0
O1
O2
O3

Round-robin 
Arbiter

G0

G1

r3

r2

Round-robin 
Arbiter

G2

G3

D0

D1

(a) Input arbiter.

r0

r1

r2

r3

Round-robin 
Arbiter

G0

G1

G2

G3

h0

h1

h2

h3

h0h1h2h3

O0

(b) Output arbiter.
Figure 5. A switch allocator design with a static bandwidth limit.

are grant signals indicating which virtual channel wins the
input arbitration. The arbiter uses a round-robin arbitration
among virtual channels within the same security domain, but
gives a priority to the first two virtual channels (0 and 1).
A request from a low-priority channel (2 or 3) is given to
the round-robin arbiter only if there is no request from the
high-priority virtual channel (AND gates in the figure).

Figure 4(b) shows our design of an output arbiter for a
4-by-4 crossbar. Here, r0-r3 represent request signals from
four input ports, and h0-h3 are signals indicating whether
the request signals are from the high priority virtual channels
(’1’) or from the low priority virtual channels (’0’). Again,
G0-G3 are grant signals indicating which request wins the
arbitration. Similar to the input arbiter design, the output
arbiter masks a request signal from a low-priority virtual
channel if there is any high-priority request. As shown in the
figures, adding a priority to the switch arbitration is quite
simple and only adds a couple of gate delays to the typical
round-robin arbiter.

C. Denial-of-Service Protection

To prevent a potential DoS attack, our approach enforces
a static limit on the number of low-security flits that can use
each input and output port over a certain interval. For this
purpose, a counter is added to each input and output port and
records the number of flits from the low-security domain.
The counter is compared to a static limit C, and resets
every N cycles. C/N represents the maximum fraction of
the network capacity that can be used by the low-security
domain. For example, if C = 80 and N = 100, the low-
security flows can at most send 80 flits every 100 cycles.
The remaining cycles can only be used by the high security
flows.

The switch allocator design with this capability is shown
in Figure 5. For the input arbiter, we add a signal I0 to
indicate whether the low-security packets has reached its
limit for this input port. The signal comes from the input port
counter. In addition, we also add control signals from the
output ports to prevent low-security flows from exceeding
the limit on each output port; Oi indicates whether the output
port i reached the limit. Finally, D0-D1 indicate the output

port of each low-security flow, which is used to select a
proper output limit signal. For the input arbiter, a request
from a low-security flow is invalided (AND) once the limit
is reached for either the input or output ports. Similarly, for
the output arbiter, we add O0 to invalidate the requests from
low-security flows once the output limit is reached.

D. Extension to More Security Domains

It is relatively straightforward to extend the RPSL scheme
to support more than two security domains. Suppose we
have N security domains, and we rank them based on their
security levels. The flows from the lowest security domain
get the highest priority to use the router crossbar and vice
versa. In this way, the traffic from the lower security domain
is not interfered by the traffic from the higher security do-
main, thus preventing information flow from higher security
domain to lower security domain. To extend to N security
domains, RPSL needs N-1 static limits to avoid DoS attacks,
one for each domain except for the highest security domain.
The limits may specify the maximum bandwidth usage over
a certain period for corresponding security domains or the
maximum usage for each security level and below. The
arbiter designs can be extended to support more priority
levels and static limits with simple additions to the design for
two security domains. We need N round-robin arbiters and
similar priority control signals for input arbiter. For output
arbiter, we need to add compare logic for h0-h3 signals to
decide which flow has the highest priority.

E. Comparison with QoS schemes

The proposed scheme uses the priority-based allocation,
which is a common technique in network quality-of-service
(QoS) schemes. In fact, at a glance, the timing channel pro-
tection may seem similar to guaranteeing a certain level of
services in terms of latency and throughput in the traditional
QoS context. However, a closer inspection reveals that the
QoS properties are insufficient to prevent information leak
through network interference. In particular, in a traditional
QoS system, a flow can utilize the full capacity of a network
beyond its allocation if there is no competing flow. However,
such an optimization creates a timing channel in the context
of security by reflecting the demand from the high-security
domain. For example, the fact that a flow can use more
resources than its QoS allocation reveals that other (high-
priority) flows have low resource usage at the time.

V. EVALUATION

A. Experimental Setup

We evaluate proposed timing channel protection scheme,
named RPSL, compared to the baseline without protection
and the static temporal network partitioning (TNP, see
Section III). The simulations are performed by modifying
Darsim [12], which is an open-source cycle-level NOC
simulator. The network is configured to be a standard mesh



(a) Flow A (low security). (b) Flow B (high security).
Figure 6. The effectiveness of TNP on a simple example.

