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Abstract--- As technology scaling, more processing units 

(PUs) are integrated in multiprocessor system-on-chip 

(MPSoC) to achieve higher performance. Due to the 

higher variations resulted from reducing feature sizes 

and the needs of lower power consumption, on-chip 

monitoring of environmental information, such as 

thermal, voltage, and frequency, is becoming 
increasingly important. To address this need, sensors are 

integrated into network-on-chip (NoC) to perform 

system monitoring. However, sensors which transfer 

their data through NOC will compete with PUs for the 

limited bandwidth resources, thus communication 

between PUs will be delayed. To evaluate the sensors' 
overhead on the regular data traffic, we implement a VC 

based NoC. The sensor data are transferred through 

NoC together with the regular data. We study the 

average delay of regular data and sensor data, 

respectively. We compare the experimental results with 

that of a NOC without sensors. The results show that the 
overhead of sensors is negligible, with a max delay 

overhead of 0.800/0 when the traffic is not that heavy. 

I. INTRODUCTION 

Multiprocessor system-on-chip (MPSoC) design is 
becoming increasingly important to meet the fast growing 
performance demanded by complex applications. As a key 
aspect of MPSoC design, the interconnect architecture has a 
great influence on the overall performance of multi-corel 
many-core systems. In the past, the most frequently used 
on-chip interconnect architecture is the shared medium 
arbitrated bus, in which all processing units (PUs) share the 
same transmission medium. While the shared-bus 
architecture can provide simple topology and low cost, it 
also limits the number of PUs that can be connected to the 
bus. In the future when hundreds or even thousands of PUs 
are integrated onto a single chip, the bus architecture can no 
longer satisfy the performance needs of SoC. Hence, 
network-on-chip (NoC) was proposed to overcome the 
limitations of shared-bus architecture. 
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A number of NoC architectures have been proposed such 
as the mesh architecture, the octagon architecture, the torus 
architecture, and the Butterfly Fat-Tree (BFT) architecture. 
Each of the NoC architectures may have its own advantages 
for some specific problems or tasks, but all of them are 
designed to achieve high throughput, low latency, low 
energy consumption, and small area, which are the desirable 
characteristics of MPSoC. However, these desired 
characteristics sometimes conflict with each other, so 
designers have to make trade-offs among them. Although 
NoC-based MPSoC significantly addresses the performance 
limitations of bus-based MPSoC, the challenges of MPSoC 
design still exist. On the one hand, more PUs are integrated 
onto a single chip as technology scaling. On the other hand, 
shrinking feature size results in higher variations which may 
cause reliability concerns. Therefore, it is crucial to use 
run-time monitoring information to control the system 
operation, guarantee the performance, and meet the 
reliability requirements. 

For the purpose of run-time monitoring, sensors are 
integrated into NoC to monitor environmental information, 
such as the thermal, voltage, and frequency. Sensors are 
located in the distributed PUs, and sensor data are sent to 
one or more processing units which we can call "sensor 
manager" at a certain internal. The collected sensor data are 
then assessed in real time by the sensor manager. The results 
can be used by the system to know the status of PUs and 
initiate operations accordingly. For example, temperature 
sensors can report the run-time temperature of the PUs to 
sensor manager. If some PU is too hot, the sensor manager 
could send an order to this PU to perform dynamic voltage 
and frequency scaling (DVFS). Furthermore, the 
temperature information can also be utilized to achieve 
''temperature-aware task scheduling". 

On-chip sensor network (SENoC) [1] can keep the 
MPSoC aware of the status of each core, so the system can 
make wise decisions and maintain higher reliability. 
However, sensors which transfer their monitor data through 
NoC will compete with the PUs for the limited network 
bandwidth, thus communications between PUs might be 
delayed. Jia Zhao et al proposed a monitor subsystem called 
"MNOC" for SoC, which is a separate network-on-chip for 
monitor information transfer [2]. Although the sensor data 
will not interfere with the regular data in this way, a 
completely separate network-on-chip will lead to more area 
and higher design complexity, especially for the many-core 



system. In this paper, we focus on the overhead of sensors 
on the NoC's performance. We implement a 4*4 mesh-like 
NoC which employs "Virtual Channel" (VC) in systemC. 
We study the overhead of sensor data by transferring sensor 
data together with regular data in several cases. We have 
recorded the average delays of sensor data and regular data, 
respectively. The results are compared with the original 
NoC without sensors. 

