
Timing Channel Protection for a Shared Memory Controller

Yao Wang, Andrew Ferraiuolo, and G. Edward Suh∗

Cornell University
Ithaca, NY 14850, USA

{yw438,af433,gs272}@cornell.edu

Abstract
This paper proposes a new memory controller design that

enables secure sharing of main memory among mutually mis-
trusting parties by eliminating memory timing channels. This
study demonstrates that shared memory controllers are vul-
nerable to both side channel and covert channel attacks that
exploit memory interference as timing channels. To address
this vulnerability, we identify the sources of interference in
a conventional memory controller design, and propose a
protection scheme to eliminate the interference across secu-
rity domains through two main changes: (i) a per security
domain based queueing structure, and (ii) static allocation
of time slots in the scheduling algorithm. Multi-programmed
workloads comprised of SPEC2006 benchmarks were used
to evaluate the protection scheme. The results show that the
proposed scheme completely eliminates the timing channels
in the shared memory with small hardware and performance
overheads.

1. Introduction
Modern computing systems are becoming increasingly

vulnerable to timing channel attacks that leak information
through interference in shared resources. For example, in
cloud computing, clients often need to share hardware re-
sources with untrusted parties - potentially their competitors
or malicious users - in order to benefit from the flexibility
and cost efficiency of having a large pool of physical re-
sources. Unfortunately, shared resources introduce timing
channels among virtual machines (VMs) that can be used
to extract secrets from other VMs or create unauthorized
communication channels between colluding VMs. Similarly,
downloaded applications that cannot be fully trusted may
perform side-channel attacks while running on the same
device as trusted applications with confidential information.

While timing channel attacks and their countermeasures
have been studied in the context of shared caches [15, 4,
16, 14, 26, 27] and on-chip networks [24, 28], to the best of
our knowledge, timing channels through a shared memory
channel have not been studied at the hardware architecture
level. Like cache timing channels, a memory-based timing
channel attack can be carried out without physical access to
the hardware, because the memory latencies of one program

∗The first two authors contributed equally to the work.

depend on memory accesses from other programs sharing
the memory.

In this paper, we demonstrate that memory timing chan-
nels exist for multi-core systems, and propose an efficient
protection scheme to completely eliminate them. In a shared
memory controller, the time that one memory request is
scheduled depends on other competing requests. Thus, there
exists a memory timing channel between software modules
in multiple security domains. This timing channel can be
exploited by an adversary to carry out either a side-channel
attack (where a malicious software module measures its own
memory timing to learn a secret used by a program in an-
other security domain), or a covert-channel attack (where
colluding programs in two different security domains leak
information to each another despite restrictions on explicit
communication).

In order to develop a protection scheme, we first study
sources of interference in a memory controller, and catego-
rize them into three groups: queueing structure interference,
scheduler arbitration interference, and DRAM device re-
source contention. Broadly, interference is caused by multi-
ple programs that access the memory concurrently, allowing
memory requests from different programs to affect the tim-
ing of others. The goal of the protection scheme is to elimi-
nate memory interference among security domains, which
contain one or more software modules such as processes in
traditional systems and virtual machines in cloud computing.

We present an approach to prevent memory interference
which we refer to as temporal partitioning (TP). Temporal
partitioning groups requests in queues according to the secu-
rity domain they belong to. Then, a fixed time period, called
a turn, is statically allocated to each domain in a time shared
fashion so that a memory controller only schedules requests
from one security domain. At the end of each turn, a short
window of time during which no memory transaction can
issue is added to prevent two timing channels: one caused
by interference between the previous and current turns, and
another caused by refresh operations delayed by memory
requests. Since only requests from one active domain can
be scheduled during each turn, there cannot be any cross-
domain interference and all memory timing channels are
eliminated.

Experimental results suggest that the execution time over-
head for temporal partitioning is only 1.5% on average using

Hypervisor / OS

Core $ Core $ Core $

Shared $L3

Main Memory

SW

HW

VM VM VM VM

Security Domain 0

VM VM

Security Domain 1

Figure 1. Problem setup: cloud computing
example.

in-order core, and 1.4% using out-of-order core when two
security domains share a memory controller running SPEC
2006 benchmarks. Temporal partitioning only requires sim-
ple changes to the memory controller with a small mount of
additional hardware resources: a revised queueing structure,
a counter, and a small amount of combinational logic to
restrict scheduling decisions.

The rest of the paper is organized as follows. Section 2
discusses the memory timing channel problem. Section 3
analyzes a baseline memory controller for timing channel
violations and presents the temporal partitioning scheme.
Section 4 evaluates the security properties and execution time
overheads of temporal partitioning experimentally. Section 5
discusses related work. The paper concludes in Section 6.

2. Timing Channels in Shared Memory
2.1. Problem Setup

Figure 1 shows the problem setup using cloud computing
as an example. We consider a multi-core platform where
multiple processing cores share one or more memory con-
troller(s) and the attached off-chip memory (DRAM). The
platform also includes a cache hierarchy that consists of
private and shared caches. The hardware is managed by a
privileged software layer such as a hypervisor and an OS,
and is shared by multiple software modules, such as virtual
machines and user applications, which run in parallel.

In this work, we assume that the management software
such as a hypervisor is trustworthy and properly controls
explicit communication channels. Also, we assume that
the platform cannot be physically accessed by an adversary.
However, an adversary is capable of running an arbitrary
program in a way that the attack program shares the memory
controller with a target victim program. For example, in
cloud computing, a virtual machine of one client can co-
reside with virtual machines of others. A recent study [16]
has demonstrated an attack on EC2 that allows a malicious
virtual machine forcing to be co-located with a target virtual
machine. An attacker can also exploit client parameters to
infer a reduced search space of physical machine locations.

The goal of the protection mechanism is to eliminate
timing channels between security domains through a shared

memory controller. A security domain can include one or
more software modules such as VMs, processes, and threads
that can share the same timing-channel protection. In the
cloud computing scenario, a security domain may consist
of VMs that belong to the same user. Different security
domains can be owned by mutually distrusting users who
wish to keep secrets from one another despite using shared
resources.
2.2. Memory Timing Channel Attacks

This work considers two broad classes of attacks that
exploit memory timing channels. The goal of a side-channel
attack is to gain access to secret information possessed by
the victim, which does not intend to leak the secret. The
adversary can intentionally create contention in the memory
controller and make performance measurements on its own
operations to learn about memory accesses from the victim,
which the attacker hopes will correlate to a secret.

