
Lattice Priority Scheduling: Low-Overhead
Timing-Channel Protection for a Shared Memory Controller

Andrew Ferraiuolo1, Yao Wang1, Danfeng Zhang2, Andrew C. Myers1, G. Edward Suh1

1 Cornell University
Ithaca, NY 14850, USA

af433@cornell.edu, yw438@cornell.edu,
andru@cs.cornell.edu, suh@csl.cornell.edu

2 Penn State University
University Park, PA 16802

zhang@cse.psu.edu

ABSTRACT
Computer hardware is increasingly shared by distrusting par-
ties in platforms such as commercial clouds and web servers.
Though hardware sharing is critical for performance and ef-
ficiency, this sharing creates timing-channel vulnerabilities
in hardware components such as memory controllers and
shared memory. Past work on timing-channel protection for
memory controllers assumes all parties are mutually distrust-
ing and require timing-channel protection. This assumption
limits the capability of the memory controller to allocate re-
sources effectively, and causes severe performance penalties.
Further, the assumption that all entities are mutually distrust-
ing is often a poor fit for the security needs of real systems.
Often, some entities do not require timing-channel protec-
tion or trust others with information. We propose lattice
priority scheduling (LPS), a secure memory scheduling al-
gorithm that improves performance by more precisely meet-
ing the target system’s security requirements, expressed as a
lattice policy. We evaluate LPS in a simulated 8-core micro-
processor. Compared to prior solutions [34], lattice priority
scheduling improves system throughput by over 30% on av-
erage and by up to 84% for some workloads.

1. INTRODUCTION
Hardware has become increasingly shared among distrust-

ing parties. Cloud services like Amazon EC2 lease virtual
machines which run on the same hardware. A great deal of
trust is placed on the assumption that these VMs are com-
pletely isolated and secrets cannot be leaked between them.
Providing such isolation has been a major focus of many
research efforts [43, 30, 17, 9, 39, 6, 19]. Unfortunately,
hardware timing channels subvert the isolation provided by
virtual machines, virtual memory, and access controls.

Timing channels are not merely a speculative research prob-
lem — timing channels in the memory hierarchy have been
exploited in production EC2 servers [27]. Hunger et al. [15]
find that a covert timing channel caused by accesses to main
memory has a capacity of 500Kbps, which is greater than
the capacity of timing channels caused by caches and branch
predictors. Therefore, timing channels caused by memory
accesses are among the most attractive microarchitectural
timing-channel vulnerabilities for attackers to exploit.

Existing approaches to remove timing channels in mem-
ory controllers are costly. Temporal Partitioning (TP) [34]
addresses timing channels in shared memory controllers. It

supports a security model which assumes all entities are mu-
tually distrusting, and closes all timing channels among these
entities. By enforcing this model in a system with 8 cores,
TP increases memory latency by 5.39x compared to that of
the baseline on average, and reduces system throughput by
up to 80%. Fixed Service (FS) [29] memory scheduling im-
proves upon TP with several optimizations. However, it still
assumes a security model in which entities are mutually dis-
trusting, and can have significant overheads.

Our insight is that for many systems, complete isolation is
not only unnecessary, but also hurts performance. For exam-
ple, consider a cloud computing service which leases out a
mix of low-assurance and high-assurance VMs, and charges
a higher cost for high-assurance VMs. Although preventing
information leakage from a high-assurance VM is necessary,
there is no reason to prevent leakage from a low-assurance
VM. TP enforces security conservatively by preventing all
leakage. However, in practice this conservative model limits
performance.

We propose a new memory scheduling algorithm called
lattice priority scheduling (LPS), which significantly reduces
the overhead of timing-channel protection for main memory
by precisely enforcing the security needs of the target sys-
tem. This new memory controller enforces a security model
in which some information flows between processes are per-
mitted. Applied to the previously mentioned cloud comput-
ing scenario, this algorithm would prevent leakage from the
high-assurance VMs but not from the low-assurance VMs.
In doing so, it can find a more efficient schedule, thereby
improving performance while meeting the security needs of
the system just as well as prior, more restrictive approaches.

Lattice priority scheduling enforces policies described in
the lattice model of security [11]. In the lattice model, rather
than treating all entities as mutually distrusting, protection
can be applied in just one direction between some entities.
That is, timing channels can be prevented from entity A to
entity B, but not from B to A. The lattice model has been
widely adapted in programming language [5] and software
system security [39] domains since it is highly expressive
and can capture the security needs of many systems.

LPS enforces policies in the lattice model precisely, per-
mitting scheduling decisions to be made based on run-time
program behavior. For example, if timing information can
flow from B to A, LPS can consider the dynamic resource
utilization of B when scheduling requests from A. In past

978-1-4673-9211-2/16/$31.00 ©2016 IEEE

Hypervisor

CPU1

VM 1

$

Shared Cache

Shared Memory

VM 2 VM 3 VM 4

C2

$ $

CPU2 CPUn

C1

Figure 1: System model

approaches which enforce total isolation, such dynamic in-
formation cannot be used, because doing so would leak in-
formation from B to A.

By responding to run-time program behavior, LPS im-
proves performance compared to prior approaches signifi-
cantly. Simulations of an 8-core out-of-order processor show
that lattice priority scheduling increases system throughput
by up to 84% for some workloads and by 30% on average,
compared to TP.

This work is the first to describe an algorithm for allo-
cating a shared, microarchitectural resource among entities
while providing timing-channel protection under a security
policy expressed in the lattice model. It does so precisely,
leveraging permissible flows to improve the efficiency of al-
location decisions. The lattice policy is highly expressive,
and the proposed algorithms support the full generality of
the lattice model.

Section 2 presents the target system and threat model,
and discusses timing channels in main memory. Section 3
presents lattice priority scheduling. Section 4 provides back-
ground on the lattice model of security. Section 5 generalizes
lattice priority scheduling to support arbitrary lattice model
policies. Section 6 discusses how LPS is implemented in
hardware. Section 7 evaluates LPS. Related work is dis-
cussed in Section 8, and finally, the paper concludes with
Section 9.

2. MAIN-MEMORY TIMING CHANNELS

2.1 System Model
This work considers a multi-core processor with two or

more cores connected to a shared memory as shown in Fig-
ure 1. The cores may also share caches, on-chip networks,
and other hardware components. The architecture allows
processes to be grouped into security classes according to
their security needs. In Figure 1, the class C1 does not re-
quire timing protection from C2. However, C2 distrusts C1,
so timing channels that leak information from C2 to C1 must
be prevented. As discussed in Section 4, lattice priority
scheduling supports a wide range of policies describing trust
relationships of this form.

This work assumes the target system has a conventional

Addr

Cmd

Data

Rank 1 Rank 2

Control
Logic

Queues

Banks

Row Buffer

Figure 2: A Conventional DRAM Channel

DRAM and memory controller architecture. A modern pro-
cessor has multiple memory channels, the structure of which
is shown in Figure 2. Each channel is managed by a sepa-
rate memory controller. Each memory controller has a set
of queues of pending memory transactions (read or write re-
quests) and control logic which governs the use of the ad-
dress, command, and data buses. A DRAM channel is di-
vided into several sets of chips, called ranks, that work in
unison to handle each memory transaction. Ranks are further
divided into banks. Each bank has an array of DRAM cells
which are broken into rows and columns, and each bank has
a row buffer that stores the most recently used row. Banks
and ranks both improve the parallelism of main memory.