(a) Flow A (low security). (b) Flow B (high security).
Figure 7. The effectiveness of RPSL on a simple example.

with four virtual channels per port, and uses iSLIP [3] as the
baseline allocator. For TNP, we allocate half of the virtual
channels and switch time slots to each security domain. For
RPSL, we allocate half of the virtual channels to each do-
main while prioritizing the low-security flows in arbitration.
The static limit for the low-security domain in RPSL is set to
be 80 flits per 100 cycles. Each packet consists of eight data
flits and one head flit. All our experiments are done with a
warm-up period of 20000 cycles, followed by simulation of
100000 cycles.

B. Security

1) Timing Channel Protection: We first study the security
of each protection scheme using a simple scenario, which is
discussed in Section II (see Figure 1). In this scenario, two
flows share a link in the network, causing interference. In the
experiments, we assign Flow A to the low-security domain
and B to the high-security domain. Then, we observe the
throughput of each flow, with a fixed injection rate, while
varying the other flow’s injection rate.

Figure 6 and Figure 7 show the results for the two
protection schemes, TNP and RPSL, respectively. The re-
sults shows that both schemes can eliminate the timing
channel from the high-security domain to the low-security
domain; the throughput of Flow A does not depend on the
injection rate of Flow B. In fact, the throughput of both
flows are constant under the TNP scheme, indicating that
the static partitioning prevents information flows in both
directions. On the other hand, Flow B’s throughput under
RPSL is sensitive to the injection rate of Flow A because the
technique only removes a timing channel in one direction.

Another interesting observation from Figure 6 is that

0 20 40 60 80 100

0.4

0.5

0.6

0.7

0.8

0.9

1

Timeline/(1000 cycles)

Fl
ow

 A
 a

ve
ra

ge
 th

ro
ug

hp
ut

 (f
lit

/c
yc

le
)

 

 

Baseline
TNP
RPSL

Figure 8. Flow A’s throughput over time with varying demands from Flow
B. Flow A: low security, Flow B: high security.

(a) Flow A (low security). (b) Flow B (high security).
Figure 9. Flow throughputs with a static limit on the low-security domain.

neither of the two flows’ throughput can achieve higher than
0.5 flit/cycle. This is the consequence of statically allocating
virtual channels and time slots evenly between two flows, so
each of them can at most use half of the network bandwidth.
In contrast, the results for RPSL in Figure 7 show that each
flow’s throughput can be higher than 0.5 flit/cycle because
the network resources can be dynamically allocated.

For the experiments above, the injection rates of both
flows are kept constant during each simulation run in order
to obtain the average throughput. However, in practice,
an attack program will measure its throughput over time
while keeping its injection rate high. The variations in the
observed throughput is used to obtain information about the
high-security domain’s behaviors. To mimic such an attack
process, we also measured the dynamic change in the Flow
A’s throughput while keeping Flow A’s injection rate at
1 flit/cycle and varying the injection rate of Flow B over
time. More specifically, we randomly change the injection
rate of flow B among 1/3, 1/2, and 1 flit/cycle every 1000
cycles. Figure 8 shows the dynamic throughput changes of
Flow A. As the results show, the throughput of Flow A
varies significantly for the baseline scheme, depending on
the injection rate of Flow B. As expected, the throughput
of Flow A stays constant under TNP and RPSL, which
further illustrates the two schemes can provide information-
leak protection against timing channel attacks.

2) DoS Protection for RPSL: To study the effectiveness
of having the limit on the low-security domain, Figure 9
shows experimental results with a few different limits. In
the first experiment, we fixed Flow A’s injection rate at 1



(a) Baseline (b) TNP (c) RPSL (limit = 0.8 flit/cycle)
Figure 11. Low-security (domain A) throughput as a function of the high-security (domain B) demand for the transpose traffic pattern.

(a) Baseline (b) TNP (c) RPSL (limit = 0.8 flit/cycle)
Figure 12. Low-security (domain A) throughput as a function of the high-security (domain B) demand for the hotspot traffic pattern.

Figure 10. Experimental setup in the 6-by-6 mesh network.

flit/cycle, and measured its throughput while varying Flow
B’s injection rate under three different limits for Flow A:
0.6, 0.8, and 1.0. Figure 9(a) shows that the throughput of
Flow A stays constant and matches the specified limit, which
confirms the bandwidth limit for the low-security domain is
effective and does not introduce a timing channel.

