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Abstract
Information security can be compromised by leakage via low-
level hardware features. One recently prominent example is
cache probing attacks, which rely on timing channels cre-
ated by caches. We introduce a hardware design language,
SecVerilog, which makes it possible to statically analyze in-
formation flow at the hardware level. With SecVerilog, sys-
tems can be built with verifiable control of timing channels
and other information channels. SecVerilog is Verilog, ex-
tended with expressive type annotations that enable precise
reasoning about information flow. It also comes with rig-
orous formal assurance: we prove that SecVerilog enforces
timing-sensitive noninterference and thus ensures secure in-
formation flow. By building a secure MIPS processor and its
caches, we demonstrate that SecVerilog makes it possible to
build complex hardware designs with verified security, yet
with low overhead in time, space, and HW designer effort.

Categories and Subject Descriptors B.6.3 [Hardware/De-
sign Aids]: Hardware Description Languages

Keywords Timing channels, hardware description language,
information flow control, dependent types

1. Introduction
Information flow control offers a powerful way to prevent im-
proper release and modification of information in complex
systems. It has been applied successfully at multiple levels
of abstraction: the language level, the operating system level,
and the hardware level. Because hardware behavior can cre-
ate additional information flows that violate a security policy,
it is not enough to control information flow only at the soft-
ware level.
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Recent work has demonstrated the danger of hardware-
level information flows by showing that timing channels can
be used to communicate sensitive information between pro-
cesses and even across virtual machines. For example, cache
probing attacks (e.g., [15, 30]) exploit the timing channel that
arises because accesses to memory locations by one process
affect the cache, and thereby observably affect the timing
behavior of later accesses by other processes. The cache is
not the only problem. Attacks have also been shown that ex-
ploit timing channels arising from other components: instruc-
tion and data caches [2], branch predictors and branch target
buffers [3], and shared functional units [44].

Motivated by such vulnerabilities, we have developed a
method for designing hardware that correctly, precisely, and
efficiently enforces secure information flow. This method is
based on a new hardware description language (HDL) called
SecVerilog, which adds a security type system to Verilog so
that hardware-level information flows can be checked stat-
ically. In combination with software-level information flow
control, our hardware design method enables building com-
puting systems in which all forms of information flow are
tracked, including implicit flows and timing channels.

Our approach has several advantages over the state of the
art in secure hardware design. SecVerilog checks informa-
tion flows statically while providing formal security assur-
ance and guidance to hardware designers; security assurance
is obtained directly from the design process. The language
is also expressive enough to prove security of a design even
when hardware resources are shared among multiple security
levels that are changed at per-cycle granularity. The novel de-
pendent type system of the language integrates with external
program analyses, avoiding both the duplication of hardware
resources and run-time tracking of information flow. Conse-
quently, run-time overhead is lower than in prior work. Our
prototype secure pipelined MIPS processor with a cache adds
area and clock cycle overheads of about 1%.

In summary, our work makes multiple contributions:

• SecVerilog, a new hardware description language that ex-
tends Verilog with fine-grained tracking of information
flows within hardware,



• expressive static annotations incorporating dependent se-
curity types, enabling flexible, fine-grained reuse and
sharing of hardware across security levels,
• a formal proof that the HDL type system soundly controls

information flow, and
• the design of a secure microprocessor using SecVer-

ilog, demonstrating the practicality and the power of this
methodology. We show that overheads in delay, area,
power, performance and designer effort are all low.

The paper is structured as follows. Section 2 gives an
overview of our approach for controlling hardware-level in-
formation flow, including timing channels. Sections 3 and 4
describe SecVerilog and its security type system. The for-
mal proof that SecVerilog enforces security is sketched in
Section 5. An evaluation of using SecVerilog in building a
pipelined MIPS processor is in Section 6. Section 7 covers
related work, and Section 8 concludes.

2. Background and Approach
2.1 Information flow control
Information flow control aims to ensure that all information
flows in a system respect a security policy. For this purpose,
information in the system is associated with a security level
drawn from a lattice L whose partial ordering v specifies
which information flows are allowed. For example, a lattice
with two security levels L (low, public) and H (high, secret)
can be used to forbid information labeled as H from flowing
into L (H 6v L) while allowing the other direction (L v H).

