
Secure Dynamic Memory Scheduling against Timing
Channel Attacks

Yao Wang, Benjamin Wu, and G. Edward Suh
Cornell University

Ithaca, NY 14850, USA
{yw438,bhw49,gs272}@cornell.edu

ABSTRACT
This paper presents SecMC, a secure memory controller
that provides efficient memory scheduling with a strong
quantitative security guarantee against timing channel
attacks. The first variant, named SecMC-NI, elimi-
nates timing channels while allowing a tight memory
schedule by interleaving memory requests that access
different banks or ranks. Experimental results show
that SecMC-NI significantly (45% on average) improves
the performance of the best known scheme that does
not rely on restricting memory placements. To further
improve the performance, the paper proposes SecMC-
Bound, which enables trading-off security for perfor-
mance with a quantitative information theoretic bound
on information leakage. The experimental results show
that allowing small information leakage can yield sig-
nificant performance improvements.

1. INTRODUCTION
Today’s computing systems are becoming increasingly

vulnerable to timing channel attacks because hardware
resources in a multi-core processor are shared among
multiple security domains. In cloud computing ser-
vices, a user’s virtual machine (VM) may be scheduled
to run on the same physical machine as an attacker’s
VM, which may be able to infer confidential informa-
tion through timing channel attacks. In fact, a practical
timing channel attack through shared data caches has
already been demonstrated by Ristenpart et al. [1] on
commercial Amazon EC2 servers.

Recently, Wang et al. [2] showed that timing channel
attacks are feasible through a shared memory controller.
By measuring the delay of its own memory accesses, an
attacker is able to infer the dynamic memory demand
of a concurrently running program, which may allow in-
ferring secret information about a victim program or re-
ceiving covert messages from another attacker program.
Hunger et al. [3] also found that a covert timing channel
caused by accesses to main memory has a high capac-
ity over 500Kbps, greater than the capacity of timing
channels through caches and branch predictors.

Unfortunately, existing techniques to remove memory
timing channels incur high overhead and/or place sig-
nificant restrictions on memory allocations. Temporal
Partitioning (TP) [2] shows that static turn scheduling
can eliminate the memory timing channels, but incurs

high performance overhead in order to avoid interfer-
ence even in the worst case where requests access the
same bank. Bank Triple Alternation (BTA) [4] im-
proves the performance of TP by restricting DRAM
schedules to enforce consecutive requests access differ-
ent banks. However, the overhead can be still quite
high for memory-intensive applications. Rank parti-
tioning [4] can significantly improve performance by re-
stricting memory allocations so that different security
domains cannot share a rank. Yet, such strict spatial
partitioning significantly restricts memory allocations
and is difficult to deploy in many real-world applica-
tions. For example, in cloud computing, rank parti-
tioning implies that a system can only support a small
number of VMs, limited by the number of ranks (typi-
cally no more than 8).

In this paper, we propose new secure memory con-
troller designs, which can significantly reduce perfor-
mance overhead without restricting data placements.
The first design, named SecMC-NI (NI stands for non-
interference), completely eliminates timing interference
among security domains while allowing the peak mem-
ory bandwidth to be the same as rank partitioning.
SecMC-NI allows multiple requests to be issued within a
short period by interleaving accesses to different banks
and ranks. Our evaluation results show that SecMC
improves the performance of BTA by 45% on average.

To further improve the performance of secure memory
scheduling schemes, we explore a new dimension in the
trade-off space: security. Instead of completely remov-
ing timing channels, which requires DRAM scheduling
to ensure no timing dependence between security do-
mains is possible under any traffic patterns, we show
that allowing a small amount of information leak can
significantly reduce overhead. The new scheme, named
SecMC-Bound, hides most timing interferences by de-
laying memory responses, and provides an information
theoretic bound on information leakage by bounding the
number of cases that the interference is visible to a pro-
gram. To the best of our knowledge, this work repre-
sents the first protection scheme that defends against
memory timing-channels between concurrent programs
on a multi-core processor while enabling a trade-off be-
tween security and performance with a quantitative se-
curity guarantee.

The rest of the paper is organized as follows. Sec-



Hypervisor / OS

Core $ Core $ Core $

Shared LLC

Main Memory

VM VM VM VM

Security Domain 0

VM

Security Domain 1

Figure 1: A multi-core example for cloud computing.

tion 2 introduces the background and our threat model.
Section 3 describes the SecMC-NI scheme. Section 4 de-
scribes the SecMC-Bound scheme. Section 5 evaluates
the proposed schemes. Section 6 discusses the related
work and Section 7 concludes the paper.

2. THREAT MODEL AND BACKGROUND

2.1 Threat Model
In shared multi-core systems, one application can im-

pact the delay observed by another application exploit-
ing interference in shared resources such as a memory
bus. A recent study by Wang et al.[2] showed that the
interference in a shared memory controller can be ex-
ploited for timing channel attacks.

In this paper, we aim to provide timing-channel pro-
tection for shared memory controllers on a multi-core
processor running multiple mutually distrusting secu-
rity domains. A security domain is defined as a set of
software modules (VMs, processes, threads) that do not
need timing isolation among them [2]. Figure 1 shows
an example for a cloud computing platform. A security
domain may contain multiple VMs as long as these VMs
do not require timing channel protection among them.
For example, VMs belonging to the same user can be
grouped into a single security domain. The hypervi-
sor/OS is responsible for scheduling these VMs to the
underlying processor and tagging each VM with the cor-
rect security domain ID. We assume the hypervisor/OS
is trusted and is not compromised by the attacker.

The multi-core processor has a shared last-level cache
(LLC) and a shared memory controller, both of which
are vulnerable to timing channel attacks. In this pa-
per, we focus on the protection against timing chan-
nel attacks in the memory controller. We assume that
the shared LLC and the on-chip network are protected
with other schemes proposed in previous studies [5, 6,
7, 8, 9, 10, 11]. The proposed timing-channel protection
schemes for memory controllers are orthogonal to and
compatible with existing protection schemes for other
shared resources.

In memory timing channels, information may leak
from one program to another in two ways. The first
is through memory access rates. For example, a re-
ceiver program will observe low memory bandwidth if
a sender program issues a large number of memory re-
quests and high bandwidth when there is no request
from the sender. The second is through bank or rank
conflicts. Even if programs issue memory requests at a

fixed rate, observed memory latencies will be different
depending on whether they access the same bank/rank
or not. If two programs access the same bank or rank,
the effective bandwidth that they observe will be lower
than when they access different banks or ranks. To
be secure, a protection scheme needs to prevent both
types of information leakage, controlling memory re-
quest rates as well as bank/rank conflicts.

We consider both unintentional and intentional in-
formation leaks in our threat model. Thus, we aim to
prevent both side-channel and covert-channel attacks.

2.2 Existing Protection Approaches
Several techniques [2, 12, 4] have been proposed to

remove timing channels in shared memory controllers.
They are all based on the basic idea of time-multiplexing
with a fixed schedule. Temporal Partitioning (TP) di-
vides time into fixed-length turns and allocates turns to
each security domain using a fixed schedule, typically a
round-robin schedule. At the end of each turn, a dead
time is added to ensure that in-flight transactions can-
not interfere with requests in the following turn. During
the dead time, no new request can be issued.