In a covert-channel attack, the adversary already pos-
sesses a secret, but is limited in how it can share this secret.
For example, a malicious 3rd party web application may
try to leak a user’s data when the cloud infrastructure such
as Amazon EC2 restricts its network connections so that it
can directly communicate only with the user. The adversary
can try to bypass such restrictions using a timing channel to
another co-residing VM whose network connection is not
restricted. For example, the adversary may collude with a
co-residing VM, and communicate the secret by deliberately
modifying its workload to cause a timing variation in the
colluding VM’s memory accesses.

We note that a protection scheme needs to remove inter-
ference between security domains for complete protection
against both side-channel and covert-channel attacks. Obfus-
cation techniques such as randomization or noise injection
are insufficient to prevent intentional information leaks in
covert-channel attacks since random noise can be removed
statistically.
2.3. Example Attacks

2.3.1. Side-Channel Attack on RSA. As an example, this
side channel attack shows how a private key of an RSA
decryption program can be compromised by exploiting the
interference in memory accesses. The system setup is shown
in Figure 2. The system has two cores, each with a private
direct-mapped L1 cache. The RSA decryption algorithm
runs on Core 0 while an attack program is running simulta-
neously on Core 1.

The RSA decryption algorithm, uses a private key to de-
crypt an encrypted message. It is often implemented with
the square and multiply algorithm to perform fast exponenti-
ation. In this implementation, the bits in the private key are
checked one by one, and a modulo operation is performed
only when the bit is “1”. In this attack example, the memory
addresses are configured so that when this modulo opera-
tion is performed, a cache miss occurs. In other words, the

Core 0
RSA

$L1
Bus

Memory

Core 1
Attacker

$L1

Figure 2. System setup for the RSA attack.

Correlation Graph

6000000

5950000

5900000

5850000

5800000

5750000

6050000

A
tta

ck
er

's
 E

xe
cu

tio
n

T
im

e
(c

yc
le

s)

0 256 512 768 1024
Hamming Weight of The Private Key

Figure 3. RSA side-channel example.

number of memory requests for the RSA algorithm is di-
rectly dependent on the number of “1” bits, or the Hamming
weight, of the private key. The attacker issues memory re-
quests to the DRAM continuously and measures the time to
finish those requests.

Figure 3 shows the execution time of the attack program
as a function of the Hamming weight of the private key.
As can be seen, the attacker’s execution time has a direct
correlation with the Hamming weight, meaning that the
attacker can estimate the number of 1s in the private key by
simply measuring its own execution time.
2.3.2. Covert-Channel Attack. In this shared memory
covert-channel example, one adversary tries to send infor-
mation to another adversary despite measures to prevent
this communication. The system setup is similar to Fig-
ure 2 except that now Adversary 0 runs on Core 0 and Ad-
versary 1 runs on Core 1. The goal of Adversary 0 is to
send the sequence “10010110” to Adversary 1. Adversary
0 achieves this goal by dynamically changing the memory
demand, which affects the latency of memory requests from
Adversary 1. To send a “0”, Adversary 0 does not issue any
memory requests for a period of time. To send a “1”, Adver-
sary 0 sends many memory requests. Meanwhile, Adversary
1 keeps sending memory requests and tracks the dynamic
throughput it can achieve using a software counter.

Figure 4 shows the memory throughput observed by Ad-
versary 1 over the last 5,000 cycles. As can be seen, the
throughput shows a pattern that corresponds to the bit stream
that Adversary 0 intends to send. When the throughput is
low, Adversary 1 can infer that Adversary 0 is sending a
lot of memory requests, and interprets the bit being sent as
a “1”. Otherwise, the bit being sent is a “0”. Using the
interference in the memory, Adversary 1 can fully recover

Time (cycle)

800

700

600

500

400

300

200

100

0
20000 40000 60000 80000 100000 120000 140000

of

 M
em

or
y

R
eq

ue
st

s
in

 L
as

t
50

00
 C

yc
le

s
fo

r A
dv

er
sa

ry
 1

0

Figure 4. Covert-channel example.

the information that Adversary 0 sends, proving the success
of this covert channel attack.

3. Protection Scheme
3.1. Objective

Memory requests from different security domains con-
tend for the same shared resources and can affect the latency
of each other, which opens a timing channel. The objective
of our protection scheme is to eliminate interference among
memory accesses from different security domains. In other
words, the timing of each memory access from one security
domain should always be independent of memory accesses
from other security domains. This property guarantees that
the memory timing of one security domain cannot be mea-
sured to learn anything about another security domain.
3.2. Baseline Memory Controller

Before discussing our protection scheme, we first describe
the conventional memory controller architecture and identify
the sources of interference in the design. Figure 5 shows the
architecture of a conventional memory controller. One mem-
ory access takes the following steps: (i) it is enqueued into
one of the request queues based on the address, (ii) it wins
bank arbitration, (iii) it wins transaction scheduler arbitration,
and (iv) it gets sent to the DRAM device. The First-Ready
First-Come First Served (FR-FCFS) [17] scheduling algo-
rithm is used for the baseline memory controller. As shown
below, there are three sources of interference in the baseline
memory controller.
3.2.1. Queueing Structure Interference. The baseline
memory controller has a separate queue for each combi-
nation of the ranks and banks (e.g. if there are 3 ranks and
4 banks, a typical memory controller will have 12 queues).
This ensures that requests for each bank are put into a sep-
arate queue. Although this queueing structure is beneficial
for exploiting bank-level parallelism in DRAM accesses, it
introduces interference among memory accesses from dif-
ferent security domains. In this queueing structure, a queue
can mix memory requests from different security domains,
which are denoted by different patterns in Figure 5. As
shown in Figure 6a, Request A from security domain 0 can
be delayed in the queue by Request B from another security

Bank 0 Bank 1 Bank N

Bank 0
Arbiter

Transaction Scheduler

To DRAM device

Bank 1
Arbiter

Bank N
Arbiter

Figure 5. Conventional memory controller.

A: from security domain 0, for bank 0

B: from security domain 1, for bank 0

Without B With B

Time (cycle) Time (cycle)

Bank Arbitration

0 1 2 3 4 0 1 2 3 4

(a) Bank Arbitration Interference

A: from security domain 0, for bank 0

B: from security domain 1, for bank 1

Without B With B

Time (cycle) Time (cycle)

Scheduler Arbitration

0 1 2 3 4 0 1 2 3 4

(b) Scheduler Arbitration Interference

A: from security domain 0, for bank 0

B: from security domain 1, for bank 0

Without B With B

Time (cycle) Time (cycle)

Scheduler Arbitration

0 1 2 3 4 0 1 2 35 36...

(c) DRAM Device Interference

Figure 6. Interference in memory controllers.

domain 1 if the bank arbiter schedules Request B prior to
Request A.