The goal of SecVerilog is to enforce fine-grained infor-
mation flow control for hardware designs in a statically ver-
ifiable fashion. With SecVerilog, hardware designers spec-
ify hardware-level information flow policies by annotating
wires and registers with security labels and specifying a se-
curity lattice. Then, the SecVerilog type system statically
checks and verifies timing-sensitive information flow prop-
erties within hardware at design time. While we use a simple
lattice with two security levels (L and H) in our examples, the
approach applies to an arbitrary security lattice.

2.2 Threat model
We target synchronous circuits driven by a fixed-frequency
clock. We assume a software-level adversary, who can ob-
serve all information at or below a certain security level that
we will call low (L). The adversary can also measure timing
of hardware operations at the granularity of a clock cycle.
Hence, both storage and timing channels [21] are considered.
However, we assume the adversary has no physical access to
the hardware, and we do not consider physical attacks such as
directly tapping internal circuits or side channels that require
physical proximity, such as power consumption analysis.

2.3 Controlling timing channels
The ability to verifiably control fine-grained information flow
in hardware can enhance security in many applications. One

1 if (h1)[L]

2 h2:=l1;[H]

3 else
4 h2:=l2;[H]

5 l3:=l1;[L]

Restrictions on secure hardware designs:

1) The high partition cannot affect the tim-
ing of instructions with label L,

2) the low partition cannot be modified
when the timing label is H, and

3) the contents of the high partition cannot
affect those of the low partition.

Figure 1. An example of full-system timing channel control.
The well-typed program on the left is secure if the hardware
enforces the constraints on the right.

notable example, and a focus of this paper, is designing effi-
cient hardware that controls timing channels. These channels
are perhaps the most challenging aspect of information flow
security, because confidential information can affect timing
in various ways: at the software level, a branch or loop con-
ditioned on secret values creates timing channels [20]; at the
hardware level, sharing hardware resources such as the data
cache also creates timing channels [8, 15, 30, 32].

Our goal is an efficient hardware design that enforces the
complex security policy required by the full-system timing
channel control mechanism proposed by Zhang et al. [49]. In
this approach, the security of the whole system rests on a con-
cise contract between the software and hardware, provably
controlling timing channels if both meet their requirements.

The contract treats the hardware implementation as an ab-
stract machine environment whose state is partitioned by se-
curity level. For example, with two levels L and H, hard-
ware resources such as caches are conceptually partitioned
into a low part and a high part. At the software level, the
contract is manifested as one timing label for each statement
in a source program1. With this abstraction, a type system
generates timing labels at the software layer that should be
communicated to hardware. For example, the code fragment
in Figure 1 illustrates a well-typed program, in which tim-
ing labels are shown in brackets; h1 and h2 are confidential,
and other variables are public. Since the existence of h1 in
data cache, rather than the value of h1, can affect the execu-
tion time of line 1, line 1 has a timing label of L. The benefit
of these timing labels is that only the timing of instructions
with H timing labels needs to be controlled and mitigated at
software level, as long as the security policy in Figure 1 is
enforced on hardware.

2.4 Example: secure cache design
Designing hardware to meet the complex security policy in
Figure 1 is challenging. As an illustration, we consider de-
signing a secure cache, statically partitioned between secu-
rity levels L (low) and H (high) as proposed in prior work [31,

1 The general contract in [49] uses two timing labels, called the read and
write labels. SecVerilog is expressive enough to verify the general case,
which is implemented in our verified MIPS processor (Section 6). For sim-
plicity, we assume these two labels are equal in most of examples.