The time interval that can ensure no interference be-
tween consecutive memory accesses depend on which
memory locations are accessed. For the DRAM param-
eters used in our experiments, two consecutive accesses
need to be separated by at least 43 cycles when they ac-
cess the same bank, 18 cycles when accessing different
banks in the same rank, and 6 cycles when accessing
different ranks. Without any restriction, the dead time
must be long enough (43 cycles) to drain any type of
request. Because of the wasted cycles during the dead
time, TP incurs significant performance overhead.

To improve the performance of TP, Shafiee et al. [4]
proposed Bank Triple Alternation (BTA), which divides
the memory banks into three bank groups. Consecutive
memory requests are restricted to always access differ-
ent bank groups, which ensures that there cannot be
any bank conflict between turns. This enables using
short (18 cycle) turns. On the other hand, only a sub-
set of banks can be accessed in each turn. Because
of the shorter turns, BTA shows a significant speedup
over TP. We compare our scheme with BTA, which is
so far the best performing scheme with no restriction
on memory allocation.

To further reduce performance overhead, researchers
have proposed to combine spatial partitioning with tem-
poral partitioning. In spatial partitioning, the physi-
cal memory is partitioned among different security do-
mains. For example, bank/rank partitioning [2, 4] re-
stricts security domains to place data in different banks
or ranks. This restriction ensures that memory requests
from consecutive turns access different banks/ranks. The
dead time between requests thus can be shorter (6 cycles
with rank partitioning). However, spatial partitioning,
especially rank partitioning, seriously constrains data
placement, making it difficult to deploy in practice. If
the number of security domains is large, spatial par-
titioning may be simply infeasible due to the limited
number of ranks and banks. For example, typical sys-



SD0

Bank 0, 3, 6 Bank 1, 4, 7 Bank 2, 5

18

SD1 SD2 SD3 SD4 SD5 SD6 SD7

SD0 SD1 SD2 SD3 SD4 SD5 SD6 SD7

SD0 SD1 SD2 SD3 SD4 SD5 SD6 SD7

Figure 2: Bank triple alternation schedule example.

tems have no more than 8 ranks per channel. In cloud
computing, rank partitioning may imply that a system
cannot keep more than 8 virtual machines in memory.
Spatial partitioning also leads to high memory fragmen-
tation. VMs with a small memory footprint waste allo-
cated memory while VMs with a large memory footprint
suffer from insufficient memory.

3. SECMC-NI: EFFICIENT SCHEDULING
WITH ZERO INFORMATION LEAK

3.1 Limitations of BTA
Figure 2 shows an example BTA schedule for 8 secu-

rity domains and 8 banks. The 8 banks are divided into
3 bank groups, and each security domain (SDi) can only
access one of the bank groups in each turn. The sched-
ule ensures that consecutive memory requests always
access different banks, hence the time interval between
them can be as short as 18 cycles using our DRAM
timing parameters, much shorter than 43 cycles for TP.

However, the fixed scheduling of BTA leads to several
inefficiencies. First, if two requests from the same se-
curity domain access different banks in the same bank
group, the second request needs to wait for 24 (3*8)
turns even though they only need to be separated by 18
cycles. Second, requests arriving at a “bad” time can be
delayed significantly. For example, if a request for bank
0 from SD0 arrives at cycle 6, it must wait for another
24 turns. Finally, BTA does not consider ranks when
determining the schedule. Requests to different ranks
are still separated by 18 cycles even though they only
need to be separated by 6 cycles.

3.2 SecMC-NI Algorithm
The inefficiencies in BTA come from the static nature

of the scheduling algorithm; only a fixed set of banks
can be accessed in each turn. SecMC-NI is designed to
allow a security domain to access any bank or rank in its
turn while improving the peak bandwidth through in-
terleaving. Memory requests are dynamically scheduled
based on each domain’s own access pattern.

As in other temporal partitioning schemes, SecMC-NI
divides time into turns and uses round-robin scheduling
to schedule security domains. Only one security domain
can issue requests in each turn. For the convenience of
description, we define some parameters as follows:

Tturn: Turn length in clock cycles

S: Total number of security domains

Request queue

Tbank = 18

B0 B1 B1 B0 B2 B3

B0 B1 B2Schedule

Tturn = 54

Figure 3: SecMC-NI scheduling example.

SD0 B0 B1 B2

B0 B1 B2Schedule

SD1 B2 B3 B0

B2 B3 B0

Tturn = 54

18 Timing Violation!
Figure 4: Bank conflict in SecMC-NI scheduling.

Tbank: Minimum number of cycles between requests
that access different banks

Trank: Minimum number of cycles between requests
that access different ranks

Request Selection. In each turn, request selection
algorithm picks requests from a security domain to be
issued. The requests are chosen based on the following
rules. First, requests must access different banks. This
rule ensures that we can schedule the chosen requests
at a rate of one request every Tbank cycles. Second,
the algorithm enforces that the maximum number of
requests to be scheduled is bTturn/Tbankc. This ensures
that the picked requests can fit into one turn. Finally,
the selected requests are scheduled at cycle 0, Tbank,
2 ·Tbank, ..., (bTturn/Tbankc− 1) ·Tbank within the turn.

As a concrete example, consider the schedule in Fig-
ure 3. The notation Bi indicates a memory request for
bank i. Let’s assume Tturn = 54 and Tbank = 18. Al-
though there are two requests for bank 0 and bank 1,
only one of the requests gets issued. Because at most 3
requests can be issued in this turn, the request to bank
3 remains in the queue.

Compared to BTA, SecMC-NI is more flexible. As
long as the requests are accessing different banks, they
are allowed to be issued together in a turn. However,
this additional flexibility also introduces new complex-
ity. Consider the example in Figure 4. Two different
security domains are ready to schedule their requests. If
the requests are scheduled in their arrival order, the re-
sulting schedule will violate DRAM timing constraints
due to a bank conflict. SecMC-NI addresses this prob-
lem by reordering memory requests.

Reordering. For reordering, SecMC-NI uses a small
buffer to keep track of the schedule in the previous
turn. After the requests are selected for the current
turn, SecMC-NI checks each of these requests against
requests in the previous turn. If Req0 in the current
turn accesses the same bank as Req1 in the previous
turn, Req0 will be placed at the same relative position
as Req1. As a result, these two requests are separated



by Tturn cycles. To allow accesses to the same bank
in two consecutive turns, Tturn must be long enough
(43 cycles) to satisfy DRAM timing for accesses to the
same bank. After the reordering, the history buffer is
updated with the schedule of the current turn. Using
this reordering algorithm, SD1’s schedule in Figure 4
becomes B0, B3, B2, which satisfies DRAM timing con-
straints.

Unfortunately, reordering introduces a security con-
cern because it allows one turn’s schedule to be affected
by the previous turn. To avoid the information leak
through reordering and enforce strict non-interference,
SecMC-NI delays sending memory responses back to
CPU until all memory requests in a turn finish memory
accesses. SecMC-NI then sends the memory responses
in the arrival order of memory requests.

Interleaving Requests from Different Ranks. So
far, we only considered which banks that memory re-
quests access. However, we can construct a far more
efficient scheduling if we consider both the rank and
bank of a memory request. The basic idea is to con-
struct a separate schedule for each rank, and interleave
these schedules to form the final schedule. The re-
quest selection algorithm first picks the bTbank/Trankc
ranks with the most pending requests. For each chosen
rank, the algorithm then picks the requests to differ-
ent banks as described earlier. Once all requests are
selected, SecMC-NI interleaves requests from different
ranks to construct the final schedule. The ranks needs
to be reordered based on the previous turn’s schedule to
avoid timing violations, similar to the bank reordering
described above.