Figure 9(b) shows that the throughput of Flow B while
varying Flow A’s injection rate. As shown in the figure,
Flow B’s throughput decreases with the increasing injection
rate of Flow A. However, the bandwidth limit on Flow A
allows Flow B’s to utilize the network even when Flow A’s
injection rate is at 1 flit/cycle. Also, note that when the limit
is 1.0 flit/cycle, which effectively means no limit, Flow A
utilizes the full bandwidth of the network and Flow B’s
throughput drops to zero, which illustrates a DoS attack.
The experimental results show that the bandwidth limit can

effectively avoid DoS attacks. Also, the results suggest that
the limit can be chosen to be an arbitrary value without
introducing a timing channel. Therefore, the limit can be
optimized to match the general performance demand of each
domain. For example, if the high security domain also has
a high bandwidth requirement, we can set the limit to a low
value such as 0.2 flit/cycle. In this way, the high secuirty
domain can get at least 80% of the bandwdith while still
maintaining the security guarantee.

3) Complex Traffic Patterns: To evaluate the protection
schemes under more complex interference patterns, we sim-
ulated more complicated traffic patterns on a 6-by-6 mesh
network with two security domains. As shown in Figure 10,
Domain A, which is the low-security domain, was given
one-fourth of the cores. We place the cores in contiguous
locations because this minimizes the communication cost
within a security domain. We simulated two traffic pat-
terns, namely transpose and hotspot. In transpose, a node
communicates with the node that is symmetric with respect
to the diagonal. In hotspot, all nodes communicate with a
single hotspot node, which are marked red in Figure 10. We
use Y-X routing for all configurations. As a result, flows
from different domains share some links in the network,
potentially causing interference. As before, we plot the
average throughput of one domain while varying the average
injection rate of the other domain. Due to the space limit,
we only show domain A’s throughput results, which show
if there exists a timing channel from high-security to low-



0 20 40 60 80 100
0

500

1000

1500

2000

2500

3000

Timeline/ (million cycles)

In
je

ct
ed

 fl
its

 e
ve

ry
 m

illi
on

 c
yc

le
s

 

 

FFT
OCEAN

Figure 13. On-chip network traffic for SPLASH-2 benchmarks.

security domains.
Figure 11 shows the results for the transpose traffic.

As expected, in the baseline scheme, the throughput of
domain A (low security) changes with the injection rate of
domain B (high security). In contrast, domain A’s throughput
stays constant under both TNP and RPSL regardless of the
injection rate of domain B. Therefore, both schemes provides
an effective protection against timing channels. However, a
distinct difference between the results of TNP and RPSL is
that domain A achieves higher average throughput in RPSL
than in TNP when domain A’s injection rate is high (0.5 or
1 flit/cycle), which again shows the performance advantage
of RPSL over TNP scheme. The results of the hotspot traffic
pattern in Figure 12 show similar trends.

C. Performance

To provide the capability of information-leak protection,
we put restrictions on virtual channel usage and crossbar
arbitration, which can potentially decrease network per-
formance. To explore how much performance overhead is
incurred, we simulated the three schemes (baseline, TNP,
and RPSL with the low-security limit of 0.8) with transpose
and hotspot traffic patterns mentioned above.

To mimic the real application behavior, we studied the
network traffic for program in the SPLASH-2 benchmark
suite using McSim [1]. The experiments collected the traffic
statistics for each network flow. From the study, we found
that in most programs, the injection rates of network flows
vary significantly over time. Figure 13 shows the injection
rate of one network flow for FFT and OCEAN benchmarks
over time. As shown in the figure, the injection rate changes
with time and shows a large dynamic range. Based on this
observation, in our experiments, we randomly changed the
network flow’s individual injection rate every 1000 cycles,
for both transpose and hotspot traffic patterns.

For the performance metric, we use actual throughput
over throughput demand, which equals to the number of
flits received divided by the number of flits injected. Our
results for transpose and hotspot traffic are shown in Fig-
ure 14(a) and Figure 14(b), respectively. For domain A,
RPSL scheme achieves higher performance than that of the
baseline scheme. This is because RPSL gives domain A
a higher prority to use the crossbar. For domain B, the

(a) Transpose. (b) Hotspot.
Figure 14. Impacts of timing channel protection mechanisms on the
network throughput.

performance of RPSL is a slightly lower than that of the
baseline. However, the aggregated performance of RPSL is
comparable to the performance of the baseline scheme. For
the hotspot pattern, we even see an performance improve-
ment over the baseline scheme. Overall, the results show that
RPSL has a small performance overhead over the baseline
because RPSL can usually utilize available bandwidth at run-
time. The only case that the available bandwidth is wasted in
RPSL is when the low-security domain has reached its limit
and the other domain is sending very little traffic which is
insufficient to utilize the remaining bandwidth. Furthermore,
the cap can be reconfigured to fit the demand if this situation
does happen.