Interference in the queueing structure also occurs when-
ever the memory controller stalls the requests to a particular
bank when that bank’s request queue is full. If security
domain 0 fills the request queue of bank 0 and stalls the
memory requests from security domain 1, security domain 1
can learn that security domain 0 is sending many memory
requests to bank 0.

3.2.2. Scheduler Arbitration Interference. The transac-
tion scheduler also causes interference. As can be seen in
Figure 6b, suppose Request A and Request B are for dif-
ferent banks and they both win bank arbitration in cycle 0.
Without Request B, Request A wins the scheduler arbitration

and is sent to the DRAM at cycle 0. However, if Request
B exists and arrives in the queue earlier than Request A,
the FR-FCFS scheduler will favor Request B in arbitration,
thus delaying Request A to the next cycle. This changes the
timing of Request A.
3.2.3. DRAM Device Interference. Resource contention in
DRAM device components such as the command bus, the
data bus, banks, and ranks can also cause timing channels.
For example, assume Request A and B are from different se-
curity domains and intend to access the same bank. Request
A arrives at the queue at cycle 2 and Request B arrives at
cycle 0. Without Request B, Request A wins bank arbitration
and scheduler arbitration at cycle 2. However, if Request
B exists and is scheduled at cycle 0, Request A cannot win
scheduler arbitration at cycle 2 even if it wins bank arbitra-
tion, because the DRAM device cannot serve two memory
requests to the same bank concurrently. In an open page
policy, if the second request is a row hit, it needs to wait
until the first request finishes I/O gating. In a close page
policy, the second request needs to wait even longer, because
it cannot be scheduled until the bitline is precharged. As
shown in Figure 6c, Request A is not scheduled until cycle
35 because the bank has been busy.

The interference problem is not limited to the FR-FCFS
scheduling algorithm, but exists for most memory scheduling
algorithms (i) because queueing structures mix requests from
different security domains, (ii) because the arbitration of the
transaction scheduler depends on the dynamic demands of
different security domains, (iii) and because of the properties
of the DRAM device. All these sources of interference can
be used as timing channels to derive the memory usage char-
acteristics of security domains, and leak secret information.
With the sources of interference identified, we now describe
the protection scheme to eliminate these timing channels.

3.3. Protection Mechanisms

3.3.1. Queueing Structure Protection. To prevent interfer-
ence among memory requests from different security do-
mains in the same request queue, the queueing structure
proposed in this work includes queues for each combination
of ranks and security domains and not for each combination
of ranks and banks. Figure 7 shows the new queueing struc-
ture. With per-security domain queueing, memory requests
from different security domains are separated and stored
in different queues, and therefore, bank arbitration cannot
cause interference among them. Interference can still exist
between requests in the same queue, however, they belong to
the same security domain, so the interference is benign. In
order to exploit bank parallelism, this scheme also requires
scheduling logic that scans the queue for requests to an idle
bank. Similar logic is also used in a conventional open page
memory controller to find requests to open rows.
3.3.2. Scheduling Protection. Concurrent memory accesses
from multiple security domains cause both arbitration inter-

SD 0 SD 1 SD N

SD 0
Arbiter

Transaction Scheduler

To DRAM device

SD 1
Arbiter

SD N
Arbiter

Figure 7. Queueing structure per security do-
main. {Tturn

SD 0 SD 1 SD N

DRAM Utilization
Time

Figure 8. Static time-slot allocation in tempo-
ral partitioning.

ference and DRAM device interference. These two types of
interference can be eliminated if only one security domain
uses memory resources at a time. Thus, we propose Tempo-
ral Partitioning (TP) that divides the time into fixed-length
turns during which only requests from a particular security
domain, which we say is active, can issue.

Figure 8 illustrates the high-level approach of TP. The
length of a turn is defined as Tturn. During each turn, requests
of the active security domain are scheduled normally, but
requests from other domains are not allowed. While requests
within each domain can cause interference with each other,
such intra-domain interference is benign as they cannot leak
information to another domain. TP allows the full mem-
ory bandwidth utilization of the baseline memory controller
provided the active security domain has a sufficient number
of requests to take advantage of its turn (i.e. bandwidth is
wasted when there is no memory request that can be issued
from the active security domain but there are requests in
an inactive domain that could normally be issued). At the
end of each turn, the next security domain is selected using
a fixed, static schedule and activated. The implementation
discussed in this work uses a round-robin static schedule,
however, any other static schedule will suffice.
3.3.3. Row Buffer Policy. In a DRAM cell, requests to data
already in the row buffer (sense amplifier) are much faster
than others. In an open page row-buffer management policy,
the most recently activated row is left in the row buffer of the
bank until another row in that bank must be accessed. This is
beneficial for workloads that have a lot of row locality (and
are therefore likely to reuse data already in the row buffer),
but it worsens the worst case memory access time. In con-

Table 1. Close-page DRAM timing analysis
Read Transaction tRAS+tRP
Write Transaction tCWD+tBURST +tWR+tRP+tRCD

trast, a close page policy immediately precharges the bank
in anticipation of an access to a different row. Therefore,
the close-page policy has better memory access times for
consecutive accesses to different rows, although it can no
longer exploit row locality. Therefore, close-page policies
are preferable for workloads with little row locality.

Since during a turn the active security domain is allowed
to cause interference among its own memory requests, it
seems reasonable, at first inspection, to allow any of these
policies or a hybrid scheme to best suit the particular work-
load. However, the scheme as described thus far does nothing
to affect the row available in sense amplifiers at the begin-
ning of a turn. Therefore, the adversary can learn about
the data access pattern of another security domain through
the difference between row buffer hit and row buffer miss
latencies.

This channel can be eliminated by issuing a precharge to
every bank at the end of the turn. Unfortunately, contempo-
rary DRAM chips cannot meet the power criteria necessary
to issue a precharge to every bank in a sufficiently small
time interval. Further, precharging only the banks which
were actually accessed does not work as this implies a vari-
able number of precharges at the end of the turn and causes
yet another timing channel. The TP protection scheme thus
requires a closed page policy.
3.3.4. Dead Time. With only the aforementioned restric-
tions, a memory transaction could be issued before the turn
changes, but remain in-flight at the beginning of the next turn,
possibly causing interference to memory requests from the
next security domain. This interference is illustrated in Fig-
ure 9a. Therefore, an interval of time, called the dead time,
is required at the end of the turn to prevent new transactions
from being issued. The dead time must be long enough to
complete the in-flight transactions before the turn transitions,
as shown in Figure 9b. In other words, the dead time must
be no less than the worst case time Tw to drain either a read
or write transaction. The times required to drain either of
these transactions (and precharge the bitline after the access)
are shown in Table 1 in terms of DRAM timing parameters,
which can be found in commercial DRAM datasheets. Based
on our study of several commercial DRAM datasheets, the
time to drain write transactions is usually longer than the
time to drain read transactions. Therefore,

Tdead = Tw = tCWD + tBURST + tWR + tRP + tRCD. (1)

3.3.5. Refresh Timing Channel. In a conventional memory
controller no transactions can be issued when a bank is
being refreshed. However, when a bank that needs to be
refreshed is already being accessed, the refresh is stalled

{Tturn

SD 0 SD 1 SD N

DRAM Utilization
Time

(a) Interference caused by in-flight transactions{Tturn

SD 0 SD 1 SD N

DRAM Utilization
Time

{Tdead

(b) Dead time

Figure 9. Dead time to remove interference
from in-flight transactions.