As a concrete example, consider the example in Fig-
ure 5 with the following timing parameters: Tturn = 54,
Tbank = 18, Trank = 6. The requests are grouped
into separate queues based on which rank they access.
SecMC-NI first picks the ranks with the most pending
requests. With these timing parameters, at most three
ranks can be interleaved. For SD0, rank {0, 3, 2} are se-
lected to be issued in this turn. For each rank, requests
to different banks are selected. Each rank constructs its
schedule separately, and these schedules are shifted and
combined to construct the final schedule as shown in
Figure 5. The notation RiBj indicates a request that
accesses bank j in rank i. We separate each schedule by
Trank cycles to avoid timing violation between requests
to different ranks. For SD1, rank {2, 1, 3} are selected
to be issued. To avoid timing violation, SecMC-NI re-
orders the rank schedules so that each rank’s schedule
has no timing violation with the previous turn. This re-
ordering ensures that the requests that access the same
bank and rank are separated by at least Tturn cycles. In
the best case, a security domain can issue 9 requests in
a single turn using SecMC-NI, which significantly im-
proves the peak throughput.

Address Randomization. Although SecMC-NI has
the same peak bandwidth as rank partitioning, it can
only do so if requests are evenly distributed across dif-
ferent ranks and banks. If all requests are accessing the

same rank and bank, only one access can be issued per
turn. To improve the scheduling efficiency, we add ad-
dress randomization to SecMC-NI. The randomization
maps a physical address to a randomized DRAM ad-
dress used for scheduling by XORing a random bit vec-
tor so that requests are more evenly distributed across
ranks and banks.

Security. SecMC-NI completely removes timing chan-
nels among security domains because the memory la-
tency of each security domain is independent of accesses
from other domains. The scheduling algorithm ensures
that the same set of accesses are scheduled for each
turn no matter which addresses are accessed by other
domains. The ordering within a turn is hidden by de-
laying responses until all requests in a turn finish.

4. SECMC-BOUND: DYNAMIC SCHEDUL-
ING WITH BOUNDED LEAK

4.1 Intuition and Overview
Schemes that completely remove timing interference

are inherently inefficient because they need to ensure no
interference even for the worst-case traffic. In particu-
lar, accesses from different secure domains must be far
enough apart (43 cycles) in case they access the same
bank, which requires a long turn length. Long turns
lead to a significant queueing delay. In practice, how-
ever, normal traffic patterns should only experience a
small number of bank conflicts.

Here, we introduce a new scheme, named SecMC-
Bound, which enables a trade-off between security and
performance with an information theoretic bound on
leakage. Allowing controlled timing interference enables
the scheme to use dynamic scheduling optimized for
common-case behaviors. SecMC-Bound defines an ex-
pected response-time (ER) for each memory request and
delays each response to its ER. The ER is determined
only based on requests within a security domain. As
a result, timing interferences among security domains
are invisible to programs as long as each request return
at its ER. An access with significant interference may
violate its ER, potentially leaking information. SecMC-
Bound limits the number of ER violations by delay-
ing all responses of a security domain to the worst-case
response-time (WR), effectively enforcing a completely
secure scheme such as TP and SecMC-NI, after a pre-
defined limit on ER violations is reached over each pe-
riod.

4.2 SecMC-Bound Algorithm
As in other secure memory controller designs, SecMC-

Bound assumes that there are per-domain input and
output queues. Memory requests are stored in the in-
put queue of the corresponding security domain, and
responses from DRAM are stored in the output queue
before being returned to the last-level cache (LLC).

Expected Times. Instead of relying on conservative
turn-based scheduling to remove interference among mem-
ory accesses, SecMC-Bound hides interference by delay-



SD0

B0 B1 B2

R0B0

Schedule

B2

Tturn = 54

Rank 0

Rank 1

B0 B1

B3

Rank 2

Rank 3 B1 B2

SD1

B1 B3B2

Rank 0

Rank 1

B2 B0

B2

Rank 2

Rank 3

B1

R0B1 R0B2 R1B3 R1B1 R1B2

R3B3 R3B1 R3B2 R3B2

R2B0 R2B1 R2B0 R2B1 R2B2Trank = 6

Tbank = 18

Figure 5: SecMC-NI scheduling with rank interleaving.

SD0
Req0
EI

SD1
Req0
EI

SD2
Req0
EI

SD0
Req1
EI

b b
S*b

Figure 6: Expected issue times for memory requests.

ing a response to its expected response-time (ER). The
high-level approach can be applied in many ways as long
as the ER of each memory request is independent of re-
quests from other security domains. Here, we describe
one such approach used in this paper.

To assign an ER to a request, we first assign an ex-
pected issue-time (EI), which defines the clock cycle
when the request is expected to be issued to DRAM.
Figure 6 shows an example of expected issue times based
on a round-robin schedule with a fixed issue rate; S rep-
resents the total number of security domains and b rep-
resents the time interval between EIs of two consecutive
requests from different security domains. The EI for the
ith memory request from security domain s (tEI(s, i))
can be calculated by Equation 1.

tEI(s, i) = S · b · j + s · b (1)

where j is the minimum integer s.t. tEI(s, i) is greater
than the time that the request is enqueued (tenq(s, i))
and the EI of the previous request (tEI(s, i − 1)). We
calculate ER by simply adding a constant parameter (d)
to the corresponding EI as shown in Equation 2.

tER(s, i) = tEI(s, i) + d (2)

ER Violation. When a DRAM access is completed,
the corresponding response is put into a per-domain
output queue and returned to the LLC at its ER. The
built-in delay (d) in ER hides small timing interference.

However, there is no guarantee that every request can
finish before its ER. If a request cannot be issued early
enough to meet its ER, we count it as an ER violation.
ER violations represent potential information leakage
as they allow an attacker to observe timing variations
caused by memory interference. If a request is allowed
to be returned at any clock cycle after its ER, an at-
tacker can learn the exact delay value. To limit the
amount of information that one ER violation leaks, we
restrict the added delay for an ER violation to predeter-
mined values, i.e., dk (1 ≤ k ≤W − 1). We also specify
the worst-case delay, dW , in a way that a request is

Req
EI

d

ER ER+d1 ER+dW-1 ER+dW

Figure 7: Possible delay values for an access.

guaranteed to finish before ER + dW .
Figure 7 shows the predetermined delay values for a

memory request. When a memory access for a request
completes, the response is returned at the closest cycle
with one of the allowed delay values. Under this scheme,
a request that violates ER can only have W possible
delays, which limits the amount of information that one
ER violation may leak.

When a memory request is issued too late to meet its
ER, SecMC-Bound increments a counter (m) to record
the number of ER violations. Both EI and ER of the
request are also incremented by dk to account for the
visible delay. The following memory request uses this
updated EI as the previous request’s EI in the constraint
(tEI(s, i) > tEI(s, i− 1)) when calculating its EI.

Worst-Case Times. In order to bound the delay on
an ER violation, we need to determine the wort-case
response-time (WR) of a request when a memory con-
troller can guarantee to finish the request under any
traffic pattern.