2.2 Threat Model
Lattice priority scheduling removes all timing channels

that are introduced when a group of coresident processes
share main memory. In particular, this work addresses tim-
ing side channels, as well as timing covert channels. In
a side-channel attack, a victim unintentionally leaks a se-
cret to the attacker through timing. For example, Wang et
al. [34] present a side-channel attack in which the number
of “1s” in a private RSA key is leaked through shared mem-
ory traffic. Timing channels enable covert-channel attacks
in which one attacker intentionally communicates a secret to
another attacker through event timing to bypass a commu-
nication restriction. Wang et al. [34] also present a covert-
channel attack where two attackers share a memory. One at-
tacker sends a message by modulating its memory demand.
The other attacker issues a large number of memory requests
(which interfere with the first attacker’s requests), and then
measures its memory throughput to receive the message.

LPS addresses a threat model which includes attackers
that can run arbitrary programs on the target system and can
measure the timing of their own events (e.g., program ex-
ecution time). The scheduling algorithm is assumed to be
public and known to the attacker. Attackers can leverage this
information to improve their ability to correlate scheduling
decisions with secrets. The threat model includes sophisti-
cated attackers capable of filtering out noise and performing
statistical analysis when carrying out both covert and side-
channel attacks.

It is assumed that there is adequate protection for explicit
communication (such as virtual memory and access con-
trols). The attackers lack physical access to the target sys-
tem, and therefore cannot execute physical side-channel at-
tacks, such as those which exploit power side channels.

2

2.3 Timing-Channel Attacks in Memory
Conventional memory controllers have timing-channel vul-

nerabilities due to 1) queue interference, 2) row buffer state,
and 3) contention for DRAM resources [34]. In conventional
memory controllers, transactions from distrusting processes
are placed in a shared queue, where they can interfere, caus-
ing measurable delays. Memory banks store the most re-
cently used row in a row buffer for faster access. An attacker
can learn that a particular row was used recently if it gets a
row buffer hit. Finally, DRAM devices have a number of
resources (such as ranks, banks, and the address, command,
and data buses) which can service a finite number of simul-
taneous requests. Contention for these resources also causes
timing channels.

2.4 Temporal Partitioning
Temporal Partitioning (TP) [34] addresses timing chan-

nels in main memory. Fixed Service (FS) [29] improves
upon TP, but uses the same high-level approach. This ap-
proach prevents all timing leakage between security classes,
which are groups of processes or virtual machines. Mem-
ory transactions are tagged to indicate the security class that
owns them. Queue interference is removed by providing
separate queues for each security class or statically parti-
tioning a shared queue. The row-buffer timing channel is
addressed by using a closed page policy, which precharges
the row buffer after each read or write command to clear
the buffer. The secure memory controller presented in this
paper also uses duplicated/partitioned queues and a closed
page policy to address these problems.

TP addresses the contention timing channel through time-
division multiplexing. Memory transactions are issued on a
fixed, static schedule. Each security class is given a turn,
which is a time slot in the static schedule during which it is
permitted to issue requests, as illustrated in Figure 3. Each
of the three security classes is allocated a turn in the static
schedule. The duration of a turn can be configured to im-
prove performance. The security class currently scheduled
with a turn is said to be active. If the active security class
has no useful work, the turn is wasted. No other security
class can use the turn since this would indicate the memory
usage of the originally scheduled security class.

Memory transactions require a variable number of cycles
to complete. Since the presence of an in-flight transaction
from one class could influence the timing of transactions
owned by another, any in-flight transactions must be drained
before the turn for the next class starts. This is done using a
period at the end of the turn called dead time, which is long
enough to drain the worst-case memory transaction. During
dead time, the turn owner can no longer issue transactions.
The turn length must be at least as long as dead time. Dead
time is indicated in Figure 3 by a dark gray segment at the
end of each turn.

2.4.1 Performance of Temporal Partitioning
Unfortunately, Temporal Partitioning is costly. With 8

cores, TP increases the memory latency by 5.39x compared
to the baseline on average, and reduces system throughput
(STP) by up to 80%. Additionally, we simulated a 4-core
system with timing-channel protection mechanisms applied

C1 C2 C3

} } } }Dead Time

{Queues

Time

}Turn

Figure 3: A temporal partitioning schedule with three secu-
rity classes.

a
st

_a
st

h
2

6
_h

m

a
st

_h
2

6

sj
g

_h
2

6

sj
g

_s
g

j

m
cf

_a
st

lib
_a

st

m
cf

_m
cf

m
cf

_l
ib

lib
_l

ib

Cache Bus TemporalPartitioning

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

N
o
rm

a
liz

e
d

 S
T
P

Figure 4: System throughput with off-core protection mech-
anisms normalized to throughput of insecure baseline.

to all major off-core resources including the shared cache,
the interconnects, and the memory controller. The shared
caches are statically partitioned, the interconnects are time-
multiplexed with a fixed, round-robin schedule, and TP is
used to protect the memory controller. Figure 4 shows the
system throughput with each of these protection mechanisms
enabled individually. The throughput is normalized to the
system throughput of the same system with all protection
mechanisms disabled. Temporal Partitioning is the great-
est source of performance overhead and accounts for over
81% of the total overhead of the system. This implies that
memory controller protection is the performance bottleneck
for systems that remove timing channels through shared off-
core hardware resources.

In TP, time multiplexing is the primary source of perfor-
mance overhead. A transaction can only be issued during the
turn of its security class, but not during dead time. Transac-
tions that arrive outside this period must wait in the queue.
Therefore, TP increases queueing delay: the part of memory
latency transaction waits in the queue. The other component
of memory latency is in-flight time, which is the time from
when the transaction issues from the queue until it com-
pletes. TP increases queueing delay in several ways.

Dead time reduces the total usable bandwidth compared to
a conventional memory controller, increasing queueing de-
lay. With the DRAM timing parameters used in this paper,
each turn must include 43 cycles of dead time. If the mini-
mum turn length is used, transactions are issued at a rate of
at most one per 44 memory cycles. Though the turn length
can be increased to improve the bandwidth, the bandwidth-
latency tradeoff favors shorter turns. Increasing the turn
length increases the latency imposed on transactions issued

3

by a security class other than the active one. Prior studies
[34, 29] confirm that shorter turn lengths achieve the best
performance.

In addition to reducing the total usable bandwidth, schedul-
ing constraints restrict TP from efficiently allocating mem-
ory bandwidth among security classes. If the active security
class has no pending transactions, no other security class can
be scheduled in its place as this would leak the demand of
the originally scheduled class. Instead, no transactions are
issued and memory bandwidth is wasted. Generally, this
means that under the security model of TP, the scheduler
cannot respond to the dynamic resource needs of each se-
curity class leading to performance overhead. We call this
problem demand imprecision.

Even if bandwidth is allocated to security classes propor-
tionally to the memory demand from each security class,
static scheduling still imposes restrictions which lead to de-
lays. If a transaction from one security class is enqueued
when a different security class is active, it is delayed until its
security class becomes active.

3. LATTICE PRIORITY SCHEDULING
This section proposes a secure scheduling algorithm, called

lattice priority scheduling (LPS), that enables a timing-safe
memory controller to precisely meet the security require-
ments of the system, thereby improving performance. LPS
improves performance by enforcing security policies which
include uni-directional protection – in other words, policies
which allow information to flow in just one direction be-
tween security classes. LPS leverages uni-directional pro-
tection to address demand imprecision, remove delays due to
static scheduling, and reduce dead time. For simplicity, lat-
tice priority scheduling is first introduced for a system with
two security classes, L and H. Information is permitted to
flow from L to H, but not from H to L. Section 5 generalizes
LPS to support arbitrary lattice policies.

Lattice priority scheduling improves upon TP in two ways.
First, it schedules security classes dynamically. Dynamic
scheduling allows LPS to respond to the run-time resource
demands of applications, and removes delays caused by static
scheduling. Second, it uses dead time elision, which im-
proves the total amount of usable memory bandwidth by re-
ducing the dead time.

