
Performance Evaluation of On-Chip Sensor Network (SENoC) in MPSoC

Yao Wangl, Yu Wangl*, JiangXu2, HuazhongYangl
lEE. Dept, TNList, Tsinghua University, Beijing, China

2Mobile Computing System Lab, Dept. of ECE
Hong Kong University of Science and Technology, Hong Kong, China

Abstract--- As technology scaling, more processing units

(PUs) are integrated in multiprocessor system-on-chip

(MPSoC) to achieve higher performance. Due to the

higher variations resulted from reducing feature sizes

and the needs of lower power consumption, on-chip

monitoring of environmental information, such as

thermal, voltage, and frequency, is becoming
increasingly important. To address this need, sensors are

integrated into network-on-chip (NoC) to perform

system monitoring. However, sensors which transfer

their data through NOC will compete with PUs for the

limited bandwidth resources, thus communication

between PUs will be delayed. To evaluate the sensors'
overhead on the regular data traffic, we implement a VC

based NoC. The sensor data are transferred through

NoC together with the regular data. We study the

average delay of regular data and sensor data,

respectively. We compare the experimental results with

that of a NOC without sensors. The results show that the
overhead of sensors is negligible, with a max delay

overhead of 0.800/0 when the traffic is not that heavy.

I. INTRODUCTION

Multiprocessor system-on-chip (MPSoC) design is
becoming increasingly important to meet the fast growing
performance demanded by complex applications. As a key
aspect of MPSoC design, the interconnect architecture has a
great influence on the overall performance of multi-corel
many-core systems. In the past, the most frequently used
on-chip interconnect architecture is the shared medium
arbitrated bus, in which all processing units (PUs) share the
same transmission medium. While the shared-bus
architecture can provide simple topology and low cost, it
also limits the number of PUs that can be connected to the
bus. In the future when hundreds or even thousands of PUs
are integrated onto a single chip, the bus architecture can no
longer satisfy the performance needs of SoC. Hence,
network-on-chip (NoC) was proposed to overcome the
limitations of shared-bus architecture.

*Corresponding Author.
This work is supported by National Natural Science
Foundation of China(No.60870001), 863 project (No.
2009AAOIZ130), and TNList Cross-discipline Foundation.
Dr. Jiang Xu's work is supported by RGC of the Hong
Kong Special Administrative Region, China (Funding No.
621108) and HKUST PDF.

978-1-4244-6878-2/10/$26.00 ©2010 IEEE 323

A number of NoC architectures have been proposed such
as the mesh architecture, the octagon architecture, the torus
architecture, and the Butterfly Fat-Tree (BFT) architecture.
Each of the NoC architectures may have its own advantages
for some specific problems or tasks, but all of them are
designed to achieve high throughput, low latency, low
energy consumption, and small area, which are the desirable
characteristics of MPSoC. However, these desired
characteristics sometimes conflict with each other, so
designers have to make trade-offs among them. Although
NoC-based MPSoC significantly addresses the performance
limitations of bus-based MPSoC, the challenges of MPSoC
design still exist. On the one hand, more PUs are integrated
onto a single chip as technology scaling. On the other hand,
shrinking feature size results in higher variations which may
cause reliability concerns. Therefore, it is crucial to use
run-time monitoring information to control the system
operation, guarantee the performance, and meet the
reliability requirements.

For the purpose of run-time monitoring, sensors are
integrated into NoC to monitor environmental information,
such as the thermal, voltage, and frequency. Sensors are
located in the distributed PUs, and sensor data are sent to
one or more processing units which we can call "sensor
manager" at a certain internal. The collected sensor data are
then assessed in real time by the sensor manager. The results
can be used by the system to know the status of PUs and
initiate operations accordingly. For example, temperature
sensors can report the run-time temperature of the PUs to
sensor manager. If some PU is too hot, the sensor manager
could send an order to this PU to perform dynamic voltage
and frequency scaling (DVFS). Furthermore, the
temperature information can also be utilized to achieve
''temperature-aware task scheduling".