1 reg[18:0] {L} tag0[256],tag1[256];
2 reg[18:0] {H} tag2[256],tag3[256];
3 wire[7:0] {L} index;
4 //Par(0)=Par(1)=L Par(2)=Par(3)=H

5 wire[1:0] {Par(way)} way;
6 wire[18:0] {Par(way)} tag_in;
7 wire {Par(way)} write_enable;
8

9 always @(posedge clock) begin
10 if (write_enable) begin
11 case (way)
12 0: begin tag0[index]=tag_in; end
13 1: begin tag1[index]=tag_in; end
14 2: begin tag2[index]=tag_in; end
15 3: begin tag3[index]=tag_in; end
16 endcase
17 end
18 end

(a) SecVerilog code for cache tags

1 wire {L} isLoad,isStore;
2 wire {L} hit0,hit1; // hitX: 1 iff way X gets a cache hit
3 wire {H} hit2,hit3;
4 //LH(0)=L LH(1)=H

5 wire {LH(timingLabel)} stall, hit, timingLabel;
6 reg[2:0] {LH(timingLabel)} dFsmState;
7

8 assign stall = ((isLoad | isStore) &
9 (˜hit | (dFsmState != DFSM_IDLE)));

10 assign hit = (timingLabel == 0) ?
11 ((hit0|hit1)?1:0) : ((hit0|hit1|hit2|hit3)?1:0);

12 ...

13 case (dFsmState)
14 DFSM_IDLE: begin
15 // load hit

16 if (isLoad && hit) begin
17 dFsmState <= DFSM_IDLE; // nonblocking assignment

18 ...

19 endcase
(b) SecVerilog code for a cache controller

Figure 2. SecVerilog extends Verilog with security label annotations (shaded in gray).

45]. The L and H partition correspond to the L and H machine
environment respectively.

Figure 2(a) presents a simplified fragment of SecVerilog
code to update cache tags. For now, ignore the shaded annota-
tions. This design logically partitions a 4-way set-associative
cache so that ways 0 and 1 (tag0 and tag1) are used as the
L partition, and the other ways (tag2 and tag3) are used as
the H partition. The code writes a new cache tag to a way
specified by way when write_enable is asserted.

This simple example shows the intricacy of correctly en-
forcing the aforementioned security policy in hardware. First,
tag_in must not contain high information when way is 0
or 1, to prevent the H partition from affecting the state of
the L partition (tag0 and tag1). Second, write_enable,
which controls whether a write occurs, cannot be influenced
by high information when way is 0 or 1 (an instance of im-
plicit flows [35]). Verifying these restrictions is tricky since
the cache partition that tag_in and write_enable belong
to can change at run time.

More challenging is to enforce secure timing: the H parti-
tion cannot affect the timing of instructions with timing label
L. A simplified fragment of the SecVerilog code for the cache
controller is shown in Figure 2(b), where timingLabel rep-
resents the timing label of a cache access, propagated from
the software level, hiti (0 ≤ i ≤ 3) indicates if way i gets a
cache hit, and the stall signal indicates when a cache access
completes.

Since the stall signal affects the execution time of an
instruction, a secure design must ensure that only the L parti-
tion can affect it when timingLabel is 0 (encoding L). Veri-
fying this property is difficult, since the cache controller may
access H data even when timingLabel is 0 (e.g., to execute
line 1 of the example in Figure 1). Perhaps counterintuitively,
this access is secure: timing may be affected by the existence

of H data in the cache but not by the value of the data. More-
over, the hit and dFsmState signals, which affect stall
(line 8), are shared across both cache partitions. A secure
design must ensure that no information leaks through these
shared variables, which is difficult since their uses are spread
across multiple statements (lines 13–19 only show a snippet).

2.5 The SecVerilog approach
SecVerilog extends Verilog with the ability to give each vari-
able a label that specifies the security level of the variable.
In Figure 2, these labels are the shaded annotations, which
indicate, e.g., that variables tag0 and tag1 are labeled L
whereas tag2 and tag3 are labeled H. Using these anno-
tations, the SecVerilog type system automatically verifies in-
formation flow properties of Verilog code at compile time.

Programming languages that provide the ability to label
variables have been developed before [6, 25, 36], but their
labels are not expressive enough to handle practical hardware
designs where resources need to be shared across security
levels. In effect, the security levels change at run time. We
use dependent types to address this challenge.