To illustrate how lattice priority scheduling addresses de-
mand imprecision, Section 3.1 proposes a simpler schedul-
ing algorithm based on the concept of dynamic bandwidth
allocation. Then, Section 3.2 extends this idea with a fully
dynamic schedule, further improving performance.

3.1 Dynamic Bandwidth Allocation
Lattice priority scheduling uses dynamic bandwidth al-

location to alleviate demand imprecision. To illustrate dy-
namic bandwidth allocation, we introduce a scheduling al-
gorithm called dynamic bandwidth scheduling (DBS). DBS
begins with a static schedule as in TP. Then, at the start of
L’s turn, DBS checks if L has pending transactions. If it does
not, the turn is given to H.

Figure 5 shows an example run of DBS. Initially, the TDM
schedule is H,L, · · · The contents of the queues at the start
of L’s turn at time tL are shown. Since L has no transactions

H L

Time
tL

Turn stolen

H

H H H

HL

Figure 5: Dynamic bandwidth allocation example.

Algorithm 1 Priority Scheduling

1: procedure SELECTTURNOWNER
2: turn_owner←⊥
3: while (turn_owner 6=> and (

QueueEmpty(turn_owner) or
not HasBandwidth(turn_owner))) do

4: turn_owner←AscendFrom(turn_owner)
5: end while
6: ConsumeBandwidth(turn_owner)
7: return turn_owner
8: end procedure

in its queue at tL, its turn is reallocated to H which does have
pending requests.

The decision to reallocate the turn from L cannot depend
on H. If neither have queued transactions at the start of L’s
turn, L’s turn is still given up so that information about H is
not leaked to L. The decision to reallocate the turn is final.
If L’s turn is given up, but it enqueues a transaction later in
that turn, L cannot reclaim its turn. If the scheduler allowed
turns to be reclaimed, it would leak whether or not the secu-
rity class which received the bandwidth (H) actually issued
a transaction.

Thus, DBS adds a small overhead not present in TP. If
neither L nor H have pending transactions at the start of L’s
turn, it will be given to H. Then, if L enqueues a transaction
later in the turn, it cannot be issued. In this case H does
not make use of the turn. In TP, L would have kept its turn.
However, experiments confirm that this case is exceptional
and the overhead is small.

3.2 Dynamic Scheduling
The performance of DBS can be improved by scheduling

security classes dynamically. The lattice priority schedul-
ing algorithm applies the concept dynamic bandwidth allo-
cation to a fully dynamic schedule, removing delays caused
by static scheduling. It is strictly better than DBS. At a high
level, lattice priority scheduling prioritizes L over H, and H
is scheduled when L has no pending transactions or when L
reaches a bandwidth limit.

4

H L

Time
t1 t2t0

??

Priority Schedule

??

L HH H

t3

Epoch 1 Epoch 2

Queues at
Time t1

New Req
from L

New Reqs
from H

H L

Queues at
Time t2

?? ??

Figure 6: Lattice priority example.

Since memory transactions take multiple cycles, memory
resources must still be granted at the granularity of a turn (in-
cluding dead time), so that in-flight transactions from differ-
ent classes do not interfere. Instead of using a static sched-
ule, the arbiter selects which security class is active each turn
using Algorithm 1.

The algorithm searches for the lowest class (turn_owner)
with pending transactions by checking if the queue of each
class is empty. It stops when it finds a security class with
pending transactions. It would be insecure for the arbiter to
check H and then only schedule L if H did not have pend-
ing requests. In this case, L could observe whether or not
H had pending transactions. Instead, L(⊥) is the first can-
didate turn owner. Then, if the candidate turn owner has
an empty queue (QueueEmpty(turn_owner)), the algorithm
calls AscendFrom(turn_owner) to select the next security
class which can see information from turn_owner. In this
simple case with only two security classes, AscendFrom()
always returns H. Section 5 describes how AscendFrom()
works in general. The algorithm stops if there are no other
security classes permitted to see information from the candi-
date. This is true when the candidate is H(>).

If both L and H are memory-intensive, simply prioritizing
L over H would be unfair, and would lead to performance
loss for H. Further, L could execute a denial-of-service at-
tack causing H to starve. Instead, priority scheduling places
an upper bound on the number of turns that L can be granted
within an epoch, which is a static, fixed-length interval ex-
pressed as a number of turns. As Algorithm 1 searches for
a turn owner, it calls HasBandwidth() which returns true
when the argument class has turns left in the epoch. When
the turn owner is selected, it calls ConsumeBandwidth() to
indicate that it has used up a turn. Counters which track the
remaining bandwidth for each security class are reset at the
start of each epoch. The epoch length and the maximum
number of turns granted to each security class can be ad-
justed depending on static characterizations of the programs,
as long as static characterization does not violate security.

Dynamic scheduling with an epoch of 2 turns is similar to
turn stealing with the static schedule L,H, · · · , but dynamic
scheduling is strictly better. In both cases, H is granted at
least one out of every two turns. When L has few requests,

H ...L LH

H ...L LH

Time

H

H

Figure 7: Dead-Time Elision.

H is granted more turns with either approach. However, pri-
ority scheduling is more flexible. Figure 6 demonstrates
the additional flexibility of lattice priority scheduling with
an example. Assume the epoch length is 2 and L is granted
at most 1 turn per epoch. The queues for H and L at time t0
are empty. Since L has no pending requests, H is allocated
the turn even though H has no pending requests. Otherwise,
L could learn that H did not have a request.

Some time between t0 and t1, a new request is enqueued
by L. At the start of time t1, both H and L have pending re-
quests. Since L has higher priority than H, and L has not con-
sumed its maximum of one turn during the first epoch, lattice
priority scheduling schedules L. If instead, DBS was used
with the static schedule L,H, · · · , the first turn would have
been reallocated to H since L had no useful work. However,
since the second turn is statically scheduled to H, the turn is
not given to L even though H has no pending requests. This
is wasteful since L does have pending requests and could
make use of the turn.

Continuing with the example run with dynamic schedul-
ing, at time t2 the second epoch begins and there are two
new requests enqueued by H, but none enqueued by L. Both
turns are given to H since L has no pending requests. Since
this decision depends only on the fact that L has no requests,
L learns nothing about whether or not H had any requests.
LPS responds to dynamic program behavior just as well as
DBS, but can also remove additional delays.

3.3 Dead Time Elision
Since H can learn about L, it is permissible for transac-

tions from L to interfere with H. Transactions from L can
remain in-flight at the start of H’s turn, and the dead time
between them can be elided (skipped) as shown in Figure 7.
By eliding the dead time (shown in gray) during L’s turn, L
can continue issuing transactions until the turn ends. How-
ever, the dead time is still needed at the end of H’s turn to
prevent transactions from H from interfering with L.

For the system with classes L and H, dead times can be
elided whenever L is currently scheduled. The owner of the
next turn could be either L or H, but information is permitted
to flow from L to either L or H. Section 5.2 generalizes dead-
time elision to support arbitrary security policies.

4. LATTICE SECURITY MODEL
This work leverages the widely accepted lattice model

[11] of security to precisely capture the security needs of
a wide range of systems. Under the lattice model, entities
in a system are assigned a security class. A set of secu-
rity classes SC, together with an ordering relation v, form
a lattice 〈SC,v〉. Information is allowed to flow from class

5

public

secret

top secret

(a) MLS

H

M1

L

M2

(b) Diamond

>

⊥

C3C2C1 C4

(c) TP Policy

Figure 8: Example lattice policies

A ∈ SC to B ∈ SC if and only if A v B holds. The relation,
v, must be reflexive, transitive, and antisymmetric.