The remainder of the paper is organized as follows. 
Section II introduces some related SENoC work. Section III 
describes our SENoC simulation platform, including the 
NoC architecture, the routers, and the switching 
methodologies, which serves as the basis of our 
performance evaluation. Section IV shows our simulation 
results and analysis. Section V concludes the paper. 

II. RELATED WORK 

Past SoC designs predominantly use shared-medium 
bus-based functional to integrate IP blocks [3]. There are 
mainly three types of commercial bus-based SoC 
interconnect specifications: ARM AMBA [4] bus, 
Wishbone [5], and IBM CoreConnect [6]. Sensors are 
incorporated into the bus-based SoC to perform system 
monitoring and control. Chan et al. proposed to use the 
power management bus (PMB) to exchange the sensor 
information between IP cores, which yields intricate control 
and optimal management of the system [7]. Velasumy et al. 
proposed a FPGA based SoC in which sensors are 
connected to the on-chip peripheral bus (OPB) to implement 
dynamic thermal management techniques [8]. The IBM 
Power6 architecture interconnects multiple sensors and 
actuators through a high-speed bus to perform voltage and 
thermal control [9]. 

Although effective for small numbers of cores, bus-based 
interconnect approaches are generally not scalable for 
increasing core counts [10]. Due to the fast growing demand 
for high performance, NoC replaces the bus interconnects in 
MPSoC design. Many different NoC architectures have 
been proposed in recent years. NoC overcomes the 
non-scalable limitation of bus architecture in MPSoC 
designs. However, with more PUs integrated onto a single 
chip and the higher variations brought by reducing feature 
size, it is necessary to deploy sensors into MPSoC to 
perform system monitoring and control. Wang et al. 
proposed a systematic approach, on-chip sensor network 
(SENoC), to collaboratively detect, report, and alleviate 
run-time threats in MPSoC, which achieves on average 
26.12% performance improvement compared with the 
traditional methods [1]. Cioradas et al. proposed a 
monitoring service to offer run-time observability of NoC 
behavior and support application debugging [11]. While 
sensors bring some benefit to system monitoring and control 
in MPSoC, there may be some drawbacks since sensors will 
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occupy some network resources such as network bandwidth, 
hence decreasing the performance of MPSoC. In this paper, 
we mainly discuss the influence of sensors on the 
performance of NoC. 

III. SENOC SIMULATION PLATFORM 

A. An Overview of SENoC 
Our SENoC simulation platform is based on the mesh 

architecture. Besides the conventional NoC architecture 
components such as the routers, the processing units (PUs), 
and the network interfaces (NIs), we add multiple sensors to 
each PU to obtain run-time information of the hardware. 
Figure 1 illustrates our design. The SENoC is composed of 
16 cores with a 4*4 mesh-like architecture. Tiny sensors are 
embedded inside PUs to measure various parameters 
including voltage and temperature, and they are usually 
placed close to the functional units which have high power 
consumption or are sensitive to temperature or voltage 
conditions. Sensors will report monitoring information to 
the sensor manager at a certain internal. 
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Figure 1. SENoC on a 4*4-core MPSoC 

SM 

The sensor manager (SM) is a processing unit to handle 
the monitoring information. Sensors send their monitoring 
information to SM through NOC. The monitoring 
information contains the source address, which will help the 
SM to identify where the information is from. Upon 
receiving the monitoring information, the SM will initiate 
actions accordingly. For example, the temperature sensors 
will report PUs' temperature information to SM, so the SM 
can be aware of the temperature status of different parts on 
the chip. If some PU is too hot and exceeds the safety limit, 
SM can order the PU to perform DVFS by sending an order 
packet. Therefore, the sensor information should arrive at 
the SM as soon as possible in order to initiate immediate 
response. It is obvious that the location of the SM will 
greatly affect the delay of sensor information, so we will 
discuss the location later in our experiments. 