On-chip sensor network (SENoC) [1] can keep the
MPSoC aware of the status of each core, so the system can
make wise decisions and maintain higher reliability.
However, sensors which transfer their monitor data through
NoC will compete with the PUs for the limited network
bandwidth, thus communications between PUs might be
delayed. Jia Zhao et al proposed a monitor subsystem called
"MNOC" for SoC, which is a separate network-on-chip for
monitor information transfer [2]. Although the sensor data
will not interfere with the regular data in this way, a
completely separate network-on-chip will lead to more area
and higher design complexity, especially for the many-core

system. In this paper, we focus on the overhead of sensors
on the NoC's performance. We implement a 4*4 mesh-like
NoC which employs "Virtual Channel" (VC) in systemC.
We study the overhead of sensor data by transferring sensor
data together with regular data in several cases. We have
recorded the average delays of sensor data and regular data,
respectively. The results are compared with the original
NoC without sensors.

The remainder of the paper is organized as follows.
Section II introduces some related SENoC work. Section III
describes our SENoC simulation platform, including the
NoC architecture, the routers, and the switching
methodologies, which serves as the basis of our
performance evaluation. Section IV shows our simulation
results and analysis. Section V concludes the paper.

II. RELATED WORK

Past SoC designs predominantly use shared-medium
bus-based functional to integrate IP blocks [3]. There are
mainly three types of commercial bus-based SoC
interconnect specifications: ARM AMBA [4] bus,
Wishbone [5], and IBM CoreConnect [6]. Sensors are
incorporated into the bus-based SoC to perform system
monitoring and control. Chan et al. proposed to use the
power management bus (PMB) to exchange the sensor
information between IP cores, which yields intricate control
and optimal management of the system [7]. Velasumy et al.
proposed a FPGA based SoC in which sensors are
connected to the on-chip peripheral bus (OPB) to implement
dynamic thermal management techniques [8]. The IBM
Power6 architecture interconnects multiple sensors and
actuators through a high-speed bus to perform voltage and
thermal control [9].

Although effective for small numbers of cores, bus-based
interconnect approaches are generally not scalable for
increasing core counts [10]. Due to the fast growing demand
for high performance, NoC replaces the bus interconnects in
MPSoC design. Many different NoC architectures have
been proposed in recent years. NoC overcomes the
non-scalable limitation of bus architecture in MPSoC
designs. However, with more PUs integrated onto a single
chip and the higher variations brought by reducing feature
size, it is necessary to deploy sensors into MPSoC to
perform system monitoring and control. Wang et al.
proposed a systematic approach, on-chip sensor network
(SENoC), to collaboratively detect, report, and alleviate
run-time threats in MPSoC, which achieves on average
26.12% performance improvement compared with the
traditional methods [1]. Cioradas et al. proposed a
monitoring service to offer run-time observability of NoC
behavior and support application debugging [11]. While
sensors bring some benefit to system monitoring and control
in MPSoC, there may be some drawbacks since sensors will

324

occupy some network resources such as network bandwidth,
hence decreasing the performance of MPSoC. In this paper,
we mainly discuss the influence of sensors on the
performance of NoC.

III. SENOC SIMULATION PLATFORM

A. An Overview of SENoC
Our SENoC simulation platform is based on the mesh

architecture. Besides the conventional NoC architecture
components such as the routers, the processing units (PUs),
and the network interfaces (NIs), we add multiple sensors to
each PU to obtain run-time information of the hardware.
Figure 1 illustrates our design. The SENoC is composed of
16 cores with a 4*4 mesh-like architecture. Tiny sensors are
embedded inside PUs to measure various parameters
including voltage and temperature, and they are usually
placed close to the functional units which have high power
consumption or are sensitive to temperature or voltage
conditions. Sensors will report monitoring information to
the sensor manager at a certain internal.

o sensor

• rout.r

1'::':1 network
� interface

D .. nlOt' � manager

� o NI

10 0 r;ru o NI

loo� o NI

� °0 NI � °0 NI

� °0 NI � °0 HI

� 00 NI � 00 NI

Figure 1. SENoC on a 4*4-core MPSoC

SM

The sensor manager (SM) is a processing unit to handle
the monitoring information. Sensors send their monitoring
information to SM through NOC. The monitoring
information contains the source address, which will help the
SM to identify where the information is from. Upon
receiving the monitoring information, the SM will initiate
actions accordingly. For example, the temperature sensors
will report PUs' temperature information to SM, so the SM
can be aware of the temperature status of different parts on
the chip. If some PU is too hot and exceeds the safety limit,
SM can order the PU to perform DVFS by sending an order
packet. Therefore, the sensor information should arrive at
the SM as soon as possible in order to initiate immediate
response. It is obvious that the location of the SM will
greatly affect the delay of sensor information, so we will
discuss the location later in our experiments.