The worst-case time can be determined using a secure
scheduling algorithm such as TP or SecMC-NI. For ex-
ample, consider the TP scheme with the minimum turn
length, which issues one memory request every Tturn

cycles. Under the TP scheduling, we can define the
worst-case issue-time (WI) for the ith request from se-
curity domain s as follows:

tWI(s, i) = S · Tturn · j + s · Tturn + offsetrefresh (3)

where j is the minimum integer such that tWI(s, i) is
greater than tenq(s, i)+Tturn and tEI(s, i−1)+S ·Tturn.
Here, tenq(s, i) is the enqueue time, Tturn is the mini-
mum turn length (43) and offsetrefresh represents the
delay due to DRAM refresh cycles. Note that the EI
of the previous request (tEI(s, i− 1)) in the constraint
incorporates delays due to ER violations and represents
time after the actual issue-time. Therefore, the WI of a
request is defined to be at least S · Tturn cycles away
from the previous request’s actual issue-time and at
least Tturn cycles away from the time that the request
is enqueued.

The above construction provides an enough margin



for a memory controller to enforce the worst-case time
for any traffic patterns. If there is a request whose WI
is less than Tturn cycles away, our DRAM scheduler
enforces a dead time so that no new requests can be is-
sued and all in-flight transactions will be drained. This
guarantees that the request can be issued by its WI. Ef-
fectively, the scheduling follows TP for one turn. This
scheduler design ensures that every request is issued be-
fore its WI. In turn, the worst-case response-time (WR)
can be computed using a DRAM access latency:

tWR(s, i) = tWI(s, i) + tRCD + tCAS + tBURST (4)

DRAM Scheduling. SecMC-Bound dynamically sched-
ules memory requests to complete them as soon as possi-
ble while prioritizing requests with lower expected issue
times and ensuring the worst-case timing. In each clock
cycle, the DRAM scheduler selects the request 1) with
the lowest EI 2) among ones that can be issued (satisfy-
ing all DRAM timing requirements). Note that EIs are
only used to prioritize memory accesses in arbitration
and the actual issue time of a request does not need to
match its EI. For example, a memory request can be
issued much earlier than its EI if there no pending re-
quests from other security domains. As an exception, if
there is a request whose WI is less than the minimum
turn length (Tturn), the scheduler enforces the worst-
case time as discussed above.

Limiting the Number of ER Violations. In order
to bound the information leakage, SecMC-Bound limits
the number of ER violations that can happen in a cer-
tain time interval. To enforce the limit, SecMC-Bound
maintains counters for the number of ER violations (m)
and the number of read requests (n) for each security
domain, and can be configured to only allow up to M
ER violations over a period such as every N read re-
quests or C cycles.

If m reaches the limit M for one security domain,
SecMC-Bound switches to the conservative worst-case
mode for that security domain and delays every re-
sponse until its WR. Note that the worst-case delay is
applied only to the security domains that reached the
limit. As a result, there cannot be any more ER viola-
tions for that security domain. Once a period is over,
the counters are reset and the output queue again uses
ER to delay responses.

4.3 Performance Optimizations

4.3.1 Avoiding Worst-Case Times
When the number of ER violations m reaches the

limit M , SecMC-Bound switches to the worst-case mode,
which incurs significant performance overhead to that
security domain. To reduce the chance of entering the
worst-case mode, we can gradually increase the value of
d as the number of violations increases. As an example,
assume that the limit (M) is 3 violations over 1 mil-
lion requests. We set the initial value of d to be dinit
and adjust the value of d based on the number of ER
violations (m) for a security domain.

• If m = 0, d = dinit.

• If m = 1, d = dinit + delay1.

• If m = 2, d = dinit + delay2.

• If m = 3, d = dinit + dW .

Because d increases with m, an ER violation is less
likely to happen when m is large. As a result, SecMC-
Bound is unlikely to enter the worst-case mode. After
a period, the counter m is reset to 0 and d is reset to
dinit. The optimization can be applied to any value of
M by defining d for each possible value of m. Note that
a similar optimization can be applied to b to also reduce
the chance of entering the worst-case mode.

4.3.2 Dynamic Tuning of dinit and binit
SecMC-Bound uses two design parameters d and b to

determine expected response times. Intuitively, these
two parameters represent different points in the security-
performance trade-off space, and we may be able to im-
prove performance with minimal impact on security if
we can properly choose d and b depending on appli-
cation characteristics. For example, applications with
infrequent memory accesses may not experience any ER
violation even with a small d, which results in a shorter
memory latency.

The optimization in Section 4.3.1 adjusts the value of
d within each period, but the initial value of d (dinit) is
still fixed. Here, we discuss how the value of dinit can
be dynamically adjusted.

In this scheme, we adjust dinit at the end of each
period based on the number of ER violations (m) ob-
served in that period. The updated dinit is used in the
following period.

• If m = 0, dinit = dinit - 10.

• If m ≥M − 1, dinit = dinit + 10.

• Otherwise, dinit = dinit.

The above algorithm decreases dinit if there was no
ER violation in the previous period (m = 0), and in-
creases dinit if the number of ER violations almost reached
the limit (m ≥M − 1). The algorithm can be adjusted
with different thresholds to change dinit more aggres-
sively. For example, a more aggressive scheme may de-
crease dinit when m < M − 1. This design can decrease
dinit to a lower value, but is also likely to result in more
ER violations. In our experiments, we used the shown
algorithm, which more conservatively change dinit.

The same approach can be applied to dynamically ad-
just the initial value of b (binit). Dynamic tuning of dinit
and binit has two benefits. First, the dynamic tuning al-
lows the scheme to adapt to different phases of an appli-
cation. Memory-intensive phases may require large dinit
and binit to reduce the number of ER violations, while
less memory-intensive phases can use smaller dinit and
binit to improve the performance. Second, the dynamic
tuning allows adapting to different workloads without
manual designer efforts. The scheme will automatically
adjust itself to meet the specified limit on the ER vio-
lations for a given workload.



4.4 Information Theoretic Bound
SecMC-Bound is designed so that the response time

of each memory request only depends on requests within
its security domain, except for ER violations. The added
delay on an ER violation is the only property that de-
pends, partially, on memory requests from other se-
curity domains, leading to potential timing channels.
Here, we present an information theoretic analysis that
enables us to conservatively compute a quantitative up-
per bound on the rate of information leakage based on
the number of ER violations.

We start by making the following definitions. Let
x be the history of all memory requests, from all se-
curity domains, from time −∞ to the present. Let
Y be the vector of delays (y1, y2, ...yn) seen by a re-
ceiver program that places n read requests such that
yi ∈ {0, d1, ...dW−1, dW } ∀i s.t. 0 < d1 < ...dW . Note
that any yi > 0 is considered an ER violation.

In the context of a covert channel between malicious
programs, channel capacity is the most natural infor-
mation theoretic metric. It can be computed as: C =
maxx I(X; Y) = maxx {H(Y)−H(Y|X)}, using the
usual information theoretic definition of entropy. Be-
cause Y is deterministic given X for a memory con-
troller, I(X; Y) = H(Y). In general, mathematically
analyzing the precise distribution of Y is non-trivial.
To simplify the analysis, we conservatively assume that
all probability distributions over the possible values of
Y are attainable. In this case, the entropy of Y is max-
imized when the distribution is uniform over all y ∈ Y
and the channel capacity can be simply computed with
the number of possible y ∈ Y.