By contrast, the TNP scheme incurs a significant perfor-
mance overhead. In fact, the performance suffers in TNP
scheme whenever one security domain’s demand on a single
link exceeds a half of the capacity and the other domain’s
demand is less than half. Therefore, TNP cannot allow
each flow to fully utilize the network even for a relatively
short period for a burst. Although TNP can provide two-
way information-leak protection, the performance overhead
is likely to be too significant to be practical in most
applications.

VI. RELATED WORK

A. Side-channel Protection

Previous research has studied the possibility of side chan-
nel attacks caused by contention over other shared resources
such as caches. Wang and Lee showed how SMT, control
speculation, and shared caches can create such interference
between threads and thereby promote side and covert chan-
nel attacks [15]. They then suggested architectural parti-
tioning and randomization schemes to eliminate or decorre-
late cache interference from data dependencies [16]. Kong
also suggested software solutions to the cache interference
problem [9]. However, the cache side-channel protection
schemes cannot be directly applied to NOC interference.
Also, the side-channel protection does not handle covert
channels where a program intentionally leaks information
through timing channels.



B. On-chip Network Security

Regarding NOC security, previous work [4] has focused
on preventing unauthorized memory operations and denial-
of-service. This paper studies a new security problem of
timing channels, and show how to efficiently address the
problem using a priority with a static limit. To the best of our
knowledge, we are not aware of previous work on network
timing channels.

C. Quality of Service

Many QoS techniques have been proposed to provide
performance isolation and differentiated services to different
network flows. Virtual Clock [17] provides performance
isolation by assigning virtual clock values to packets based
on the reserved rates, and the virtual clock value is then
used for crossbar arbitration, thus guaranteeing the reserved
rates for each flow. The idle resources are dynamically
reallocated among flows. Preemptive Virtual Clock [5] keeps
track of each flow’s bandwidth consumption and prioritizes
packets based on the consumed bandwidth and established
rate of service, thus providing guaranteed performance. An-
other QoS technique, Globally-Synchronized Frames [11],
achieves performance isolation by reserving slots in a global
frame for each flow. A key difference between these QoS
techniques and the RPSL scheme is that the QoS techniques
traget at using network bandwidth efficiently and do not
keep the available bandwidth unused if there is demand.
In RPSL, to provide information-leak protection, the lower
security-level flow cannot use the available bandwidth once
it exceeds the limit.

D. Composability

Due to interference between applications, the integration
and verification complexity of multi-processor SoC grows
exponentially with the number of applications. Composabil-
ity is proposed to remove all interference between applica-
tions so that each application can be verified individually
without slow system-level simulation of all use cases. Un-
like our RPSL security scheme which utilizes the one-way
information leak protection, a composable system requires
bi-directional non-interference between applications, thus
incurring a larger performance or hardware overhead. An
approach of achieving composability is not sharing any
resources, which is expensive and mostly used by feder-
ated architectures in aerospace industries. Kopetz [10] and
Hansson [6] proposed the Time Division Multiple Access
(TDMA) approach, which schedules the network commu-
nication based on a static time table, similar to the TNP
approach in our paper. As shown in our experiments, the
TDMA approach suffers from large performance overhead
compared to our RPSL scheme. Akesson [2] used an ap-
proach based on latency-rate servers. Although it overcomes
some shortcomings of the TDMA approach, it adds sig-
nificant hardware to achieve the goal of composability. In

summary, due to the fact that composability needs a bi-
directional non-interference, the composability approaches
have larger performance overhead than our RPSL scheme.

Also, because the goal of composability is to reduce
the complexity of system integration rather than removing
timing channels, some composability approaches allow dy-
namically reconfiguring the resources to fulfill the changing
application behavior. As a result, these approaches are not
secure from the information flow perspective.

VII. CONCLUSION

In this paper, we proposed a security technique RPSL to
prevent timing channel attacks caused by interference in on-
chip networks. We demonstrated that the network interfer-
ence among applications executing concurrently on the same
CMP can be used as timing channels to obtain confidential
information. The RPSL mechanism eliminates a one-way
timing channel from high-security to low-security domains
by assigning a high priority to the low-security domain. For
complete elimination of timing channels, we also discussed
two static network partitioning schemes in either space or
time. These protection schemes are compared through cycle-
accurate network simulations. The results suggest that both
RPSL and static partitioning provide effective protection
against timing channels, and the one-way protection through
RPSL can be realized with minimal performance overheads.