B. Hardware Architecture
Routers are the main components of our SENoC

platform. The block diagram of the router architecture is
shown in Figure 2. The router architecture of SENoC is with
little difference from that of a common NoC. The network
interface (NI), however, has some changes due to the
introduction of sensors. Our NI architecture is illustrated in
Figure 3. The NI can pack the information of multiple
sensors and multiplex the information with the regular data
produced by the core. Besides, NI is responsible for
unpacking the information from the router and delivering
the information to the core.

Switching
Fabric

Figure 2. The Router Architecture

p
a
c
k

[��O�---l�P CORE
k

u
n

�--�-� � �---+-41111
c
k

NETWORK INTERFACE

Figure 3. The Network Interface Architecture

C. Switching Methodologies
Switching techniques determine how and when a router

delivers the message to its destination. In the wormhole
switching, the fIrst flit, i.e. header flit, of a packet contains
routing information. Header flit decoding enables the
switches to establish the path and subsequent flits simply
follow this path in a pipelined fashion. However, in this
manner, messages must cross the channel in their entirety
before the channel can be used by another message [3]. To

325

overcome the drawback, we introduce virtual channels (VC)
[12] in the input and output ports to increase channel utility
considerably. By introducing virtual channels, even though
a flit belonging to one virtual channel is blocked, the flits of
other virtual channels can still be transferred. As shown in
Figure 2, there are four FIFO buffers in each input and
output port, respectively. Each buffer represents a virtual
channel, thus we have four virtual channels in one physical
channel.

Our switching method differs a little from the traditional
VC method. We divide the time by 32 time slots which we
call a frame. In the traditional VC method, the number of
time slots distributed to each VC is fIxed. In a frame, even
though there are no data to transfer in one VC, the time slots
will still be reserved for this VC and these time slots are
wasted. In our switching method, the router will check the
output buffers before each frame. Only the non-empty VCs
will be transferred in the transfer period. For example, if
VC1 and VC2 are non-empty, VC3 and VC4 are empty at
the moment that the router checks the buffers, then only
VC1 and VC2 will be transferred in this frame, as shown in
Figure 4(b). The fIrst slot contains "frame information" used
to inform the neighboring router which V Cs are transferred.
In this manner, the empty virtual channels will not occupy
the time slots, thus increasing performance to some extent.
For simplicity, we use the static "X-Y" routing protocol [13]
to avoid deadlock. Our SENoC also supports priority-based
data transfer by adding a priority bit in the header flit.

�_----32 time slots ----H�

period
information (a) 1 VC transferred

(b) 2 VCs transferred

(c) 3 VCs transferred

(d) 4 VCs transferred

Figure 4. The Transfer Period

IV. EXPERIMENT RESULT AND ANALYSIS

A. Simulation Setup
In order to estimate the overhead of SENoC, we build a

simulation platform based on SystemC. The platform
consists of 16 PUs and 16 routers with a mesh-like
organization. The flit width is 32 bits. The 16 PUs
communicate with each other by generating message
packets. The fIrst flit of a packet is called header flit,
containing the routing information and priority information.
Each packet ends with a tail flit which is used to identify the

end of the message. The system operates at a constant
frequency of 1 GHz. The data generated by the PU follow
the Poisson distribution with a configurable average "A"
which represents the average data rate. In our experiment,
we classified the PUs into two categories, Master and Slave.
Masters can send and receive packets while slaves can only
receive message. The distribution of masters and slaves is
shown in Figure 5. For uniformity, a master PU sends
packets to the other 15 PUs randomly by equal possibility.
The master PUs have the same traffic load, namely 1..=0.2.
The depth of FIFO buffer is assumed to be 10.

���� -. -.

�

�

�

�

�

�

� �

� �

� �

M: Master S: Slave

SM

Figure 5. The Distribution of Masters & Slaves

Sensors are added into each PU to perform system
monitoring and control. To accurately assess the overhead
of SENoC, a realistic dispersal of sensors per core is
needed. For DFS applications, previous work [14][15] have
shown that for a core whose transistor count is around 68
million, 8 thermal sensors per core is appropriate. Numerous
contemporary thermal sensors generate eight-bit data [16].
Therefore, we place 8 sensors in each PU and every sensor
generates 8-bit data. There are totally 64-bit sensor data in
each sample which we pack into two flits (32-bitlflit). With
the header flit and the tail flit added, the sensor packet
consists of 4 flits all together. The sensor data are sampled
at a certain rate and then sent to SM. Typically, thermal
values used for DVFS have been sampled every 10,000
cycles for a 3GHz core to achieve a thermal resolution of
less than 0.1 degC [17]. Our system's operating frequency is
IGHz, so the sampling rate is around one every 3,000
cycles. To evaluate the overhead of SENoC, we actually try
faster sampling rates in our experiments.