{

{

A: from security domain 0

B: from security domain 1
Refresh

Without A

With A

SD 0 SD 1 SD N

DRAM Utilization
Time

{

{SD 0 SD 1 SD N

DRAM Utilization
Time

tRFC

Tdead

tRFC

Tdead

Figure 10. Interference from a stalled refresh.

until the in-flight commands to that bank are completed.
This means the actual time the refresh takes place depends
on the memory transactions and therefore memory access
patterns and data of the active security domain. Figure 10
shows the interference caused by a stalled refresh. Without
Request A, the refresh can finish before the end of SD 0’s
turn, and Request B can be issued as normal. However, if
Request A exists and it delays the refresh, then it is possible
that the refresh cannot finish until the next turn, because
the time to finish a refresh, tRFC is larger than Tdead . This
indirectly delays the schedule of Request B.

This type of interference is caused by the refresh crossing
the border between two consecutive turns. To solve this, the
dead time can be increased to at least as long as the time to
complete a refresh, tRFC, plus the time required to drain any
in-flight transaction, Tw. However, this is overly conservative
if done unilaterally for each turn. Instead, since the originally
scheduled time for each refresh is public information, only
turns during which refresh is scheduled will have a dead time
that is increased by tRFC. This eliminates the refresh timing
channel since, if the turn length is greater than tRFC +Tw,
any refresh issued during a particular turn will always finish
before the end of that turn. If the turn length is less than
tRFC + Tw, the dead time is instead the entire turn length

and the active security domain is blocked for its entire turn.
Because there is no access from the active security domain,
there is no interference between a memory access and a
refresh.
3.3.6. Turn Length Tradeoff. The length of a turn affects
the performance impact of temporal partitioning. There
is no upper limit on the turn length, but the turn length
should at least be greater than Tw to avoid a deadlock. When
Tturn is equal to Tw, at most one request can be scheduled
in one turn and it can only be scheduled at the first cycle
of the turn because of the dead time. The optimal turn
length depends on the workload and cache configuration
among other system parameters. The tradeoffs involved are
best explored by characterizing the sources of overhead in
temporal partitioning.

The first source of overhead is the dead time which wastes
memory bandwidth for a fixed interval at the end of each turn.
The dead time comes at the end of every turn, therefore the
overhead depends on the number of turns. As the turn length
increases, the number of turns will reduce. As a result, the
dead time overhead is less with a longer turn length. On the
other hand, as the turn length increases, the maximum time
a request can spend blocked in the transaction queue while
its security domain is inactive also increases. Therefore, a
longer turn length will be desirable when the throughput is
the main concern and a shorter turn length will be desirable
when the latency is important.

3.4. Hardware Implementation

To implement the temporal partitioning scheme in hard-
ware, changes to a typical hardware memory controller are
required to (a) eliminate timing channels in the queueing
structure, (b) determine the active security domain, (c) de-
termine the dead time, and (e) allow only the active security
domain to issue memory requests. An close page row buffer
policy must be used to remove the row buffer access timing
channel.

Temporal partitioning requires the queueing structure as
described in 3.3.1. This entails of separate queues and ar-
biters for each security domain. However, we note that this
design does not necessarily require more queues than the
baseline. The baseline uses a per-rank, per-bank queueing
structure whereas our scheme uses a per-rank, per-security
domain queueing structure. In fact, in our experimental
implementation there are 8 banks and at most 4 security
domains, therefore, the proposed scheme actually has fewer
queues than the baseline. In order to exploit bank paral-
lelism, this new queueing structure requires scheduling logic
changes to search through the queues for the first request
to an idle bank. Similar scheduling logic is needed by a
conventional open page memory controller to find the first
request to an open row.

Each security domain has an associated counter to check
if it is the active security domain and to determine whether

or not the memory controller is currently in the dead time.
The scheduler is changed to check each of these counters
and accept requests only from the active security domain
and outside the dead time. The length of the dead time is
either the worst case transaction time, Tw, or Tw +TRe f resh if
a refresh is scheduled to happen during that turn. Since the
memory controller must already calculate when refreshes
take place, this only requires logic to pick between the two
options.
3.5. Optimizations

3.5.1. Bank Partitioning. In TP, the memory bandwidth
loss due to the dead time represents one of the largest sources
of overhead. The dead time ensures that memory requests
from two consecutive turns cannot interfere with each other
by draining all in-flight transactions at the end of a turn
before allowing any memory request from a new turn. Un-
fortunately, the dead time needs to be quite conservative
in order to avoid interference even in the worst case where
requests from two turns access the same bank.

If it can be guaranteed that requests from two consecutive
turns cannot access the same bank, the dead time can be
significantly reduced because in-flight transactions do not
need to be drained before allowing requests from a new do-
main. TP can use bank partitioning among security domains
or turns to guarantee this property. For example, different
security domains can be mapped to different banks in the
main memory. Alternatively, TP can restrict which memory
banks can be used at the beginning and the end of each turn
to ensure that there cannot be bank conflicts between two
consecutive turns. With this optimization, the dead time
can be the worst case time interval between two consecu-
tive memory accesses to different banks. Considering the
power constraint and different combinations of consecutive
memory accesses to different banks, the dead time can be
determined by the following equation1:

Tdead = max(tFAW −3∗ tRRD, tCWD + tBURST + tWT R,

tCAS + tBURST + tRT RS− tCWD). (2)

For the DRAM module we used in the experiments, this
new dead time is only 18 cycles compared to 46 cycles
without bank partitioning.
3.5.2. Application-Aware Turn Length. In the baseline
design, temporal partitioning divides the memory band-
width evenly among security domains using the round-robin
scheduling with the same turn length for all security do-
mains. In order to distribute the memory bandwidth more
effectively for a given workload mix, TP can be optimized
to use a different turn length for each security domain and
also schedule turns in an order that matches the workload
characteristics. As long as the turn lengths and schedule are

1This equation is an updated version of that in the original HPCA
publication. It takes into account the write to read delay.