Given that SecMC-Bound limits the ER violations to
be at most M out of N requests, the number of possible
values of Y can be computed using a basic combina-
tional analysis. The leakage is simply the logarithm of
this value:

max
X

I(X; Y) = log2(

M∑
m=0

Wm

(
N

m

)
). (5)

In the context of an unintentional side channel where
a malicious listener snoops on the activity of other pro-
grams, maximum leakage, which can be computed as
L(X → Y) ≡ log2(

∑
y maxp(x)>0 p(y|x)), is a popular

metric for the rate of information leakage. In our case
where Y is deterministic in X, maximum leakage also
reduces to the logarithm of the number of possible val-
ues of Y. Hence, the bound for maximum leakage is the
same as the bound for covert channel capacity.

Practical Channel Capacity. The above bound is
calculated under conservative assumptions, which are
not true in practical systems. The bound assumes that
all conceivable Y distributions are possible and that a
malicious program can choose any of these distributions
at will. However, in practice, memory accesses are much
more likely to result in no ER violation or a low de-
lay even on an ER violation. The bound also captures
the information leak from all programs to a receiver
even though attackers in practice only control a subset

Processor

ISA x86
Core count and frequency 8-core, 2.0GHz

ROB size 128
Issue width 4

Cache

L1 I-cache 32KB/4-way
L1 D-cache 32KB/4-way
L2 Cache 8MB/64-way, way partitioned

DRAM

DRAM bus frequency 667MHz
DRAM configuration 1 channel, 8 ranks, 8 banks/rank

Total capacity 16GB
DRAM Timing Parameters (DRAM cycles)

tRC = 34, tRCD = 10, tRAS = 24, tFAW = 20, tWR = 10,
tRP = 10, tRTRS = 1, tCAS = 10, tRTP = 5, tBURST = 4,

tCCD = 4, tWTR = 5, tRRD = 4, tREFI = 7.8us, tRFC = 107

Table 1: Configuration parameters for ZSim and
DRAMSim2 simulators.

of programs and other accesses add uncontrolled noise.
The bound also assumes that an attacker can control
and measure all memory accesses at a cycle granularity.
This is unlikely in practice. For example, caches affect
memory requests and it is difficult to maintain perfect
synchronization between concurrent programs.

In that sense, we provide a conservative bound for
channel capacity. The practically achievable channel ca-
pacity is likely be at least two to three orders of magni-
tude lower than our information theoretic bound under
ideal assumptions. For example, a previous study [3]
reported the covert-channel capacity around 500 Kbps
based on memory contention even when every memory
access could be used to leak information in theory. For-
tunately, our experimental results show that even our
conservative bound can be used to provide good perfor-
mance with a guarantee on low information leakage. We
leave the further refining the bound considering practi-
cal limitations as future work.

5. EVALUATION
5.1 Methodology

We used ZSim [13] integrated with DRAMSim2 [14]
to evaluate the performance of the proposed schemes.
We model a multi-core processor with 8 cores. Each
core has a private L1 cache. An L2 cache is shared
but is partitioned to remove interference among cores.
This configuration was chosen to evaluate the impact of
memory timing channel protection schemes without the
impact of cache interference. We model a single memory
channel with 8 ranks and 8 banks per rank. The detailed
configuration parameters are shown in Table 1.

We use multi-program workloads constructed from
SPEC CPU2006 benchmark suites to evaluate the per-
formance. To evaluate the performance depending on
memory intensity, we use eight copies of the same pro-
gram on the 8-core processor. For the performance eval-
uation running multiple copies of one benchmark, we
used 24 SPEC benchmarks but show only 12 represen-
tative benchmarks in graphs due to the space limit. The
benchmarks are ordered based on the memory intensity
(misses per kilo instructions) with more memory inten-
sive benchmarks on the right. The geometric mean on
each figure is calculated using all 24 benchmarks.



mix-1 ton les gam gro gam h264 mcf bwa
mix-2 gcc cac h264 zeu gam cac gam ton
mix-3 sje per zeu gam les les gcc gcc
mix-4 xal gro gcc bzi dea gob ton hmm
mix-5 nam zeu gam per omn gcc ton zeu
mix-6 per xal cac dea gob les cac gob
mix-7 per gcc cac mcf zeu per omn lib
mix-8 sop gam mil gro hmm sje les lib
mix-9 ton xal omn gcc ton h264 h264 hmm
mix-10 zeu hmm lbm les mcf mcf mcf bwa

Table 2: Mixed workloads.

To understand the performance for more diverse work-
loads, we use mixed workloads, each of which consists of
8 randomly selected SPEC benchmarks. The 10 mixed
workloads that we used are shown in Table 2.

The experiments assume that each core represents a
different security domain. Each program fast-forwards
for 1 billion instructions and then enters detailed simu-
lation mode in which the memory requests are simulated
in cycle-accurate manner. The simulation terminates
when all programs have executed 100 million instruc-
tions. We only take the first 100 million instructions of
each program to calculate the IPC.

We use weighted speedup as the performance met-
ric. For a system with concurrently running programs,
weighted speedup is defined as the sum of each pro-
gram’s IPC normalized to the IPC when the program
is running by itself:

Weighted Speedup = Σ(IPCi/SingleIPCi) (6)

The weighted speedups are normalized to the insecure
baseline, which is FR-FCFS [15] in our experiments.

5.2 Performance of SecMC-NI
5.2.1 Effect of Turn Length

We evaluate the performance of SecMC-NI with two
different turn lengths: 43 cycles and 54 cycles. The 43-
cycle turn allows up to 6 requests per turn (3 ranks,
2 banks per rank). The 54-cycle turn allows up to 9
requests per turn (3 ranks, 3 banks per rank). Fig-
ure 8 shows the performance comparison between the
two turn lengths. For programs with low memory inten-
sity, BTA and SecMC-NI perform almost equally well,
reaching 80% of the baseline’s performance. However,
for memory-intensive programs, SecMC-NI significantly
outperforms BTA, almost doubling the performance of
BTA in many cases. This is because SecMC-NI allows
more flexible scheduling with a higher peak throughput
by interleaving ranks and banks.

To better understand the results, Figure 9 shows the
average queueing delay of memory requests under each
scheme. The queueing delay is calculated as the differ-
ence between the time that a memory request arrives
at a request queue and the time that the memory re-
quest gets issued to DRAM. Due to the inflexible sched-
ule, BTA incurs high queueing delays (∼600 cycles).
SecMC-NI-43 cuts this queueing delay by half.

Comparison between SecMC-NI-43 and SecMC-NI-
54 leads to another interesting observation. Although
SecMC-NI-54 has a higher theoretical bandwidth uti-
lization than SecMC-NI-43, the longer turn length of
SecMC-NI-54 increases the average queueing delay of

Gem
sF

DTD

h2
64

ref
ton

to
na

md

go
bm

k

om
ne

tpp

hm
mer

ca
ctu

sA
DM

bw
av

es

lib
qu

an
tum lbm mcf

GEOMEAN

Workload

0

20

40

60

80

100

N
or

m
al

iz
ed

 W
ei

gh
te

d 
S

pe
ed

up
 (%

)

BTA SecMC-NI-43 SecMC-NI-54

Figure 8: Performance comparison between SecMC and
BTA.

Gem
sF

DTD

h2
64

ref
ton

to
na

md

go
bm

k

om
ne

tpp

hm
mer

ca
ctu

sA
DM

bw
av

es

lib
qu

an
tum lbm mcf

GEOMEAN

Workload

0

200

400

600

800

1000

1200

1400

1600

A
ve

ra
ge

 Q
ue

ui
ng

 D
el

ay
 (C

yc
le

s)

BTA SecMC-NI-43 SecMC-NI-54

Figure 9: Queuing delay comparison between SecMC
and BTA.