B. Hardware Architecture 
Routers are the main components of our SENoC 

platform. The block diagram of the router architecture is 
shown in Figure 2. The router architecture of SENoC is with 
little difference from that of a common NoC. The network 
interface (NI), however, has some changes due to the 
introduction of sensors. Our NI architecture is illustrated in 
Figure 3. The NI can pack the information of multiple 
sensors and multiplex the information with the regular data 
produced by the core. Besides, NI is responsible for 
unpacking the information from the router and delivering 
the information to the core. 
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Figure 2. The Router Architecture 
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Figure 3. The Network Interface Architecture 

C. Switching Methodologies 
Switching techniques determine how and when a router 

delivers the message to its destination. In the wormhole 
switching, the fIrst flit, i.e. header flit, of a packet contains 
routing information. Header flit decoding enables the 
switches to establish the path and subsequent flits simply 
follow this path in a pipelined fashion. However, in this 
manner, messages must cross the channel in their entirety 
before the channel can be used by another message [3]. To 
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overcome the drawback, we introduce virtual channels (VC) 
[12] in the input and output ports to increase channel utility 
considerably. By introducing virtual channels, even though 
a flit belonging to one virtual channel is blocked, the flits of 
other virtual channels can still be transferred. As shown in 
Figure 2, there are four FIFO buffers in each input and 
output port, respectively. Each buffer represents a virtual 
channel, thus we have four virtual channels in one physical 
channel. 

Our switching method differs a little from the traditional 
VC method. We divide the time by 32 time slots which we 
call a frame. In the traditional VC method, the number of 
time slots distributed to each VC is fIxed. In a frame, even 
though there are no data to transfer in one VC, the time slots 
will still be reserved for this VC and these time slots are 
wasted. In our switching method, the router will check the 
output buffers before each frame. Only the non-empty VCs 
will be transferred in the transfer period. For example, if 
VC1 and VC2 are non-empty, VC3 and VC4 are empty at 
the moment that the router checks the buffers, then only 
VC1 and VC2 will be transferred in this frame, as shown in 
Figure 4(b). The fIrst slot contains "frame information" used 
to inform the neighboring router which V Cs are transferred. 
In this manner, the empty virtual channels will not occupy 
the time slots, thus increasing performance to some extent. 
For simplicity, we use the static "X-Y" routing protocol [13] 
to avoid deadlock. Our SENoC also supports priority-based 
data transfer by adding a priority bit in the header flit. 

�_----32 time slots ----H� 

period 
information (a) 1 VC transferred 

(b) 2 VCs transferred 

(c) 3 VCs transferred 

(d) 4 VCs transferred 

Figure 4. The Transfer Period 

IV. EXPERIMENT RESULT AND ANALYSIS 

A. Simulation Setup 
In order to estimate the overhead of SENoC, we build a 

simulation platform based on SystemC. The platform 
consists of 16 PUs and 16 routers with a mesh-like 
organization. The flit width is 32 bits. The 16 PUs 
communicate with each other by generating message 
packets. The fIrst flit of a packet is called header flit, 
containing the routing information and priority information. 
Each packet ends with a tail flit which is used to identify the 



end of the message. The system operates at a constant 
frequency of 1 GHz. The data generated by the PU follow 
the Poisson distribution with a configurable average "A" 
which represents the average data rate. In our experiment, 
we classified the PUs into two categories, Master and Slave. 
Masters can send and receive packets while slaves can only 
receive message. The distribution of masters and slaves is 
shown in Figure 5. For uniformity, a master PU sends 
packets to the other 15 PUs randomly by equal possibility. 
The master PUs have the same traffic load, namely 1..=0.2. 
The depth of FIFO buffer is assumed to be 10. 
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Figure 5. The Distribution of Masters & Slaves 

Sensors are added into each PU to perform system 
monitoring and control. To accurately assess the overhead 
of SENoC, a realistic dispersal of sensors per core is 
needed. For DFS applications, previous work [14][15] have 
shown that for a core whose transistor count is around 68 
million, 8 thermal sensors per core is appropriate. Numerous 
contemporary thermal sensors generate eight-bit data [16]. 
Therefore, we place 8 sensors in each PU and every sensor 
generates 8-bit data. There are totally 64-bit sensor data in 
each sample which we pack into two flits (32-bitlflit). With 
the header flit and the tail flit added, the sensor packet 
consists of 4 flits all together. The sensor data are sampled 
at a certain rate and then sent to SM. Typically, thermal 
values used for DVFS have been sampled every 10,000 
cycles for a 3GHz core to achieve a thermal resolution of 
less than 0.1 degC [17]. Our system's operating frequency is 
IGHz, so the sampling rate is around one every 3,000 
cycles. To evaluate the overhead of SENoC, we actually try 
faster sampling rates in our experiments. 