Table 2. Configuration parameters for the
GEM5 and DRAMSim2 simulators.

In-Order Model “TimingSimple”
Out of Order Model “O3”
Number of Cores 2
Memory 2GB 667MHz
L1d / L1i 32kB 2-way 2 cycles
L2 256kB 8-way 7 cycles
L3 4MB 16-way 17 cycles

not affected by the dynamic memory demand of the security
domain, temporal partitioning still ensures that there is no
timing channel between security domains.

4. Evaluation
This section evaluates the security and performance

of temporal partitioning through simulation studies.
DRAMSim2[18] is used to model the memory controller
as well as ranks, banks, and channels of the DRAM. To
study the performance impact on realistic benchmarks,
DRAMSim2 is integrated into the full architecture simu-
lator, GEM5 [5].

For GEM5 experiments, we use the SPEC2006 bench-
marks compiled for the ARM ISA. Each of the in-order cores
uses the “TimingSimple” model in GEM5, and the out-of-
order cores use the “O3” model. For each experiment, unless
otherwise stated, two cores are simulated each running an in-
dependent SPEC2006 benchmark in its own security domain.
Multiprogram workloads are used, because the overhead
of TP comes from having two or more concurrent security
domains. The cache configuration parameters such as sizes,
associativity, and latencies are derived from the Intel Xeon
E3-1220L, which has two cores and is similar to the CPUs
used in Amazon EC2 as of late 2013. Each of the two cores
has 32KB L1i and L1d caches, a local 256KB L2 cache,
and a shared 4MB L3 cache. DRAMSim2 is configured to
simulate a 2GB DDR3 main memory clocked at 667MHz.
Table 2 summarizes the simulation infrastructure configu-
rations. Each workload is fast forwarded through 1 billion
instructions, and simulated for 100 million instructions.
4.1. Security Evaluation

Temporal partitioning eliminates the memory interfer-
ence by modifying the queueing structure and the scheduling
algorithm of a memory controller. To test that memory in-
terference has been eliminated, multi-program workloads
comprised of SPEC2006 benchmarks are run to record the
timing of memory requests. GEM5 is used to collect memory
request traces in 10 million instructions for each benchmark,
then these traces are used in pairs of two (T0, T1) to study
the security of a two-core system in which each core runs in
a different security domain. The traces are fed into DRAM-
Sim2 to simulate the cycle-level behavior in the memory
controller and DRAM device.

Index of Memory Requests in Order

R
et

ur
n

T
im

e
D

iff
er

en
ce

 b
et

w
ee

n
bz

ip
2_

as
ta

r
an

d
bz

ip
2_

m
cf

 (
cy

cl
e) 8000

7000

6000

5000

4000

3000

2000

1000

0
0 5000 10000 15000 20000 25000

TP-Tw
TP-4096
FR-FCFS

Figure 11. Memory return time difference of
T0 running with difference T1s.

To verify that temporal partitioning can protect against
timing channel attacks, a benchmark, T0, for one security
domain is fixed and run with a different benchmark, T1. If
the memory controller completely eliminates interference,
the return time of each memory request in T0 should always
be the same regardless of what benchmark T1 is. The results
for a fixed T0 with different T1s are compared. Figure 11
shows one example of the comparison. The Y axis is the
return time difference for each memory request in T0 when
bzip is used for T0 and T1 is changed from astar to mc f .
Two different turn lengths are used for TP, namely Tw and
4096 memory cycles. As can be seen, both T P− Tw and
T P−4096 show a flat line that equals 0, meaning the timing
of T0’s memory requests are not affected by which bench-
mark T1 is. In contrast, The result for FR-FCFS shows a
huge difference after T1 changes from one benchmark to an-
other, which indicates the existence of memory interference
and a timing channel. Every possible combination of bench-
mark pairs was compared in this way, and the results show
that with temporal partitioning protection, the return time of
every memory request from T0 stays the same regardless of
what benchmark T1 runs.

The timing channel protection is still effective when there
are more than two security domains. To test the security
of increasing the number of security domains, experiments
are run with four traces. T0 is kept constant and (T1, T2,
T3) are changed from (astar, astar, astar) to (mc f , mc f ,
mc f). These two combinations were intentionally chosen be-
cause astar is not memory-intensive while mc f is memory-
intensive. The results for the case where T0 is bzip2 are
shown in Figure 12. Similar to the results for two security
domains, the comparison passes for all combinations which
shows that TP eliminates the memory interference for multi-
ple security domains. This security evaluation is run for all
benchmarks in SPEC2006.
4.2. Performance Evaluation

Figure 13 shows the L2 data cache misses per kilo in-
structions (MPKI) for the SPEC2006 benchmarks that we
use in the experiments. As shown, mc f shows the highest
memory intensity and astar has the lowest memory intensity.

R
et

ur
n

T
im

e
D

iff
er

en
ce

 b
et

w
ee

n
bz

ip
2_

as
ta

r^
3

an
d

bz
ip

2_
m

cf
^3

 (
cy

cl
e)

Index of Memory Requests in Order

0

5000

10000

15000

20000

25000

0 5000 10000 15000 20000 25000

TP-Tw
TP-4096
FR-FCFS

Figure 12. Memory return time difference with
4 security domains.

as
tar

bz
ip2 gc

c

go
bm

k

h2
64

ref

hm
mer

lib
qu

an
tummcf

sje
ng

Xala
n

0
5

10
15
20
25
30
35
40

M
P

K
I

Figure 13. Memory intensity study of
SPEC2006 benchmarks.

Because TP is likely to increases the memory latency and
lowers the memory bandwidth in general, memory-intensive
benchmarks are likely to be affected more by the overhead
of TP.
4.2.1. Row Buffer Policy. Temporal partitioning cannot be
easily implemented with an open page row buffer policy.
Figure 14 examines the extent to which this is a drawback
by comparing the performance of the baseline memory con-
troller for the close page policy and the open page policy.
Figure 14 shows the percent difference in execution time of
the SPEC2006 benchmarks running with the open page pol-
icy and the close page policy over various L3 cache sizes and
for in-order and out-of-order cores. For positive values, the
close page policy outperforms the open page policy. Even
without an L3 cache, the difference is at most 0.04% for
the in-order core and 0.15% for the out-of-order core. The
results suggest that the performance of the two row buffer
policies are comparable for these benchmarks.
4.2.2. Performance Overhead. The static scheduling and
the dead time in temporal partitioning is likely to incur per-
formance overhead. To evaluate the performance overhead,
the SPEC2006 benchmarks are run with the baseline mem-
ory controller and with TP. The experiments uses a 4MB L3
cache and the TP turn length of 64 cycles.

as
tar

bz
ip2 gc

c

go
bm

k

h2
64

ref

hm
mer

lib
qu

an
tummcf

sje
ng

Xala
n

0.15

0.10

0.05

0.00

0.05
P

er
ce

nt
 O

ve
rh

ea
d

0MB
1MB
2MB
4MB

(a) In-order

as
tar

bz
ip2 gc

c

go
bm

k

h2
64

ref

hm
mer

lib
qu

an
tummcf

sje
ng

Xala
n

0.15

0.10

0.05

0.00

0.05

P
er

ce
nt

 O
ve

rh
ea

d

0MB
1MB
2MB
4MB

(b) Out-of-order

Figure 14. Effects of the row buffer policy on execution time.