Gem
sF

DTD

h2
64

ref
ton

to
na

md

go
bm

k

om
ne

tpp

hm
mer

ca
ctu

sA
DM

bw
av

es

lib
qu

an
tum lbm mcf

GEOMEAN

Workload

0

20

40

60

80

100

N
or

m
al

iz
ed

 W
ei

gh
te

d 
S

pe
ed

up
 (%

)

SecMC-NI-NoRandom SecMC-NI-Random

Figure 10: SecMC performance with and without ad-
dress randomization.

memory requests. Hence, we see SecMC-NI-43 actually
outperforms SecMC-NI-54. For the rest of the evalu-
ation section, we use 43 cycles as the turn length for
SecMC-NI.

5.2.2 Effect of Address Randomization
We then study the impact of address randomization

on the performance of SecMC-NI. The purpose of ad-
dress randomization is to distribute memory requests
more evenly across different ranks and banks, thus al-



Gem
sF

DTD

h2
64

ref
ton

to
na

md

go
bm

k

om
ne

tpp

hm
mer

ca
ctu

sA
DM

bw
av

es

lib
qu

an
tum lbm mcf

Workload

0

1

2

3

4

5

6
P

er
 T

ur
n 

S
ta

ts

num_reqs num_issued num_same_bank

Figure 11: SecMem scheduling statistics.

lowing SecMC-NI to issue more requests in a turn. Fig-
ure 10 compares the performance of SecMC-NI with and
without address randomization. On average, adding ad-
dress randomization only improves the performance of
SecMC by 2%. However, for specific benchmarks such
as hmmer, the improvement is significant.

To understand why hmmer benefits significantly from
address randomization, we profiled the simulations to
record scheduling statistics in each turn. Figure 11
shows three scheduling statistics. num reqs represents
the average number of requests in the queue for the
active security domain in each turn. num issued rep-
resents the average number of requests that are issued
in each turn. num same bank represents the average
number of requests that try to access the same bank in
the same rank. The value of num same bank indicates
the number of requests that cannot be scheduled to-
gether in a turn. As the figure shows, num same bank
is large for hmmer, meaning that a lot of the requests
in hmmer have bank conflict. With the help of ad-
dress randomization, hmmer’s requests are distributed
more evenly across different banks, which explains the
large performance gain for hmmer when address ran-
domization is enabled. For programs with many bank
conflicts, address randomization is an effective way to
improve the performance.

5.3 Performance of SecMC-Bound

5.3.1 Parameter Sweep for b and d

To explore the design space, we tried different values
for the design parameters, b and d. We used {3, 6, 18}
for b and {64, 128, 256} for d. Note that in these ex-
periments, we do not restrict the number of violations
over a period. The experiments also do not use opti-
mizations to dynamically adjust b or d. We configure
W to be 3 with d1 = 30, d2 = 160 and d3 to be the
worst-case delay. The performance was normalized to
the insecure baseline.

Figure 12 shows the performance of SecMC-Bound
across different parameter values. We use the notation
SecMC-Bound-b-d to represent the scheme with differ-
ent b and d. For a fixed b, the performance of SecMC-
Bound decreases as d increases because a smaller d leads
to an earlier expected response-time (ER). A large d

increases the memory latency. For a fixed d, the per-
formance decreases as b increases. This is because b af-
fects the expected issue-time (EI), hence also indirectly
affecting the expected response-time (ER). A larger b
leads to a later expected response-time.

In summary, small b and d improve the performance
of SecMC-Bound. As an example, SecMC-Bound-3-64
shows nearly 90% of the baseline’s performance, which
even beats rank partitioning. However, the high perfor-
mance of SecMC-Bound-3-64 comes with a lower secu-
rity level. To see how the security is affected, Figure 13
shows the average number of ER violations per mem-
ory request. Note that the y-axis uses a log scale. As
the figure shows, small b and d leads to more frequent
ER violations, which indicates higher potential infor-
mation leak. Fortunately, the number of ER violations
decreases exponentially as we increase d. Even though a
large d leads to lower performance, SecMC-Bound-3-256
still achieves about 60% of the baseline’s performance,
which is better than SecMC-NI and BTA.

Figure 12 and 13 show that SecMC-Bound provides
a large trade-off space between performance and secu-
rity. Users can tune the performance of their memory
controller based on how much security they are willing
to sacrifice.

5.3.2 Limiting the ER Violations
We study the performance of SecMC-Bound when we

apply the mechanism to limit the number of violations
in a period. Figure 14 shows the performance results
using b = 6 and d = 160. We use four different lim-
its. “4 in 1,000” means we allow 4 ER violations in
every 1,000 requests. Once the number of violations
for a security domain reaches the limit within a pe-
riod, this security domain enters the worst-case mode in
which it always delays responses until their worst-case
response-time (WR). The figure shows that enforcing
a lower limit on the number of ER violations increases
the performance overhead. As the limit gets lower, a
security domain is more likely to enter the worst-case
mode, which lowers its performance.

Yet, enforcing a limit on the number of ER violations
is necessary to provide a bound on the information leak.
Figure 15 shows the leakage bound for each limit. As
we lower the limit, the leakage bound drops accordingly.
A designer may choose the limit based on the assets he
or she wants to protect. For example, if the asset is a
large file such as an HD movie, even leaking hundreds of
bits per second may be acceptable. On the other hand,
if the scheme needs to protect a small secret such as a
cryptographic key, the limit will need to be much lower.

5.3.3 Optimization 1: Avoiding Worst-Case Times
The high performance overhead for the low limit in

Figure 14 is mainly caused by the worst-case mode where
all responses are delayed to their WR. One of the pro-
posed optimizations reduces the chance of reaching the
ER violation limit and entering the worst-case mode by
gradually increasing the value of d. To see the effective-
ness of this optimization, we ran experiments with this
optimization implemented—the value of d increases by



Gem
sF

DTD

h2
64

ref
ton

to
na

md

go
bm

k

om
ne

tpp

hm
mer

ca
ctu

sA
DM

bw
av

es

lib
qu

an
tum lbm mcf

GEOMEAN

Workload

0

20

40

60

80

100

N
or

m
al

iz
ed

 W
ei

gh
te

d 
S

pe
ed

up
 (%

)
SecMC-Bound-3-64
SecMC-Bound-3-128

SecMC-Bound-3-256

(a) b=3

Gem
sF

DTD

h2
64

ref
ton

to
na

md

go
bm

k

om
ne

tpp

hm
mer

ca
ctu

sA
DM

bw
av

es

lib
qu

an
tum lbm mcf

GEOMEAN

Workload

0

20

40

60

80

100

N
or

m
al

iz
ed

 W
ei

gh
te

d 
S

pe
ed

up
 (%

)

SecMC-Bound-6-64
SecMC-Bound-6-128

SecMC-Bound-6-256

(b) b=6

Gem
sF

DTD

h2
64

ref
ton

to
na

md

go
bm

k

om
ne

tpp

hm
mer

ca
ctu

sA
DM

bw
av

es

lib
qu

an
tum lbm mcf

GEOMEAN

Workload

0

20

40

60

80

100

N
or

m
al

iz
ed

 W
ei

gh
te

d 
S

pe
ed

up
 (%

)

SecMC-Bound-18-64
SecMC-Bound-18-128

SecMC-Bound-18-256

(c) b=18

Figure 12: SecMC-Bound performance for a range of b and d values.