We choose transport latency as the indication of the
overhead. Transport latency is defined as the time (in clock
cycles) that elapses from between the occurrence of a
message header injection into the network at the source
node and the occurrence of a tail flit reception at the
destination node [18]. In order to reach the destination node
from the source node, flits must travel through a path

326

consisting of several routers. Due to the different paths, each
message may have different latencies. We use the average
latency as the performance metric. Let N represents the total
number of messages being transported, and let Li be the
latency of each message. The average latency, Laverage
can be calculated as follows,

L - LiLi Liarrive time[i]-Lisend time[i]
average -

N N

B. Simulation results
Our purpose is to evaluate the overhead of sensors on the

MPSoC's performance. We try different sampling rates of
the sensor data, and record the average delays of regular
data and sensor data, respectively. Besides, we also explore
the influence of the SM's location on SENoC performance.
The SM is placed at three locations, as shown in Figure 6
(A, B, C). To be rigorous, all the cases are simulated under
the same test bench. Our simulation results are shown in
TABLE 1. The results are measured in cycles.

GtlGtlGtlGtl
-..

Gtl

Gtl

Gtl

Gtl

Gtl

Gtl

Gtl

Gtl

Gtl

Gtl .•
r'B

Gtl

Gtl,.

Figure 6. The locations of SM

A

c

TABLE 1: The Average delay of regular data and sensor
data in different scenarios

Location A (comer) B (center) C (edge)

Cycles Average Average Average Average Average Average
Delay Delay Delay Delay Delay Delay Between of of of of of of Two Regular Sensor Regular Sensor Regular Sensor samples data data data data data data

00 98.86 N/A 98.86 N/A 98.86 N/A

200 99.65 130.80 98.79 104.87 99.19 113.64
500 98.98 120.24 99.32 105.48 98.47 106.78

1000 99.10 109.03 98.80 97.23 98.91 98.73

2000 98.99 101.83 98.87 98.03 98.89 93.70

From Table 1, we can see some interesting results. The

first row with the symbol "00" represents the original NoC
without sensors. The average delay of the regular data for
the original NoC is around 98.86 cycles. After adding
sensors, the average delay of the regular data, which is
between 99.65 and 98.47, doesn't change much. In some
cases, the regular data even travel faster than that of the
original NoC. This results from our switching methodology.

For example, in the original NoC, the router checks the
buffers before the transfer period and fmds VCI empty, thus
VCI will not be transferred in this transfer period. Even
though a regular packet arrived at VCI after the check, the
packet has to wait for the next transfer period. However,
after adding sensors into NoC, VCI may be non-empty
because of the sensor data, hence VC I can be transferred in
the transfer period. Then the regular data arriving at VC I
are transferred immediately. In this way, the average delay
of regular data will decrease.

Although the average delay of regular data has changed,
the max delay is only about 99.65, which is 0.80% more
than 98.86 (the average delay of the original NoC). What's
more, we have chosen faster sampling rates than reality.
From this point, we can conclude that the overhead of using
NoC to transfer sensor data is negligible. It is not necessary
to build another network to transfer only sensor data, when
the traffic is not that heavy. From each column of the
simulation results, we can draw another conclusion that the
average delay of sensor data will decrease if the sampling
rates decrease. The best location of the SM is affected by
the distribution of the traffic flow. In our experiments, we
assume the traffic distribution is uniform. If we compare the
average delay of sensor data for the three locations (center,
edge, comer) of SM, we can conclude that it is best to put
the SM in the center of the mesh, which leads to least
average delay of sensor data.