Since lattices are a type of partial order, not all security
classes are necessarily ordered — they may be incompara-
ble. Security classes A and B are incomparable if neither
A v B nor B v A hold. The meet of A and B, written AuB,
is the greatest class less than both A and B. Similarly, the
join of A and B, written AtB, is the least class greater than
both A and B. For a partial order to be a lattice, taking the
meet or join of any two classes in the lattice must result in
a class which is also in the lattice. The classes > and ⊥ de-
note the greatest and least of all classes in the sense that for
all classes A, Av> and ⊥v A hold. The terms “A is lower
than B” and “A is higher than B” are occasionally used as
abbreviations for Av B and Bv A throughout this paper.

The lattice model is highly expressive, and it can be used
to describe the needs of many practical systems. For exam-
ple, it can be used to describe the Bell-Lapadula multi-level
security (MLS) model [21] in which information can flow
from public to secret and from secret to top secret.
Figure 8a shows the MLS model in a common pictorial rep-
resentation of a lattice policy. The arrows show the direction
in which information is allowed to flow. For example, an ar-
row points from public to secret since publicv secret.
Since the lattice is transitive, it is implied that information
can flow from public to top secret as well. This policy is
totally ordered since it contains no incomparable elements.

Incomparable security classes are useful for describing
mutual distrust. For example, with the “diamond” lattice
shown in Figure 8b, M1 and M2 are incomparable and infor-
mation cannot flow in either direction between them. How-
ever, information from L can flow to M1 or M2 and infor-
mation from both M1 and M2 can flow to H. These security
classes might be used to describe a cloud system with several
low-security VMs (L), two high-security VMs that require

timing-channel protection from all other VMs in the system
(M1 and M2), and a cloud owner class (H) that includes the
hypervisor and scheduling/analysis programs that compute
using input data from all the clients.

In this paper, we assume that a security class is assigned
to each process (e.g., by the OS or hypervisor). Memory re-
quests are queued and scheduled according to the security
class of the process that issued them. The policy determines
what scheduling restrictions are needed for protection. The
security policy supported by TP can also be described in the
lattice model as shown in Figure 8c for a system with 4 se-
curity classes. Each of the four security classes are incom-
parable, so the scheduling decisions made by the memory
controller must be heavily restricted. The security classes >
and ⊥ are not actually used, but they are needed formally to
represent the join and meet of the other classes. Given this
lattice, the approaches described in this paper will behave
equivalently to TP.

5. MEMORY PROTECTION UNDER THE
LATTICE MODEL

Section 3 presents lattice priority scheduling for a system
with two security classes, LvH. Practical systems may con-
tain any number of entities, some pairs of which may be mu-
tually distrusting. This section generalizes LPS to support a
wider range of systems by leveraging the lattice model

5.1 Generalized Dynamic Scheduling
When scheduling security classes, it is preferable to sched-

ule classes that actually have pending transactions. In a mem-
ory controller that prevents all timing channels, the time that
one class is scheduled cannot depend on the contents of an-
other class’s queue. Under a policy in the lattice model, it
is permissible for the timing of a security class to depend on
the demand from any lower class.

To make the best use of memory bandwidth, LPS searches
through the security classes until it finds one that has a pend-
ing transaction. A sequence of classes, C1,C2, · · · ,Ci that
are searched for pending transactions is defined as a lattice
traversal. An attacker at class Ci that gets scheduled can
observe (through timing) that classes C1, · · · ,Ci−1 must not
have had transactions. Therefore, Ci must be higher than all
those checked before it for this to be secure. That is, the se-
quence in which security classes are searched must form an
ascending chain.

As an example, consider three classes, LvM v H. If the
scheduler checks L and finds that it has no transactions, it
would be safe to schedule either M or H. If the scheduler
then checks M and finds it also has no transactions, it can
safely check H. However, if H is checked first, it would be
insecure to check M, since this creates a timing dependence
of M on H. Therefore, the only secure traversal that checks
all classes is L,M,H.

Since lattices are partial orders, there may be incompara-
ble classes. That is, classes A,B ∈ SC where neither A v B
nor Bv A is true. Whenever there are incomparable classes,
there are multiple ascending chains, and there is no ascend-
ing chain which includes all security classes.

6

C5

C2 C3 C4

C1

C6

C6

C5

C3C2 C4

C1C1C1C1 C1C1

1

2

111

1 1 1

Figure 9: Tree structure for selecting traversals in the lattice
priority scheduling algorithm.

For example, in Figure 8b, both L,M1,H and L,M2,H
are ascending chains. For fairness it is necessary to en-
sure that both M1 and M2 are scheduled, so both traversals
must be used. Though care must be taken — information
from M1 and M2 cannot be used to decide which ascend-
ing chain to use (e.g., it is insecure to simply pick the one
with pending transactions). However, both M1 and M2 can
see information from L since they are both above L. More
generally, a class may be chosen from among incompara-
ble classes C1,C2, · · ·Cn using information from classes at or
below C1uC2u·· ·uCn.

The lattice priority scheduler simply alternates between
incomparable classes in a round-robin fashion. Consider the
lattice in Figure 8b with two incomparable classes M1 and
M2 above class L. Assume all classes have turns remaining
in this epoch. The first time L has no pending requests, M1 is
granted the turn regardless of whether or not M1 or M2 actu-
ally have requests. The next time, M2 is granted the turn, and
the time after that M1 is scheduled, and so on. The decision
of which incomparable class to check depends only on how
often L has an empty queue, which is acceptable for both M1
and M2 to learn.

Using the above intuition, lattice priority scheduling is
generalized to support any lattice. AscendFrom in Algo-
rithm 1 uses a tree structure as shown in Figure 9 to select
an ascending chain. Each node of the tree is a security class.
Each parent is directly less than its children (i.e. it is covered
by its children). Each node has a counter that increments up
to the number of children it has (i.e., the number of classes
that it is directly less than in the lattice). Whenever a node
is reached during a traversal, its counter is incremented and
then used as an index to select from among its children.

In the example shown in Figure 9, class C5 is less than
three incomparable classes C2, C3, and C4, so it has a counter
that increments from 1 to 3. Assume all classes have band-
width remaining (turns left) during this epoch. First, C6 is
checked. Since it has no requests, it is not scheduled and
C5 is checked. Since C5 has no requests either, it is also not
scheduled. In this iteration, the counter is 2 so the next class
to be offered the turn is C5’s second child, C3.

5.1.1 Fairness for General Policies
To prevent starvation and improve fairness, security classes

are guaranteed a minimum number of turns within each epoch.

Algorithm 2 Start-of-Turn Turn Allocation

1: procedure ALLOCATETURN
2: if IsTurnStart() then
3: active_class←SelectTurnOwner()
4: end if
5: end procedure
6: procedure ELIDEDEADTIME
7: lower_bound←>
8: for C ∈ {C′|C′ v active_class} do
9: if HasBandwidth(C) then

10: lower_bound← lower_bound uC
11: end if
12: end for
13: return active_class v lower_bound
14: end procedure

To enforce this minimum, each class C is given an additional
bandwidth counter representing the number of turns C can
become active this epoch. The counter decreases whenever
C uses a turn that it is offered. It is initially the maximum
number of turns C can be active in an epoch, which is

Tepoch− ∑
Ci∈C+

Tmin(Ci)

where Tepoch is the number of turns in an epoch, C+ is the set
of classes that C is less than, or {Ci|C <Ci}, and Tmin(Ci) is
the minimum number of turns guaranteed to Ci in an epoch.