Gem
sF

DTD

h2
64

ref
ton

to
na

md

go
bm

k

om
ne

tpp

hm
mer

ca
ctu

sA
DM

bw
av

es

lib
qu

an
tum lbm mcf

MEAN

Workload

10-8

10-7

10-6

10-5

10-4

10-3

10-2

10-1

100

A
vg

 #
 o

f V
io

la
tio

ns
 p

er
 R

eq
ue

st

SecMC-Bound-3-64
SecMC-Bound-3-128

SecMC-Bound-3-256

(a) b=3

Gem
sF

DTD

h2
64

ref
ton

to
na

md

go
bm

k

om
ne

tpp

hm
mer

ca
ctu

sA
DM

bw
av

es

lib
qu

an
tum lbm mcf

MEAN

Workload

10-8

10-7

10-6

10-5

10-4

10-3

10-2

10-1

100
A

vg
 #

 o
f V

io
la

tio
ns

 p
er

 R
eq

ue
st

SecMC-Bound-6-64
SecMC-Bound-6-128

SecMC-Bound-6-256

(b) b=6

Gem
sF

DTD

h2
64

ref
ton

to
na

md

go
bm

k

om
ne

tpp

hm
mer

ca
ctu

sA
DM

bw
av

es

lib
qu

an
tum lbm mcf

MEAN

Workload

10-8

10-7

10-6

10-5

10-4

10-3

10-2

10-1

100

A
vg

 #
 o

f V
io

la
tio

ns
 p

er
 R

eq
ue

st

SecMC-Bound-18-64
SecMC-Bound-18-128

SecMC-Bound-18-256

(c) b=18

Figure 13: The number of ER violations for a range of b and d values.

Gem
sF

DTD

h2
64

ref
ton

to
na

md

go
bm

k

om
ne

tpp

hm
mer

ca
ctu

sA
DM

bw
av

es

lib
qu

an
tum lbm mcf

GEOMEAN

Workload

0

20

40

60

80

100

N
or

m
al

iz
ed

 W
ei

gh
te

d 
S

pe
ed

up
 (%

)

No-limit
4 in 1,000

4 in 10,000
4 in 100,000

4 in 1,000,000

Figure 14: Performance with a limit on ER violations.

10 whenever an ER violation happens within each pe-
riod. Figure 16 shows the performance results with this
optimization. Compared to the results without the op-
timization shown in Figure 14, the performance dras-
tically increases for the low ER violation limit (4 in
1,000,000). The result suggests that this optimization
is effective in preventing a security domain from fre-
quently entering the worst-case mode when the limit is
low. However, the performance is slightly degraded for
cases with a high limit. Security domains do not of-
ten reach the ER violation limit in these cases, hence
increasing the value of d actually increases the average
memory latency. The results suggest that the optimiza-
tion should be used when a security domain is likely to
reach the limit on ER violations in a period.

Gem
sF

DTD

h2
64

ref
ton

to
na

md

go
bm

k

om
ne

tpp

hm
mer

ca
ctu

sA
DM

bw
av

es

lib
qu

an
tum lbm mcf

MEAN

Workload

100

101

102

103

104

105

106

Le
ak

ag
e 

B
ou

nd
 (b

its
/s

ec
)

4 in 1,000
4 in 10,000

4 in 100,000 4 in 1,000,000

Figure 15: Leakage bound with a limit on ER violations.

5.3.4 Optimization 2: Dynamic Tuning of dinit
We study the performance impact of dynamically tun-

ing the dinit value based on the number of ER violations
in the previous period. In this experiment, the initial
value of d (dinit) is set to 160 and b is set to 6. Fig-
ure 17 shows the performance with this optimization
under different ER violation limits. When the limit is
high (4 in 1,000), we see a noticeable performance im-
provement over the static case with a fixed dinit. This is
because the optimization drastically reduces the value
of dinit (e.g., from 160 to 72) while the static case uses
a fixed dinit value (160). However, when the limit be-
comes lower, the performance improvement gradually
drops down to zero. For a lower limit with a longer pe-
riod, m over a period is more likely to be non-zero and
dinit often cannot be reduced.



Gem
sF

DTD

h2
64

ref
ton

to
na

md

go
bm

k

om
ne

tpp

hm
mer

ca
ctu

sA
DM

bw
av

es

lib
qu

an
tum lbm mcf

GEOMEAN

Workload

0

20

40

60

80

100

N
or

m
al

iz
ed

 W
ei

gh
te

d 
S

pe
ed

up
 (%

)
No-limit
4 in 1,000

4 in 10,000
4 in 100,000

4 in 1,000,000

Figure 16: Performance with the optimization to avoid
the worst-case mode.

Gem
sF

DTD

h2
64

ref
ton

to
na

md

go
bm

k

om
ne

tpp

hm
mer

ca
ctu

sA
DM

bw
av

es

lib
qu

an
tum lbm mcf

GEOMEAN

Workload

0

20

40

60

80

100

N
or

m
al

iz
ed

 W
ei

gh
te

d 
S

pe
ed

up
 (%

)

Static
4 in 1,000

4 in 10,000
4 in 100,000

4 in 1,000,000

Figure 17: Performance with the dinit tuning.

5.4 Overall Performance Comparison
Figure 18a shows the overall performance compari-

son among SecMC-NI, SecMC-Bound, and previously
proposed secure memory scheduling schemes. In this
experiment, we use the case with b = 6 and d = 160
to represent the performance of SecMC-Bound. The
performance of SecMC-NI is significantly higher than
BTA and close to BP. SecMC-Bound achieves 70% of
the insecure baseline performance, outperforming BTA,
SecMC-NI and even BP. The performance benefit shows
that SecMC-Bound allows more flexible memory schedul-
ing than completely secure schemes while providing a
theoretic bound on information leakage.

To understand the performance of the SecMC schemes
on more realistic workloads, we repeated all experiments
using mixed workloads which consist of different SPEC
benchmarks. Due to the space limit, we only show the
overall performance results for the mixed workloads in
Figure 18b. The figure shows the same overall perfor-
mance trends with the one shown in Figure 18a; SecMC-
NI outperforms BTA and is close to BP while SecMC-
Bound outperforms both BTA and BP. The other ex-
perimental results on the mixed workloads also show
the same high-level trends with the single-benchmark
workload results shown in this paper.

5.5 Summary

Gem
sF

DTD

h2
64

ref
ton

to
na

md

go
bm

k

om
ne

tpp

hm
mer

ca
ctu

sA
DM

bw
av

es

lib
qu

an
tum lbm mcf

GEOMEAN

Workload

0

20

40

60

80

100

N
or

m
al

iz
ed

 W
ei

gh
te

d 
S

pe
ed

up
 (%

)

BTA
SecMC-NI

SecMC-Bound
BP

RP

(a) Single-benchmark workload.

mix-
1

mix-
2

mix-
3

mix-
4

mix-
5

mix-
6

mix-
7

mix-
8

mix-
9

mix-
10

GEOMEAN

Workload

0

20

40

60

80

100

N
or

m
al

iz
ed

 W
ei

gh
te

d 
S

pe
ed

up
 (%

)

BTA
SecMC-NI

SecMC-Bound
BP

RP

(b) Mixed workload.

Figure 18: The overall performance comparison.

No Partitioning Bank Partitioning Rank Partitioning

P
er

fo
rm

an
ce

FR-FCFS
1.0

SecMC-NI
0.57
BTA
0.45

BP
0.62

RP
0.84

SecMC-Bound

0.87

0.56

Figure 19: Design space summary.