Figure 15 shows the performance comparison between
baseline and TP in terms of execution time using in-order
and out-of-order cores. For each benchmark, multiple exe-
cution times are obtained by running that benchmark with
another one, collecting results for all possible pairs. Then,
the execution times with TP are normalized to the base-
line and averaged. More specifically, the execution time of
benchmark bi running with benchmark b j in another security
domain, TT P,bi||b j , is normalized to the execution time for
the same pair in the baseline, Tbase,bi||b j . The normalized
execution time represents a slowdown due to TP. Then, the
average slowdown for each benchmark is computed across
all possible pairs,

B=10

∑
j=1

TT P,bi||b j

Tbase,bi||b j

· 1
B
, (3)

where B is 10, the number of benchmarks used.
From the results it can be seen that the performance over-

heads for temporal partitioning are generally quite low. The
execution time overhead for temporal partitioning is only
1.5% on average using in-order cores, and 1.4% using out-of-
order cores. The benchmark, astar, incurs the least overhead
because it has a small number of memory requests, while
mc f has a higher overhead of 5.4% and 5.9% for in-order
and out-of-order cores respectively.

Figure 16 shows the average overhead for memory latency
for TP. TP increases the memory latency compared to the
baseline, ranging from 60% to 150%, because the protection
delays requests while its security domain is inactive. In the
worst case, the memory request needs to wait in the queue
while all other domains finish their turns. As a result, the
delay can be as long as (n−1)∗Tturn, where n is the number
of security domains. The memory latency overhead can be
reduced using a short turn length.
4.2.3. Sensitivity Studies. Here, we study the impact of
different turn lengths and L3 cache sizes on the performance

as
tar

bz
ip2 gc

c

go
bm

k

h2
64

ref

hm
mer

lib
qu

an
tummcf

sje
ng

Xala
n

0

1

2

3

4

5

6

7

P
er

ce
nt

 O
ve

rh
ea

d

IO
O3

Figure 15. Execution time overhead of TP.

as
tar

bz
ip2 gc

c

go
bm

k

h2
64

ref

hm
mer

lib
qu

an
tummcf

sje
ng

Xala
n

0
20
40
60
80

100
120
140
160

P
er

ce
nt

 O
ve

rh
ea

d

IO
O3

Figure 16. Memory latency overhead of TP.

overhead of temporal partitioning. Due to space limit, we
only show results for out-of-order cores. In-order core results
show the same trends.

There is a trade-off in selecting the turn length for tem-
poral partitioning. Shorter turns result in lower memory
latencies in general because the time that a memory request
needs to wait while its security domain is inactive is reduced

as
tar

bz
ip2 gc

c

go
bm

k

h2
64

ref

hm
mer

lib
qu

an
tummcf

sje
ng

Xala
n

0

2

4

6

8

10

12

14
P

er
ce

nt
 O

ve
rh

ea
d

TP_Tw
TP_64
TP_128
TP_512

Figure 17. Effect of turn length on execution
time overhead.

with a shorter turn length. On the other hand, the overhead
due to the dead time is lower for longer turns because it
can be better amortized over a longer period. Therefore, the
memory bandwidth can be better utilized with longer turns.

Figure 17 shows the effect of the turn length on the exe-
cution time overhead. The L3 cache size is fixed at 4MB. In
the figure, T P_n indicates the timing protection using a turn
length of n. T P_Tw indicates the minimum turn length. The
results show that the turn length of 64 cycles provide a good
trade-off between the latency and the bandwidth. In general,
long turn lengths such as 128 and 512 cycles degrade the
performance because they significantly increase the mem-
ory latency. However, the turn length of 64 outperforms
the minimum turn length in most cases. With the minimum
turn length, at most one request can be issued in each turn
because only the first cycle of the turn is not in the dead
time period. With a longer turn length, multiple requests
can be issued in each turn utilizing bank parallelism. The
increased bandwidth is especially important for memory in-
tensive benchmarks with out-of-order cores, which are likely
to have multiple in-flight memory requests at the same time.

The L3 cache size also affects the performance overhead
of temporal partitioning because the cache miss-rate directly
affects the memory intensity of a program. Figure 18 shows
the execution time overhead of temporal partitioning for
different L3 cache sizes. In this experiment, we fix the turn
length to be 64 cycles and only change the L3 cache size. As
shown in the figure, the performance overhead of memory-
intensive benchmarks can change significantly for different
L3 cache sizes. For example, mc f incurs 26% overhead with
no L3 cache, compared to only 6% overhead with a 4MB L3
cache. On the other hand, the performance overhead of less
memory-intensive benchmarks such as astar is much less
sensitive to the L3 cache size. The results also suggest that
the performance overhead of TP is quite reasonable even for
small L3 caches.

as
tar

bz
ip2 gc

c

go
bm

k

h2
64

ref

hm
mer

lib
qu

an
tummcf

sje
ng

Xala
n

5

0

5

10

15

20

25

30

P
er

ce
nt

 O
ve

rh
ea

d

0MB
1MB
2MB
4MB

Figure 18. Effect of cache size on execution
time overhead.

as
tar

bz
ip2 gc

c

go
bm

k

h2
64

ref

hm
mer

lib
qu

an
tummcf

sje
ng

Xala
n

0

5

10

15

20

25

P
er

ce
nt

 O
ve

rh
ea

d

2 domains
3 domains
4 domains

Figure 19. Effect of increasing the number of
security domains.

4.2.4. Scalability. As the number of security domains in-
creases, the latency overhead for requests in each security
domain increases because requests need to wait for more
turns for other security domains while its own domain is
inactive. This implies that the overhead increases with the
number of security domains. Figure 19 shows the execution
time overhead of temporal partitioning as the number of se-
curity domains increases. The average overhead is shown for
each benchmarks as before. However, rather than running
all combinations of 3 and 4 benchmarks, the analysis uses
fewer benchmark combinations. More specifically, security
domains beyond the first one use the same workload.