When selecting the next active class, Algorithm 1 calls
HasBandwidth(turn_owner) to check if the candidate class,
turn_owner, has used its maximum number of turns during
this epoch. If the bandwidth counter of turn_owner is zero,
HasBandwidth(turn_owner) returns false, preventing
turn_owner from being scheduled. When turn_owner is
scheduled, ConsumeBandwidth(turn_owner) decrements the
bandwidth counter of turn_owner.

5.2 Generalized Dead Time Elision
In general, dead time can be elided whenever the sched-

uler is certain that the currently scheduled security class will
be less than or equal to the next security class to become ac-
tive (even though the next class may not have been decided
yet). The time that the next active security class is decided
affects whether or not dead time can be elided. There are
two suitable choices: 1) at the start of the turn being allo-
cated and 2) at the start of when the dead time would begin
if it is not elided.

Algorithm 2 shows the first approach in which the next
active security class is decided at the start of the turn. In
Algorithm 2, AllocateTurn decides which security class is
active at the start of each turn by calling SelectTurnOwner
which is defined in Algorithm 1. Then, ElideDeadTime de-
termines if dead time can be elided at the end of this turn.
If all the security classes below the currently active one have
already consumed all of their bandwidth for this epoch, none
of them can become active next turn. In this case, the cur-
rent active class will always be less than or equal to the next
one, so dead time can be skipped. ElideDeadTime checks
for this condition.

7

Algorithm 3 Dead-Time Turn Allocation

1: procedure ALLOCATETURN
2: if IsTurnStart() then
3: active_class←next_active
4: end if
5: end procedure
6: procedure ALLOCATENEXT
7: if IsStartOfDeadTime() then
8: next_active← SelectTurnOwner()
9: end if

10: end procedure
11: procedure ELIDEDEADTIME
12: return active_class v next_active
13: end procedure

Algorithm 3 shows the second approach, in which the
next active class is decided just before dead time will be-
gin if it is needed. It uses AllocateNext to pick the next
active class just before the start of dead time. Then it uses
ElideDeadTime to decide if dead time can be skipped. Now
the class which is scheduled next is known at the time when
ElideDeadTime is called, so it can simply compare the ac-
tive class to the next one. At the start of the turn it makes the
previously decided next active class (next_active) the new
active class (active_class).

Dead time may be dropped more often when turns are al-
located at the start of dead time. However, there is a trade-
off. When the turn is allocated sooner, the turn is “locked in”
earlier. If in a system with classes Lv H, L had no requests
at the start of dead time, H would be scheduled next regard-
less of whether or not H had requests. However, if requests
from L arrive later, L cannot reclaim the turn.

6. HARDWARE IMPLEMENTATION
This section describes how the lattice priority scheduling

algorithm is implemented in hardware. As with TP, each
physical thread (i.e. thread in SMT) has a register located in
the core which stores a security ID representing the security
class of the software running in that thread. The memory
controller has a number of pending transaction queues equal
to the number of threads. Each queue has a register which
stores a security ID indicating its owner. The security ID
registers in the cores and in the memory controller are man-
aged by the trusted hypervisor or OS. Access controls should
prevent modifications by untrusted software.

Unlike TP, lattice priority scheduling supports an arbitrary
policy specified in the lattice model. The lattice policy is
stored in a dedicated table in the memory controller. The ta-
ble stores a 1-bit entry for each pair of security classes (A,B)
indicating whether or not A v B is true. The table is initial-
ized and managed by trusted software, and access controls
should prevent modifications by untrusted software.

LPS requires registers to configure the number of turns
in the epoch and a counter to track the current turn in the
epoch. Registers set the maximum bandwidth per epoch for
each security class. A set of counters track the bandwidth
consumed in the current epoch by each security class.

Unlike TP, which decides the active security class stati-

cally, LPS decides the active class for each turn dynamically.
Doing so requires checking the queues and bandwidth coun-
ters for each security class. This information can be checked
for each security class in parallel. A priority encoder is used
to select the next turn owner based on the security policy.

While in general a system might have many security classes,
the hardware data structures just described need only sup-
port as many security classes as there are physical threads.
The security classes can be virtualized to support arbitrar-
ily many classes. The maximum number of simultaneously
running security classes is the number of physical threads.
Since the number physical threads is small, the area over-
head of lattice priority scheduling is small as well. For ex-
ample, to support a 64 thread system, the policy table would
require 512B of storage.

7. EVALUATION

7.1 Methodology
The performance of lattice priority scheduling is evalu-

ated in a multicore out-of-order processor using a simulator
based on Gem5 [8] integrated with DRAMSim2 [28]. Sim-
ulation parameters are given in Table 1. The experiments
simulate 4 cores each with private 32KB L1I/D caches and a
private 256kB L2. In our experiments, each core runs at most
one security class concurrently. In practice, there may be
as many simultaneously executing security classes as there
are physical threads. Each core has a private 1MB last-level
cache (LLC). Contemporary server processors have a shared
LLC with 1MB per thread [16]. These experiments use pri-
vate caches so that only the direct performance improvement
of the memory controller is measured, and changes in cache
interference patterns are not measured.

Our experiments use multiprogram workloads, and we de-
scribe our methodology precisely enough that it can be re-
peated [18]. The simulations are fast-forwarded until each
benchmark has executed at least 1 billion instructions. Bench-
marks may reach this threshold at different times, meaning
the benchmarks which run faster will be fast-forwarded for
more instructions. However, detailed simulations begin from
the same point for each workload and for all system config-
urations. After fast-forwarding, results are collected with a
detailed simulation until each core has executed for at least
100M instructions. Statistics are collected for each bench-
mark at the 100M instruction mark, but all benchmarks con-
tinue to run until the simulation ends, so that there is inter-
ference for the entire simulation of the insecure baseline.

The performance evaluation metric is system throughput
(STP) which is the aggregate normalized IPC of programs in
the multiprogram workload. It is computed as

n

∑
i=1

IPCMP,i

IPCSP,i
, (1)

where IPCMP,i is the IPC of the ith program in the workload
when run in parallel with the others, and IPCSP,i is the IPC
for the same program when run alone in the same system.

The experiments use multiprogram workloads comprising
SPEC benchmarks. Workloads are selected to capture dif-
ferent mixes of memory intensity. Some workloads use the

8

Processor
Cores and Frequency 4/8cores, 2GHz
Gem5 core model “O3”
ISA ARMv8-A

Cache Hierarchy
L1d / L1i 32kB 2-way 2 cycles
L2 private 256kB 8-way 7 cycles
L3 private 1MB 16-way 10 cycles
Network Clock 1GHz

Memory
Size and Frequency 8GB 667MHz
Channels, ranks, and banks 1, 8, 8

Table 1: Simulator configuration parameters.

H1

Core 3

H2

Core 4

L

Core 1 Core 2

Figure 10: Security policy for performance evaluation.

naming convention bench1_bench2 to indicate that bench1
is executed on odd-numbered cores and bench2 is executed
on even-numbered cores. Table 2 summarizes the remaining
workloads by listing benchmarks in order of core number.
Note that order matters since LPS schedules security classes
differently, and cores may be in different security classes.

The security policy affects the performance of lattice pri-
ority scheduling. Unless otherwise stated, these experiments
use the policy shown in Figure 10, which captures the se-
curity requirements of a cloud computing environment with
both high and low-confidentiality VMs. Standard VMs run
in the security class L, and VMs which require timing-channel
protection run in security classes H1 and H2. The classes H1
and H2 are incomparable and above L. This policy guaran-
tees that information cannot leak out of H1 or H2 to any other
VM, but relaxes protection for L. Cores 1 and 2 run appli-
cations with security class L. Cores 3 and 4 run in security
classes H1 and H2 respectively. The top security class above
H1 and H2 (not shown) is not used, and is not allocated any
bandwidth.