Figure 19 shows the summary of the secure mem-
ory controller design space using the performance for
the mixed workloads. SecMC schemes do not require
spatial partitioning and outperform BTA, which rep-
resent the best previous scheme without spatial par-
titioning. SecMC-NI achieves similar performance as
bank partitioning. SecMC-Bound’s performance spans
from 56% to 87% of the baseline, depending on the val-
ues chosen for b and d, enabling a trade-off between
performance and security with a bounded information
leakage. While not shown here, we found that SecMC-



Bound can also be combined with spatial partitioning
to further improve their performance.

6. RELATED WORK
Previous studies have demonstrated timing-channel

attacks and proposed protection techniques for vari-
ous hardware resources, including caches [16, 17, 18,
7, 8, 9], on-chip networks [10, 11], and memory con-
trollers [2, 12, 4]. Most of these protection techniques
rely on temporal partitioning or spatial partitioning to
eliminate the interference between different security do-
mains. Researchers also proposed solutions to mitigate
timing channel attacks by injecting noise [19] or re-
stricting sensitive operations [20]. In this paper, we
propose new protection techniques for shared memory
controllers that reduces overhead of existing approaches
while still providing strong security guarantees.

Zhang et al. [21] proposed predictive mitigation tech-
nique, which exponentially increases observable timing
to bound information leakage through program execu-
tion time. Fletcher et al. [22] applied a similar technique
to ORAM [23]. While we borrow the idea to delay ob-
servable timing from the previous work, this paper pro-
poses a new scheme for shared memory controllers.

7. CONCLUSION
This paper shows that the overhead of timing-channel

protection can be significantly reduced while providing
strong security guarantees. SecMC-NI shows that the
scheduling for temporal partitioning can be made far
more efficient using dynamic scheduling and re-ordering
while still removing timing channels. SecMC-Bound
shows that trading off security for performance can fur-
ther improve performance. In particular, the paper
shows that a quantitative bound can be provided for
the information leakage under this scheme.

8. ACKNOWLEDGMENT
This work was partially supported by the National

Science Foundation under grant CNS-1513797 and an
equipment donation from Intel Corporation. Any opin-
ions, findings, and conclusions or recommendations ex-
pressed in this material are those of the author(s) and
do not necessarily reflect the views of NSF or Intel.

9. REFERENCES
[1] T. Ristenpart, E. Tromer, H. Shacham, and S. Savage,

“Hey, you, get off of my cloud: Exploring information
leakage in third-party compute clouds,” in Proceedings of
the 16th ACM Conference on Computer and
Communications Security, 2009.

[2] Y. Wang, A. Ferraiuolo, and G. E. Suh, “Timing channel
protection for a shared memory controller,” in 2014 IEEE
20th International Symposium on High Performance
Computer Architecture (HPCA), 2014.

[3] C. Hunger, M. Kazdagli, A. S. Rawat, A. G. Dimakis,
S. Vishwanath, and M. Tiwari, “Understanding
Contention-Based Channels and Using Them for Defense,”
in 2015 IEEE 21st International Symposium on High
Performance Computer Architecture (HPCA), 2015.

[4] A. Shafiee, A. Gundu, M. Shevgoor, R. Balasubramonian,
and M. Tiwari, “Avoiding information leakage in the
memory controller with fixed service policies,” in
Proceedings of the 48th International Symposium on
Microarchitecture, 2015.

[5] D. Page, “Partitioned cache architecture as a side-channel
defence mechanism,” 2005.

[6] J. Kong, O. Aciicmez, J. P. Seifert, and H. Zhou,
“Hardware-software integrated approaches to defend
against software cache-based side channel attacks,” in 2009
IEEE 15th International Symposium on High Performance
Computer Architecture (HPCA), 2009.

[7] Z. Wang and R. B. Lee, “New cache designs for thwarting
software cache-based side channel attacks,” in Proceedings
of the 34th Annual International Symposium on Computer
Architecture, 2007.

[8] Z. Wang and R. B. Lee, “A novel cache architecture with
enhanced performance and security,” in Proceedings of the
41st Annual IEEE/ACM International Symposium on
Microarchitecture, 2008.

[9] F. Liu and R. B. Lee, “Random fill cache architecture,” in
Proceedings of the 47th Annual IEEE/ACM International
Symposium on Microarchitecture, 2014.

[10] Y. Wang and G. E. Suh, “Efficient timing channel
protection for on-chip networks,” in Proceedings of the 2012
IEEE/ACM Sixth International Symposium on
Networks-on-Chip, 2012.

[11] H. M. G. Wassel, Y. Gao, J. K. Oberg, T. Huffmire,
R. Kastner, F. T. Chong, and T. Sherwood, “Surfnoc: A
low latency and provably non-interfering approach to secure
networks-on-chip,” in Proceedings of the 40th Annual
International Symposium on Computer Architecture, 2013.

[12] A. Ferraiuolo, Y. Wang, D. Zhang, A. C. Myers, and G. E.
Suh, “Lattice priority scheduling: Low-overhead
timing-channel protection for a shared memory controller,”
in 2016 IEEE 22nd International Symposium on High
Performance Computer Architecture (HPCA), 2016.

[13] D. Sanchez and C. Kozyrakis, “Zsim: Fast and accurate
microarchitectural simulation of thousand-core systems,” in
Proceedings of the 40th Annual International Symposium
on Computer Architecture, 2013.

[14] P. Rosenfeld, E. Cooper-Balis, and B. Jacob, “DRAMSim2:
A cycle accurate memory system simulator,” IEEE
Computer Architecture Letters, 2011.

[15] W. Zuravleff and T. Robinson, “Controller for a
synchronous dram that maximizes throughput by allowing
memory requests and commands to be issued out of order,”
May 13 1997. US Patent 5,630,096.

[16] F. Liu, Y. Yarom, Q. Ge, G. Heiser, and R. B. Lee,
“Last-level cache side-channel attacks are practical,” in 2015
IEEE Symposium on Security and Privacy (SP), 2015.

[17] C. Percival, “Cache missing for fun and profit,” in
Proceedings of BSDCan, 2005.

[18] D. J. Bernstein, “Cache-timing attacks on AES,” tech. rep.,
2005.

[19] R. Martin, J. Demme, and S. Sethumadhavan, “Timewarp:
Rethinking timekeeping and performance monitoring
mechanisms to mitigate side-channel attacks,” in
Proceedings of the 39th Annual International Symposium
on Computer Architecture, 2012.

[20] B. Saltaformaggio, D. Xu, and X. Zhang, “BusMonitor: A
hypervisor-based solution for memory bus covert channels,”
in Proceedings of 6th European Workshop on Systems
Security (EuroSec), 2013.

[21] D. Zhang, A. Askarov, and A. C. Myers, “Predictive
mitigation of timing channels in interactive systems,” in
Proceedings of the 18th ACM Conference on Computer and
Communications Security, 2011.

[22] C. W. Fletchery, L. Ren, X. Yu, M. V. Dijk, O. Khan, and
S. Devadas, “Suppressing the oblivious RAM timing channel
while making information leakage and program efficiency
trade-offs,” in 2014 IEEE 20th International Symposium on
High Performance Computer Architecture (HPCA), 2014.

[23] O. Goldreich and R. Ostrovsky, “Software protection and
simulation on oblivious RAMs,” Journal of the ACM,
vol. 43.