V. CONCLUSIONS

This paper evaluates the overhead of SENoC on the
performance of NoC. A 4*4 mesh SENoC simulation
platform is built. We apply several sampling rates to the
SENoC platform and record the average delay of regular
data and sensor data. The experimental results show that the
overhead of SENoC is negligible with only 0.80% delay
overhead. We have tried three different locations of the SM
to fmd the best location of SM in a mesh-like architecture.
According to the results, it is best to place the SM in the
center to achieve the least average delay of sensor data
under the uniform traffic flow. Our future work will focus
on the scalability of our SENoC simulation platform since
the number of cores will increase to hundreds or even
thousands. We will also study the best location of the SM
under non-uniform traffic distribution.

REFERENCES

[1] Yu Wang, Jiang Xu, Shengxi Huang, Weichen Liu, HUazhong
Yang, "A Case Study of On-Chip Sensor Network in
Multiprocessor System-on-chip," in CASES 2009
[2] S. Madduri, R. Vadlamani, W. Burleson, R. Tessier, "A
Monitor Interconnect and Support subsystem for Multicore

327

Processors," in the Proceedings of the IEEE/ACM Design
Antomation and Test in Europe Conference, Nice, France, April
2009.
[3] Partha Pratim Pande, C. Grecu, M. Jones, A. Ivanov, R. Saleh,
"Performance Evaluation and Design Trade-offs for
network-on-chip interconnect architectures," IEEE transactions on
Computers, 2005
[4] AMBA Bus specification, http://www.arm.com. 1999
[5] Wishbone Service Center,
http://www.silicore.net/wishbone.htm. 2004
[6] CoreConnect Specification,

http://www3.ibm.com/chips/products/coreconnect/. 1999
[7] C. Chan, Y. Chang, H. Ho, and H. Chiueh, "A thermal-aware
power management soft-ip for platform-based soc designs",
System-on-Chip, 2004. Proceedings. 2004 International
Symposium on, pp. 181-184, Nov. 2004
[8] S. Velusamy, W. Huang, J. Lach, M. Stan and K. Skadron,
"Monitoring Temperature in FPGA based SoCs", in the
Proceedings of IEEE International Conference on Computer
Design, pp. 634-637, Oct. 2005
[9] M. Floyd, S. Ghiasi, T. Keller, K. Rajamani, F. Rawson, J.
Rubio and M. Ware, "System Power Management Support in the
IBM Power6 Microprocessor," in IBM Journal of Research and
Development, vo1.51, pp. 733-746, Nov 2007
[10] T. Bjerregaard and S. Mahadevan, "A Survey of Research and
Practices of Network-on-Chip," in ACM Computing Survey,
vol.38, no.1, Mar. 2006
(11) C. Ciordas, T. Basten, A. Radulescu, K. Goossens, and J.
Meerbergen. An event-based network-on-chip monitoring service.
In Proc. of the 9th IEEE International High-Level Design
Validation and Test Workshop, pages 149-154, 2004.
[12] J. Duato, S. Yalamanchili, and L. Ni, Interconnection

networks- An Engineering Approach. Morgan Kaufinann, 2002
[13] Jie Wu, Danji Wang, "Fault-Tolerant and Deadlock-Free
Routing in 2-D Meshes Using Rectilinear-Monotone Polygonal
Fault Blocks," proceedings. International conference on Parallel
Processing, 2002
[14] R. Mukherjee and S. Memik, "Systematic temperature sensor
allocation and placement for microprocessors", in the Proceedings
of the 43rd ACM IEEE Design Automation Conference, pp.
542-547, July 2006
[15] S. Memik, R. Mukherjee, M. Ni and J. Long, "Optimizing
Thermal Sensor Allocation for Microprocessors", in IEEE
Transactions on Computer-Aided Design of Integrated Circuits and
Systems, vol. 27, issue 3, pp. 516-527, 2008
[16] B. Datta and W. Burleson, "Low-Power, Process-Variation
Tolerant On-Chip Thermal Monitoring using Track and Hold
Based Thermal Sensors", in the Proceedings of ACM Great Lakes
Symposium on VLSI, pp. 145-148, 2009
[17] K. Skadron, M. Stan, K. Sankaranarayanan, W. Huang, S.
Velusamy and D. Tarjan, "Temperature-aware microarchitecture:
Modeling and implementation", in ACM Transactions on
Architecture and Code Optimization, vol. 1 no.1, pp. 94-125, Mar.
2004
[18] P. P. Pande, C. Grecu, A. Ivanov, and R. Saleh, "Design of a
Switch for Network on Chip Applications," Proc. Int'I Symp.
Circuits and Systems (lSCAS), vol. 5, pp. 217-220, May 2003