The turn lengths are chosen based on prior findings that
turn lengths that are close to the minimum (the dead time)
achieve better performance [34, 29]. The dead time is 43
memory cycles. For lattice priority scheduling, the turns
are 44 cycles. In all experiments, TP uses three incompara-
ble security classes where Core 1 and 2 share a class. For
TP, the same turn length (44) is used for security classes
containing one program. Since the first security class runs
two programs, the turn length is doubled to accommodate
the bandwidth demands of both programs. The lattice pri-
ority scheduler uses an epoch of 4 turns with a minimum
of 1 turn reserved for each of H1 and H2 per epoch. This
closely follows the configuration used for TP; assuming L
has high memory demand it will consume 2 turns per epoch,
and if these turns are adjacent, the dead time between them
is elided, mirroring the behavior of a turn that is twice the
length of the minimum.

Workload name Benchmarks
mix_1 astar x2, libquantum x2
mix_2 astar x3, libquantum
mix_3 h264ref, hmmer, sjeng, libquantum
mix_4 astar x2, mcf x2
mix_5 mcf x2, libquantum x2
mix_6 libquantum x2, hmmer, gobmk
mix_7 libquantum x1, astar x3
mix_8 libquantum x2, mcf x2

Table 2: Multiprogram workloads.

m
cf

_l
ib

m
cf

_a
st

lib
_l

ib

m
cf

_h
2

6

sj
g

_s
jg

h
2

6
_h

m

a
st

_a
st

m
ix

_1

m
ix

_2

m
ix

_3

m
ix

_4

m
ix

_5

m
ix

_6

m
ix

_7

m
ix

_8

4 Cores 8 Cores

0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6
1.8

N
o
rm

a
liz

e
d

 S
T
P

Figure 11: Normalized STP as core count increases.

7.2 Performance and Scalability
Figure 11 studies the performance improvement of lattice

priority scheduling compared to temporal partitioning as the
core count increases from 4 to 8 cores. The performance
metric is system throughput normalized to temporal parti-
tioning. The 4 core machine uses the cloud computing pol-
icy described earlier, and the 8 core machine uses its natural
extension. In the policy for 8 cores, Cores 1–4 share the low-
est security class and Cores 5–8 are all higher than cores 1–
4 and incomparable with each other. The priority scheduler
uses dead time elision and decides the active class at the start
of the turn. Experiments show that selecting the next active
class at the start of the turn achieves better performance than
selecting the next active class at the start of the dead time. In
the best case (lib_lib), priority scheduling improves STP
by 89% and 38% for 8 and 4 cores respectively. The great-
est performance improvement is observed for this workload
because libquantum is very memory intensive. On average,
priority scheduling improves the STP compared to TP by
30% and 17% for the 8 and 4 core systems respectively.

7.3 Per-Core Performance
Figure 12 shows the speedup of each core individually.

Each bar represents the IPC of an individual core when us-
ing LPS, normalized to the IPC of that same core when using
TP. Notably, the lattice-aware memory controller improves
performance for cores 1 and 2 which run low-confidentiality
applications as well as cores 2 and 3, which run higher-
confidentiality applications. Dead time elision allows lower-
confidentiality applications to continue issuing memory re-
quests after the dead time. Priority scheduling allows the
higher-confidentiality applications to use more bandwidth
when the lower-confidentiality applications have few requests.

Lattice priority scheduling provides large performance im-
provements for some workloads in the system (77% for core
4 in mix_4), but only infrequently worsens the performance

9

m
cf

_l
ib

m
cf

_a
st

lib
_l

ib

m
cf

_h
2

6

sj
g

_s
jg

h
2

6
_h

m

a
st

_a
st

m
ix

_1

m
ix

_2

m
ix

_3

m
ix

_4

m
ix

_5

m
ix

_6

m
ix

_7

m
ix

_8

Core 1 Core 2 Core 3 Core 4

0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6

N
o
rm

a
liz

e
d

 I
P
C

Figure 12: Individual core speedup.

m
cf

_l
ib

m
cf

_a
st

lib
_l

ib

m
cf

_h
2

6

sj
g

_s
jg

h
2

6
_h

m

a
st

_a
st

m
ix

_1

m
ix

_2

m
ix

_3

m
ix

_4

m
ix

_5

m
ix

_6

m
ix

_7

m
ix

_8

Cloud Policy MLS

0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6

N
o
rm

a
liz

e
d

 S
T
P

Figure 13: STP with two different policies normalized to the
STP of the insecure baseline.

of other workloads. The only workload that non-negligibly
reduces the IPC of one core compared to TP is mix_6 which
reduces the IPC of core 3 by 8%. However, priority schedul-
ing still improves STP for this workload since the IPC of
cores 1 and 2, are increased by over 24% each.

7.4 Lattice Policies and Performance
LPS provides more flexibility than strict static scheduling

by preventing only timing channels that are specified in the
policy. Therefore, performance depends on the security pol-
icy. The performance was evaluated for a 4-core system with
strict TP and lattice priority scheduling using two different
policies. The first policy is the cloud policy used in all other
experiments. The second policy is MLS as shown in Fig-
ure 8a where cores 1 and 2 share the public security class.
As before, TP is configured so that cores 1 and 2 share a
security class.

Figure 13 shows the STP of lattice-aware scheduling nor-
malized to TP. The cloud policy is more restrictive than the
MLS policy since the MLS policy allows information to leak
from core 3 to core 4. Therefore, with the MLS policy the
improvement is higher. The MLS policy has an average im-
provement of 23% compared to TP and the cloud policy has
an average improvement of 17%.

7.5 Scheduling Decision Time
Figure 14 shows how the time when the scheduling deci-

sion is made (either at the start of the turn or at the start of
the dead time) affects performance. Allocating at the dead
time allows dead times to be dropped more often, but in-

m
cf

_l
ib

m
cf

_a
st

lib
_l

ib

m
cf

_h
2

6

sj
g

_s
jg

h
2

6
_h

m

a
st

_a
st

m
ix

_1

m
ix

_2

m
ix

_3

m
ix

_4

m
ix

_5

m
ix

_6

m
ix

_7

m
ix

_8

Start of Turn Dead Time

0.0

0.2

0.4

0.6

0.8

1.0

1.2

N
o
rm

a
liz

e
d

 S
T
P

Figure 14: Performance impact of elision and turn allocation
time.

m
cf

_l
ib

m
cf

_a
st

lib
_l

ib

m
cf

_h
2

6

sj
g

_s
jg

h
2

6
_h

m

a
st

_a
st

m
ix

_1

m
ix

_2

m
ix

_3

m
ix

_4

m
ix

_5

m
ix

_6

m
ix

_7

m
ix

_8

4 Turns 8 Turns 12 Turns 16 Turns

0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6

N
o
rm

a
liz

e
d

 S
T
P

Figure 15: STP normalized to TP as epoch length changes.

creases the chance that a lower security class will give up
its turn preemptively, and have a request later in the turn get
delayed. The bars represent the STP of priority scheduling
when turns are allocated at the start of the turn and at the
start of the dead time, each normalized to TP. For all evalu-
ated applications, deciding which security class is scheduled
next at the start of the turn is better than deciding at the start
of the dead time before that turn. This is because often, the
overhead of locking-in the turn allocation decision earlier is
greater than the improvement gained by eliding turns more
often.

7.6 Epoch Length
Figure 15 shows the STP of LPS as the epoch length is

changed. The STP is normalized to that of the insecure base-
line. The epoch length is increased from 4 to 16. Cores 3 and
4 are each given a minimum of 1 turn per epoch in all cases.
This experiment shows the tradeoff between providing more
fairness and providing more flexibility. For some workloads,
longer epochs, and therefore more flexibility, leads to better
performance. Lattice priority scheduling achieves the best
average STP across all workloads with an epoch length of
12. With this epoch length, the average system throughput
increases by 20% and by up to 63% for lib_lib compared
to TP. However, this increase in throughput comes at the ex-
pense of fairness. The IPC of cores 3 and 4 for lib_lib are
reduced by 20% compared to TP. With an epoch of length 4,
the scheduler is more fair, as can be seen in Figure 12. How-
ever, the average STP improvement is slightly lower (17%).