For each benchmark, the overhead increases with the
number of security domains. For 3 security domains the
average execution time overhead is 2.7%. For 4 security
domains this increases to 4.8%. In all cases, mc f incurs
the highest overhead as it is the most memory-intensive
benchmark. We note that the overall performance overhead
is still reasonable even with the increased security domains.
4.2.5. Optimization Results. Here, we evaluate the effec-
tiveness of the two optimization techniques in Section 3.5,
namely bank partitioning (BP) and application-aware turn

length (AT), using synthetic benchmarks that simply make
strided memory accesses. The synthetic benchmarks are
used to study the worst-case overhead for TP with far more
memory-intensive workloads compared to the SPEC bench-
marks. In this study, H is a highly memory-intensive bench-
mark with 100 MPKI and L is a benchmark with infrequent
memory requests. Each combination of these two bench-
marks is run on a two-core system with a shared 4MB L3. A
turn length of 64 cycles is used for the temporal partitioning
scheme. For the application-aware turn length optimization,
256 cycles are allocated to H and 64 cycles are allocated to L
when they are running together, otherwise each benchmark
uses 64 cycles as the turn length.

The two optimizations are evaluated separately and com-
bined, and the results are shown in Figure 20. The Y axis is
the execution time overhead for the first benchmark in the
pair compared to the baseline. The performance overhead
results for H, shown in the first two clustered bars, clearly
demonstrate that the optimizations can significantly reduce
the performance overhead. The bank partitioning increases
the available bandwidth for TP, and is quite effective when
the workload is sensitive to the bandwidth such as in (H,H).
For (H,L), the performance overhead of TP without the op-
timizations is as high as 150%. This is because H can only
utilize at most half of the bandwidth in TP whereas it can
utilize close to the full memory bandwidth in the baseline.
The application-aware turn length allocates the bandwidth
to match the workload characteristics. In the experiment,
H can utilize four times the bandwidth of L, which is 80%
of the total memory bandwidth. The performance overhead
is significantly reduced to 40% with AT. Applying both op-
timizations can further reduce the performance overhead
down to about 20% for the (H,L) combination. Figure 20
also shows the performance overhead of L in the last two
clustered bars. However, the overhead is negligible at about
0.45% even without the optimizations. This is because the
overhead of TP only affects memory accesses, which is quite
infrequent in L.

5. Related Work
Microarchitecture Timing Channels Microarchitecture-
level timing channels exist when microarchitecture resources
are dynamically shared between attack and victim programs.
Researchers have demonstrated timing channel attacks ex-
ploiting interference in various microarchitecture resources
such as processing pipelines [25], branch predictors [2, 3],
caches [15, 4, 1], and memory buses [29, 19]. The cache
timing channel attack was also demonstrated on Amazon
EC2 to recover a user password [16].

Several hardware techniques have been proposed to deal
with microarchitecture timing channels. For example, pro-
tection for cache-based timing attacks [14, 9, 26, 27] and
timing attacks on on-chip networks [24, 28] have been pro-
posed recently. However, little work has been done for

Figure 20. Performance overhead with opti-
mizations.

memory controllers. Researchers have also proposed to
mitigate the timing channel attacks by injecting noise or
restricting sensitive operations. For example, fuzzing a pro-
gram’s time has been suggested as a general countermeasure
against side-channel attacks [11], and controlling the use of
atomic instructions has been proposed to limit timing chan-
nels though memory bus locking [19]. This work presents
the first hardware-based protection that can completely elim-
inate the timing channel through memory.

Verifiable Hardware Information Flow Control Timing
channels represent one form of information flows. Recently,
there has been significant interest in verifying the informa-
tion flow properties of hardware designs, including timing
channels. One such approach is to analyze and enforce in-
formation flows at a logic gate level, where implicit flows
and timing channels are exposed as explicit control sig-
nals [23, 21, 12, 13, 22]. The early designs [23, 21] rely on
dynamic checks with large hardware and performance over-
heads. The later designs extended the idea to static checks
using gate-level simulations [12, 13, 22] or a language-level
framework [10]. These hardware design frameworks can
potentially be used to verify the non-interference property
of the memory controller design in this paper. However,
the design frameworks so far have only been demonstrated
for simple systems with strict time multiplexing. This work
investigates a memory controller design for high-end proces-
sors that support multiple concurrent security domains.

Architecture for Secure Cloud Computing Researchers
have proposed a number of hardware architecture designs to
enhance the security of cloud computing. These architecture
techniques can significantly reduce the size of trusted soft-
ware components [6, 8, 20] or even protect against physical
side-channel attacks [7]. However, these secure processor
designs do no consider internal timing interference among
multiple concurrent program executions, which is the focus
of this paper.

6. Conclusion
The shared memory in modern computing systems can

cause interference among different security domains, which
may be used as timing channels to extract secret informa-
tion. In this paper, we identify the sources of interference
existing in conventional memory controller designs. To
eliminate the interference, we change the conventional per
bank based queuing structure to a per security domain based
queueing structure that groups the memory requests from
one security domain into the same queue. The temporal
partitioning scheduling algorithm is employed to time-share
the memory controller among different security domains.
The memory interference is shown to be eliminated by our
protection scheme. In addition, we discuss the tradeoff be-
tween different turn lengths and evaluate the performance of
the protection scheme, which shows negligible performance
degradations.

7. Acknowledgment
This work was partially supported by the National Science

Foundation under grants CNS-0746913 and CCF-0905208,
the Air Force grant FA8750-11-2-0025, the Office of Naval
Research grant N00014-11-1-0110, the Army Research Of-
fice grant W911NF-11-1-0082, and an equipment donation
from Intel Corporation. Any opinions, findings, and con-
clusions or recommendations expressed in this material are
those of the author(s) and do not necessarily reflect the views
of NSF, AF, ONR, ARO, or Intel.

References
[1] O. Aciiçmez. Yet another microarchitectural attack:: Exploiting

i-cache. In Proceedings of the 2007 ACM Workshop on Computer
Security Architecture, CSAW ’07, pages 11–18, 2007.

[2] O. Aciiçmez, c. K. Koç, and J.-P. Seifert. On the power of simple
branch prediction analysis. In Proceedings of the 2nd Symposium on
Information, Computer and Communications Security, ASIACCS
’07, pages 312–320, 2007.

[3] O. Aciiçmez, c. K. Koç, and J.-P. Seifert. Predicting secret keys via
branch prediction. In in Cryptology — CT-RSA 2007, The Cryptog-
raphers’ Track at the RSA Conference 2007, pages 225–242, 2007.