We choose transport latency as the indication of the 
overhead. Transport latency is defined as the time (in clock 
cycles) that elapses from between the occurrence of a 
message header injection into the network at the source 
node and the occurrence of a tail flit reception at the 
destination node [18]. In order to reach the destination node 
from the source node, flits must travel through a path 
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consisting of several routers. Due to the different paths, each 
message may have different latencies. We use the average 
latency as the performance metric. Let N represents the total 
number of messages being transported, and let Li be the 
latency of each message. The average latency, Laverage 
can be calculated as follows, 

L - LiLi Liarrive time[i]-Lisend time[i] 
average -

N N 

B. Simulation results 
Our purpose is to evaluate the overhead of sensors on the 

MPSoC's performance. We try different sampling rates of 
the sensor data, and record the average delays of regular 
data and sensor data, respectively. Besides, we also explore 
the influence of the SM's location on SENoC performance. 
The SM is placed at three locations, as shown in Figure 6 
(A, B, C). To be rigorous, all the cases are simulated under 
the same test bench. Our simulation results are shown in 
TABLE 1. The results are measured in cycles. 
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Figure 6. The locations of SM 
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TABLE 1: The Average delay of regular data and sensor 
data in different scenarios 

Location A (comer) B (center) C (edge) 

Cycles Average Average Average Average Average Average 
Delay Delay Delay Delay Delay Delay Between of of of of of of Two Regular Sensor Regular Sensor Regular Sensor samples data data data data data data 

00 98.86 N/A 98.86 N/A 98.86 N/A 

200 99.65 130.80 98.79 104.87 99.19 113.64 
500 98.98 120.24 99.32 105.48 98.47 106.78 

1000 99.10 109.03 98.80 97.23 98.91 98.73 

2000 98.99 101.83 98.87 98.03 98.89 93.70 

From Table 1, we can see some interesting results. The 

first row with the symbol "00" represents the original NoC 
without sensors. The average delay of the regular data for 
the original NoC is around 98.86 cycles. After adding 
sensors, the average delay of the regular data, which is 
between 99.65 and 98.47, doesn't change much. In some 
cases, the regular data even travel faster than that of the 
original NoC. This results from our switching methodology. 



For example, in the original NoC, the router checks the 
buffers before the transfer period and fmds VCI empty, thus 
VCI will not be transferred in this transfer period. Even 
though a regular packet arrived at VCI after the check, the 
packet has to wait for the next transfer period. However, 
after adding sensors into NoC, VCI may be non-empty 
because of the sensor data, hence VC I can be transferred in 
the transfer period. Then the regular data arriving at VC I 
are transferred immediately. In this way, the average delay 
of regular data will decrease. 

Although the average delay of regular data has changed, 
the max delay is only about 99.65, which is 0.80% more 
than 98.86 (the average delay of the original NoC). What's 
more, we have chosen faster sampling rates than reality. 
From this point, we can conclude that the overhead of using 
NoC to transfer sensor data is negligible. It is not necessary 
to build another network to transfer only sensor data, when 
the traffic is not that heavy. From each column of the 
simulation results, we can draw another conclusion that the 
average delay of sensor data will decrease if the sampling 
rates decrease. The best location of the SM is affected by 
the distribution of the traffic flow. In our experiments, we 
assume the traffic distribution is uniform. If we compare the 
average delay of sensor data for the three locations (center, 
edge, comer) of SM, we can conclude that it is best to put 
the SM in the center of the mesh, which leads to least 
average delay of sensor data. 

V. CONCLUSIONS 

This paper evaluates the overhead of SENoC on the 
performance of NoC. A 4*4 mesh SENoC simulation 
platform is built. We apply several sampling rates to the 
SENoC platform and record the average delay of regular 
data and sensor data. The experimental results show that the 
overhead of SENoC is negligible with only 0.80% delay 
overhead. We have tried three different locations of the SM 
to fmd the best location of SM in a mesh-like architecture. 
According to the results, it is best to place the SM in the 
center to achieve the least average delay of sensor data 
under the uniform traffic flow. Our future work will focus 
on the scalability of our SENoC simulation platform since 
the number of cores will increase to hundreds or even 
thousands. We will also study the best location of the SM 
under non-uniform traffic distribution. 
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