10

m
cf

_l
ib

m
cf

_a
st

lib
_l

ib

m
cf

_h
2

6

sj
g

_s
jg

h
2

6
_h

m

a
st

_a
st

m
ix

_1

m
ix

_2

m
ix

_3

m
ix

_4

m
ix

_5

m
ix

_6

m
ix

_7

m
ix

_8

0.5MB 1MB 1.5MB 2MB

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0
1.1
1.2
1.3

N
o
rm

a
liz

e
d

 S
T
P

Figure 16: STP of lattice scheduling normalized to TP as
cache per thread changes.

7.7 Impact of Last-Level Cache Size
The performance of both TP and lattice priority schedul-

ing depends on the size of the LLC, since fewer cache misses
means that the memory latency is incurred less often. In all
experiments, private LLCs are used so that only the direct
impact of our improvements to the memory controller are
measured, and performance changes caused by differences
in cache interference patterns are removed. Figure 16 shows
the STP of lattice priority scheduling normalized to TP as the
size of the last level cache allocated to each thread changes.
Both TP and lattice priority scheduling have the same cache
size. For workloads which are not very cache-sensitive, such
as lib_lib or ast_ast, the size of the cache has almost no
impact. In other cases, since there are fewer misses for both
systems, and since the miss penalty is higher for TP, the im-
provement from increasing the cache size is greater for TP
than for priority scheduling. The improvement of priority
scheduling compared to TP is high even for larger caches.

8. RELATED WORK
Many microarchitectural timing-channel attacks have been

demonstrated in: caches [23, 26, 7, 4, 27, 20, 1, 44, 38],
branch predictors [2, 3], on-chip networks [35], processor
pipelines [36], memory buses [13, 37], and main memory [34,
12]. This paper addresses microarchitectural timing chan-
nels in main memory.

Temporal partitioning [34] (TP) has been proposed to ad-
dress timing channels in main memory. The memory con-
troller discussed in this paper builds on TP. Shaifee et al. [29]
propose Fixed Service policies (FS) for memory controller
protection. FS is equivalent to TP configured with the mini-
mum turn length and with the addition of performance opti-
mizations. Like TP, FS assumes a mutually distrusting secu-
rity model, and cannot precisely enforce lattice model poli-
cies. The optimizations proposed by Shaifee et al. [29] can
be applied to LPS.

Fletcher et al. [12] address a timing channel in a memory
controller where the attacker can directly measure the fre-
quency of memory requests (e.g., by replacing the DRAM
with a malicious device). These attacks are present without
shared hardware, and the solution by Fletcher et al. does not
address timing channels due to shared hardware.

Several techniques have been proposed for verifying that
timing protection is enforced. GLIFT [33, 24, 32, 25, 31]

addresses hardware timing channels at the gate level. Hard-
ware description language tools with information flow type
systems [22, 42] address timing channels, since they are in-
distinguishable from other types of information flow at the
register transfer level.

Programming-language techniques can also prevent timing-
channel attacks. Zhang et al. [40, 41] address timing chan-
nels, including some hardware timing channels, with an in-
formation flow control type system. However, this approach
cannot address the timing channels through shared memory
that are prevented by LPS.

The lattice model proposed by Denning [11] is widely
used in information flow control type systems which are sur-
veyed in [5]. Since both LPS and information flow control
type systems both enforce policies expressed in the lattice
model, LPS could be provided with information from such a
type system at run-time to precisely enforce memory timing-
channel protection.

Efforts have been made to detect covert timing channels.
Hunger et al. [15] propose a formal model of timing channels
and show that whenever an attacker reads a covert channel,
it causes interference that can be used for detection. No-
tably, they also find that a covert channel caused by mem-
ory accesses has a higher channel capacity than covert chan-
nels caused by caches. Chen et al. [10] propose CC-Hunter,
which uses hardware support to detect timing channels. The
techniques proposed in this paper could be combined with a
detector by enabling the lattice memory scheduler only after
an attack has been detected.

Hu [14] proposed lattice scheduling, which uses the lat-
tice model to efficiently address timing channels in process
schedulers. Lattice scheduling schedules processes so they
increase monotonically in security class order to avoid flush-
ing caches when context switching from one process to an-
other with a higher class. Lattice scheduling was an inspira-
tion for dead time elision. Wang et al. [35] schedules on-chip
network transactions based on a total order to provide net-
work timing-channel protection. Lattice priority scheduling
similarly schedules memory transactions using a partially-
ordered security policy. However, this work is the first to en-
force a lattice policy in a memory controller. Memory trans-
actions have variable-cycle transactions that add complexity
not present in on-chip networks. The approach presented in
this work are also supports lattice policies, which are more
general than total orders.

9. CONCLUSION
This work presents a way to improve the performance

of a timing-channel protected memory controller. We lever-
age the lattice model to precisely capture the security needs
of the target system and enforce protection only as needed
among security classes. A key aspect is the ability of these
approaches to remove timing channels in only one direction
between a pair of security classes. By enforcing informa-
tion flow in just one direction, the memory controller gains
the ability to respond to run-time program behavior, signifi-
cantly increasing performance.

11

10. REFERENCES
[1] O. Aciiçmez, B. B. Brumley, and P. Grabher. New Results on

Instruction Cache Attacks. In Proceedings of the International
Conference on Cryptographic Hardware and Embedded Systems,
2010.

[2] O. Aciiçmez, c. K. Koç, and J.-P. Seifert. On the Power of Simple
Branch Prediction Analysis. In Proceedings of the Symposium on
Information, computer and Communications Security, 2007.

[3] O. Aciiçmez, c. K. Koç, and J.-P. Seifert. Predicting Secret Keys via
Branch Prediction. In Proceedings of the Cryptographers’ track at
the RSA conference on Topics in Cryptology, 2007.

[4] O. Aciiçmez, W. Schindler, and c. K. Koç. Cache Based Remote
Timing Attack on the AES. . In Proceedings of the Cryptographers’
track at the RSA conference on Topics in Cryptology, 2007.

[5] A. M. Andrei Sablefield. Language-Based Information-Flow
Security . Journal on Selected Areas in Communications, 2003.

[6] A. Baumann, M. Peinado, and G. Hunt. Shielding Applications from
an Untrusted Cloud with Haven. In Proceedings of the Conference on
Operating Systems Design and Implementation, 2014.

[7] D. J. Bernstein. Cache-Timing Attacks on AES. Tech. Report, 2005.

[8] N. Binkert, B. Beckmann, G. Black, S. K. Reinhardt, A. Saidi,
A. Basu, J. Hestness, D. R. Hower, T. Krishna, S. Sardashti, R. Sen,
K. Sewell, M. Shoaib, N. Vaish, M. D. Hill, and D. A. Wood. The
Gem5 Simulator. SIGARCH Comput. Archit. News, 2011.

[9] R. Boivie. SecureBlue++: CPU Support for Secure Execution.
Technical report, 2012.

[10] J. Chen and G. Venkataramani. CC-Hunter: Uncovering Covert
Timing Channels on Shared Processor Hardware. In Proceedings of
the International Symposium on Microarchitecture, 2014.

[11] D. E. Denning. A Lattice Model of Secure Information Flow.
Commun. ACM, 1976.