VIII. ACKNOWLEDGMENTS

This work was partially supported by the National Science
Foundation grants CNS-0746913, CNS-0708788, and CNS-
0905208, and an equipment donation from Intel Corporation.
We thank Skyler Schneider and Kun Ki for their con-
tributions to the experimental framework, and anonymous
reviewers for constructive comments.

REFERENCES

[1] http://cal.snu.ac.kr/mediawiki/index.php/McSim.
[2] B. Akesson, A. Hansson, and K. Goossens. Composable Resource

Sharing Based on Latency-Rate Servers. In Proceedings of the
EUROMICRO Conference on Digital System Design, pages 547–555,
Los Alamitos, August 2009. IEEE Computer Society Press.

[3] W. Dally and B. Towles. Principles and Practices of Interconnection
Networks. Morgan Kaufmann, 2004.

[4] L. Fiorin, G. Palermo, and C. Silvano. A Security Monitoring Service
for NOCs. In Proceedings of the 6th IEEE/ACM/IFIP international
Conference on Hardware/Software Codesign and System Synthesis,
pages 197–202. IEEE, 2008.

[5] B. Grot, S. Keckler, and O. Mutlu. Preemptive Virtual Clock: A
Flexible, Efficient, and Cost-effective QoS Scheme for Networks-on-
Chip. In Proceedings of the 42nd Annual IEEE/ACM International
Symposium on Microarchitecture, pages 268–279. ACM, 2009.

[6] A. Hansson, K. Goossens, and M. Bekooij. CoMPSoC: A Template
for Composable and Predictable Multi-processor System on Chips.
In Transactions on Design Automation of Electronic Systems, pages
1–24, 2009.

[7] Intel. Intel Single-chip Cloud Computer. product overview.
http://techresearch.intel.com/spaw2/uploads/files/SCC-Overview.pdf.

[8] P. C. Kocher. Timing Attacks on Implementations of Diffie-Hellman,
RSA, DSS, and Other Systems. In Advances in Cryptology CRYPTO
’96, pages 104–113. Springer-Verlag, 1996.



[9] J. Kong, O. Aciicmez, J.-P. Seifert, and H. Zhou. Hardware-software
Integrated Approaches to Defend Against Software Cache-based Side
Channel Attacks. In IEEE 15th International Symposium on High
Performance Computer Architecture., pages 393–404, February 2009.

[10] H. Kopetz, C. El Salloum, B. Huber, R. Obermaisser, and
C. Paukovits. Composability in the Time-triggered System-on-Chip
Architecture. In SOC Conference, 2008 IEEE International, pages
87–90, sept. 2008.

[11] J. W. Lee, M. C. Ng, and K. Asanovic. Globally-Synchronized
Frames for Guaranteed Quality-of-Service in On-Chip Networks.
In Proceedings of the 35th Annual International Symposium on
Computer Architecture, pages 89–100. IEEE, 2008.

[12] M. Lis, K. S. Shim, M. H. Cho, P. Ren, O. Khan, and S. Devadas.
DARSIM: A Parallel Cycle-level NoC Simulator. In L. Eeckhout
and T. Wenisch, editors, MoBS 2010 - Sixth Annual Workshop on
Modeling, Benchmarking and Simulation, Saint Malo, France, 2010.

[13] R. Rivest, A. Shamir, and L. Adleman. A Method for Obtaining
Digital Signatures and Public-Key Cryptosystems. Communications
of the ACM, 21:120–126, 1978.

[14] Tilera. Tilera TILE64 Processor. product
overview. http://tilera.com/sites/default/files/productbriefs/
PB010 TILE64 Processor A v4.pdf.

[15] Z. Wang and R. B. Lee. Covert and Side Channels Due to Processor
Architecture. In Proceedings of the 22nd Annual Computer Security
Applications Conference, pages 473–482. IEEE, 2006.

[16] Wang, Z. and Lee, R. B. New Cache Designs for Thwarting Software
Cache-based Side Channel Attacks. In Proceedings of the 34th Annual
International Symposium on Computer Architecture, pages 494–505.
IEEE, May 2007.

[17] L. Zhang. Virtual Clock: A New Traffic Control Algorithm for Packet-
switched Networks. ACM Transactions on Computer Systems (TOCS),
9(2):101–124, 1991.