[4] D. J. Bernstein. Cache-timing attacks on aes. Technical report, 2005.
[5] N. Binkert, B. Beckmann, G. Black, S. K. Reinhardt, A. Saidi,

A. Basu, J. Hestness, D. R. Hower, T. Krishna, S. Sardashti, R. Sen,
K. Sewell, M. Shoaib, N. Vaish, M. D. Hill, and D. A. Wood. The
gem5 simulator. SIGARCH Comput. Archit. News, 39(2):1–7, Aug.
2011.

[6] D. Champagne and R. Lee. Scalable architectural support for trusted
software. In High Performance Computer Architecture (HPCA),
2010 16th International Symposium on, pages 1–12, 2010.

[7] C. W. Fletcher, M. v. Dijk, and S. Devadas. A secure processor
architecture for encrypted computation on untrusted programs. In
Proceedings of the seventh Workshop on Scalable Trusted Computing,
STC ’12, pages 3–8, 2012.

[8] S. Jin, J. Ahn, S. Cha, and J. Huh. Architectural support for se-
cure virtualization under a vulnerable hypervisor. In Proceedings
of the 44th Annual International Symposium on Microarchitecture,
MICRO-44 ’11, pages 272–283, 2011.

[9] J. Kong, O. Aciicmez, J.-P. Seifert, and H. Zhou. Hardware-software
integrated approaches to defend against software cache-based side
channel attacks. In High Performance Computer Architecture, 2009.
HPCA 2009. 15th International Symposium on, pages 393–404,
2009.

[10] X. Li, M. Tiwari, J. K. Oberg, V. Kashyap, F. T. Chong, T. Sherwood,
and B. Hardekopf. Caisson: A hardware description language for
secure information flow. In Proceedings of the 32Nd ACM SIGPLAN
Conference on Programming Language Design and Implementation,
PLDI ’11, pages 109–120, 2011.

[11] R. Martin, J. Demme, and S. Sethumadhavan. TimeWarp: Rethinking
timekeeping and performance monitoring mechanisms to mitigate
side-channel attacks. In Proceedings of the 27th Annual International
Symposium on Computer Architecture, 2012.

[12] J. Oberg, W. Hu, A. Irturk, M. Tiwari, T. Sherwood, and R. Kastner.
Theoretical analysis of gate level information flow tracking. In
Proceedings of the 47th Design Automation Conference, DAC ’10,
pages 244–247, 2010.

[13] J. Oberg, W. Hu, A. Irturk, M. Tiwari, T. Sherwood, and R. Kastner.
Information flow isolation in i2c and usb. In Proceedings of the 48th
Design Automation Conference, DAC ’11, pages 254–259, 2011.

[14] D. Page. Partitioned cache architecture as a side-channel defence
mechanism. IACR Cryptology ePrint Archive, report 2005/280,
2005.

[15] C. Percival. Cache missing for fun and profit. In Proceedings of
BSDCan 2005, 2005.

[16] T. Ristenpart, E. Tromer, H. Shacham, and S. Savage. Hey, you,
get off of my cloud: exploring information leakage in third-party
compute clouds. In Proceedings of the 16th Conference on Computer
and Communications Security, CCS ’09, pages 199–212, 2009.

[17] S. Rixner, W. J. Dally, U. J. Kapasi, P. Mattson, and J. D. Owens.
Memory access scheduling. In Proceedings of the 27th Annual In-
ternational Symposium on Computer Architecture, ISCA ’00, pages
128–138, 2000.

[18] P. Rosenfeld, E. Cooper-Balis, and B. Jacob. Dramsim2: A cycle
accurate memory system simulator. Computer Architecture Letters,
10(1):16–19, 2011.

[19] B. Saltaformaggio, D. Xu, and X. Zhang. BusMonitor: A hypervisor-
based solution for memory bus covert channels. In Proceedings of
6th European Workshop on Systems Security (EuroSec), 2013.

[20] J. Szefer, E. Keller, R. B. Lee, and J. Rexford. Eliminating the
hypervisor attack surface for a more secure cloud. In Proceedings
of the 18th Conference on Computer and Communications Security,
CCS ’11, pages 401–412, 2011.

[21] M. Tiwari, X. Li, H. M. G. Wassel, F. T. Chong, and T. Sherwood.
Execution leases: A hardware-supported mechanism for enforcing
strong non-interference. In Proceedings of the 42Nd Annual Interna-
tional Symposium on Microarchitecture, MICRO 42, pages 493–504,
2009.

[22] M. Tiwari, J. K. Oberg, X. Li, J. Valamehr, T. Levin, B. Hardekopf,
R. Kastner, F. T. Chong, and T. Sherwood. Crafting a usable micro-
kernel, processor, and i/o system with strict and provable information
flow security. In Proceedings of the 38th Annual International Sym-
posium on Computer Architecture, ISCA ’11, pages 189–200, 2011.

[23] M. Tiwari, H. M. Wassel, B. Mazloom, S. Mysore, F. T. Chong,
and T. Sherwood. Complete information flow tracking from the
gates up. In Proceedings of the 14th International Conference on
Architectural Support for Programming Languages and Operating
Systems, ASPLOS XIV, pages 109–120, 2009.

[24] Y. Wang and G. E. Suh. Efficient timing channel protection for
on-chip networks. In Proceedings of the 2012 Sixth International
Symposium on Networks-on-Chip, NOCS ’12, pages 142–151, 2012.

[25] Z. Wang and R. B. Lee. Covert and side channels due to processor
architecture. In Proceedings of the 22 nd Annual Computer Security
Applications Conference (ACSAC), 2006.

[26] Z. Wang and R. B. Lee. New cache designs for thwarting software
cache-based side channel attacks. In Proceedings of the 34th An-
nual International Symposium on Computer Architecture, ISCA ’07,
pages 494–505, 2007.

[27] Z. Wang and R. B. Lee. A novel cache architecture with enhanced
performance and security. In Proceedings of the 41st Annual Inter-
national Symposium on Microarchitecture, MICRO 41, pages 83–93,
2008.

[28] H. M. G. Wassel, Y. Gao, J. K. Oberg, T. Huffmire, R. Kastner, F. T.
Chong, and T. Sherwood. Surfnoc: a low latency and provably non-
interfering approach to secure networks-on-chip. In Proceedings of
the 40th Annual International Symposium on Computer Architecture,
ISCA ’13, pages 583–594, 2013.

[29] Z. Wu, Z. Xu, and H. Wang. Whispers in the hyper-space: High-
speed covert channel attacks in the cloud. In Proceedings of the 21st
USENIX Conference on Security Symposium, 2012.