[12] C. W. Fletcher, L. Ren, X. Yu, M. van Dijk, O. Khan, and
S. Devadas. Suppressing the Oblivious RAM timing channel while
making information leakage and program efficiency trade-offs. In
International Symposium on High Performance Computer
Architecture, 2014.

[13] R. E. Fryer. The Memory Bus Monitor: A New Device for
Developing Real-time Systems. In Proceedings of the National
Computer Conference and Exposition, 1973.

[14] W.-M. Hu. Lattice Scheduling and Covert Channels. In Proceedings
of the Symposium on Security and Privacy, 1992.

[15] C. Hunger, M. Kazdagli, A. S. Rawat, A. G. Dimakis, S. Vishwanath,
and M. Tiwari. Understanding Contention-Based Channels and
Using Them for Defense. In Proceedings of the International
Symposium on High Performance Computer Architecture, 2015.

[16] Intel Corporation.
http://ark.intel.com/compare/84679,84678,84677,84676.

[17] Intel Corporation. Intel Software Guard Extensions Programming
Reference, 2014.

[18] A. N. Jacobvitz, A. D. Hilton, and D. J. Sorin. Multi-Program
Benchmark definition. In International Symposium on Performance
Analysis of Systems and Software, 2015.

[19] S. Jin, J. Ahn, S. Cha, and J. Huh. Architectural Support for Secure
Virtualization Under a Vulnerable Hypervisor. In Proceedings of the
International Symposium on Microarchitecture, 2011.

[20] J. Kong, O. Aciicmez, J.-P. Seifert, and H. Zhou. Deconstructing
New Cache Designs for Thwarting Software Cache-based Side
Channel Attacks. In Proceedings of the Workshop on Computer
Security Architectures, 2008.

[21] L. J. LaPadula and D. E. Bell. Secure Computer Systems: A
Mathematical Model. 1996.

[22] X. Li, M. Tiwari, J. K. Oberg, V. Kashyap, F. T. Chong, T. Sherwood,
and B. Hardekopf. Caisson: A Hardware Description Language for
Secure Information Flow. In Proceedings of the Conference on
Programming Language Design and Implementation, 2011.

[23] F. Liu, Y. Yarom, Q. Ge, G. Heiser, and R. Lee. Last-Level Cache
Side-Channel Attacks are Practical. In Proceedings of the Symposium
on Security and Privacy, 2015.

[24] J. Oberg, W. Hu, A. Irturk, M. Tiwari, T. Sherwood, and R. Kastner.
Theoretical Analysis of Gate Level Information Flow Tracking. In
Proceedings of the Design Automation Conference, 2010.

[25] J. Oberg, W. Hu, A. Irturk, M. Tiwari, T. Sherwood, and R. Kastner.
Information Flow Isolation in I2C and USB. In Proceedings of the
Design Automation Conference, 2011.

[26] C. Percival. Cache Missing for Fun and Profit. In BSDCan, 2005.

[27] T. Ristenpart, E. Tromer, H. Shacham, and S. Savage. Hey, You, Get
Off of My Cloud: Exploring Information Leakage in Third-Party
Compute Clouds. In Proceedings of the Conference on Computer and
Communications Security, 2009.

[28] P. Rosenfeld, E. Cooper-Balis, and B. Jacob. DRAMSim2: A Cycle
Accurate Memory System Simulator. IEEE Comput. Archit. Lett.,
2011.

[29] A. Shafiee, A. Gundu, M. Shevgoor, R. Balasubramonian, and
M. Tiwari. Avoiding Information Leakage in the Memory Controller
with Fixed Service Policies. In Proceedings of the International
Symposium on Microarchitecture, 2015.

[30] J. Szefer and R. B. Lee. Architectural Support for Hypervisor-secure
Virtualization. 2012.

[31] M. Tiwari, X. Li, H. M. G. Wassel, F. T. Chong, and T. Sherwood.
Execution Leases: A Hardware-supported Mechanism for Enforcing
Strong Non-interference. In Proceedings of the 42Nd Annual
IEEE/ACM International Symposium on Microarchitecture, 2009.

[32] M. Tiwari, J. K. Oberg, X. Li, J. Valamehr, T. Levin, B. Hardekopf,
R. Kastner, F. T. Chong, and T. Sherwood. Crafting a Usable
Microkernel, Processor, and I/O System with Strict and Provable
Information Flow Security. In Proceedings of the International
Symposium on Computer Architecture, 2011.

[33] M. Tiwari, H. M. Wassel, B. Mazloom, S. Mysore, F. T. Chong, and
T. Sherwood. Complete Information Flow Tracking from the Gates
Up. In Proceedings of the International Conference on Architectural
Support for Programming Languages and Operating Systems, 2009.

[34] Y. Wang, A. Ferraiuolo, and E. Suh. Timing Channel Protection for a
Shared Memory Controller. In Proceedings of the 20th International
Symposium on High Performance Computer Architecture, 2014.

[35] Y. Wang and E. Suh. Efficient Timing Channel Protection for
On-Chip Networks. In Proceedings of the International Symposium
on Networks-on-Chip., 2012.

[36] Z. Wang and R. B. Lee. Covert and Side Channels Due to Processor
Architecture. In Proceedings of the Annual Computer Security
Applications Conference, 2006.

[37] Z. Wu, Z. Xu, and H. Wang. Whispers in the Hyper-space:
High-speed Covert Channel Attacks in the Cloud. Proceedings of the
USENIX Security Symposium, 2012.

[38] Y. Yarom and K. Falkner. FLUSH+RELOAD: A High Resolution,
Low Noise, L3 Cache Side-channel Attack. In Proceedings of the
USENIX Security Symposium, 2014.

[39] N. Zeldovich, S. Boyd-Wickizer, E. Kohler, and D. Mazières.
Making Information Flow Explicit in HiStar. In Proceedings of the
Symposium on Operating Systems Design and Implementation, 2006.

[40] D. Zhang, A. Askarov, and A. C. Myers. Predictive Mitigation of
Timing Channels in Interactive Systems. In Proceedings of the
Conference on Computer and Communications Security, 2011.

[41] D. Zhang, A. Askarov, and A. C. Myers. Language-based Control
and Mitigation of Timing Channels. In Proceedings of the
Conference on Computer and Communications Security, 2012.

[42] D. Zhang, Y. Wang, G. E. Suh, and A. C. Myers. "A Hardware
Design Language for Timing-Sensitive Information-Flow Security".
In Proceedings of the 20th International Conference on Architectural
Support for Programming Languages and Operating Systems, 2015.

[43] T. Zhang and R. B. Lee. CloudMonatt: An Architecture for Security
Health Monitoring and Attestation of Virtual Machines in Cloud
Computing. In Proceedings of the International Symposium on
Computer Architecture, 2015.

[44] Y. Zhang, A. Juels, M. K. Reiter, and T. Ristenpart. Cross-VM Side
Channels and Their Use to Extract Private Keys. In Proceedings of
the Conference on Computer and Communications Security, 2012.

12

	Introduction
	Main-Memory Timing Channels
	System Model
	Threat Model
	Timing-Channel Attacks in Memory
	Temporal Partitioning
	Performance of Temporal Partitioning

	Lattice Priority Scheduling
	Dynamic Bandwidth Allocation
	Dynamic Scheduling
	Dead Time Elision

	Lattice Security Model
	Memory Protection under the Lattice Model
	Generalized Dynamic Scheduling
	Fairness for General Policies

	Generalized Dead Time Elision

	Hardware Implementation
	Evaluation
	Methodology
	Performance and Scalability
	Per-Core Performance
	Lattice Policies and Performance
	Scheduling Decision Time
	Epoch Length
	Impact of Last-Level Cache Size

	Related Work
	Conclusion
	References