Consider the example in Figure 2(a). The labels of way,
write_enable, and tag_in depend on which cache way is
being accessed. In fact, we observe that a precise dependent
label can be assigned to these variables without any change
to the Verilog code. The proper label is Par(way), where the
name Par denotes a type-level function that maps 0 and 1
to level L, and 2 and 3 to level H (concisely, Par = {0 7→
L, 1 7→ L, 2 7→ H, 3 7→ H}). Intuitively, these dependent
labels express a lightweight invariant on variables (e.g., when
way is 0, write_enable must have level L).

For the example in Figure 2(b), stall, hit and dFsmState
can be labeled with LH(timingLabel) where LH = {0 7→
L, 1 7→ H} to ensure that they can be affected only by the
low partition when timingLabel is 0.



Program Prog ::= B1 . . . Bn

Thread B ::= always @(γ) c

Trigger γ ::= posedge clock | negedge clock | ~v
Cmds c ::= skipη | begin c1; . . . ; cn; end

| v =η e | v ⇐η e | ifη (e) c1 else c2

Expr e ::= v | n | uop e | e bop e
Vars x, y, v ∈ Vars

Figure 3. Syntax of SecVerilog.

Such invariants can be maintained by the type system
described in Section 4. For instance, to ensure that the explicit
flow from tag_in to tag0 at line 12 in Figure 2(a) is secure,
the type system generates a proof obligation (way = 0 ⇒
Par(way) v L), meaning that when way is 0, information
flow from tag_in (with label Par(way)) to tag0 (with
label L) is permissible. This proof obligation can easily be
discharged by an external solver.

The soundness of our type system (Section 5) guarantees
that all security violations are detected at compile time. For
example, consider the case when timingLabel is 0 in line 11
in Figure 2(b). If the H partition, such as variable hit2, were
accessed in that case, an error would be reported because
the type system would generate an invalid proof obligation:
(timingLabel = 0)⇒ H v LH(timingLabel).

2.6 Benefits over previous approaches
Our approach enjoys several benefits compared with prior
efforts with verifiable information-flow security for hard-
ware [22, 23, 42]. First, verification is done at compile time,
avoiding run-time overhead and detecting errors at an early
design stage. This is not possible with GLIFT [42] and Sap-
per [22]. Second, variables and logic can be shared across
multiple security levels (e.g., way and hit are shared with
various timing labels), which is not possible with Cais-
son [23]. Moreover, SecVerilog adds little programming ef-
fort: Verilog code can be verified almost as-is, with annota-
tions (security labels) required only for variable declarations.

3. SecVerilog: Syntax and semantics
Except for added annotations, SecVerilog has essentially the
same syntax and semantics as Verilog [13]. It builds on the
synthesizable subset of the Verilog language. We restrict to
synthesizable code because unsynthesizable Verilog code is
used only for testing purposes: it has no effect on the final
hardware. The target language of our compiler is synthesiz-
able Verilog from which hardware can be generated using ex-
isting tools.

A core subset of SecVerilog is shown in Figure 3. We
choose this subset because it includes all interesting features,
and the omitted features (e.g., case, assign and the ternary
conditional) can be translated into the core language.

Level ` ∈ L
Family f ∈ Zn → L
Label τ ::= ` | f(v) | τ1 t τ2 | τ1 u τ2

Figure 4. Syntax of security labels.

A SecVerilog program (Prog) consists of a set of variable
declarations and a set of thread definitions that use these
variables. Variable v can represent either a register or a wire.
The difference is that wires are stateless, and must be driven
by other signals. We do not distinguish them in the syntax.

“Always blocks” (B) in (Sec)Verilog are similar to threads
from the software perspective. Each always block translates
into a hardware module that operates in parallel to other
modules.

Threads are activated by triggers. A trigger γ can either
be a change to the clock signal (posedge/negedge means
the rising/falling edge of the clock signal), or a change to a
variable in a variable list ~v. For example, commands in the
always block at line 9 in Figure 2(a) are activated at every
rising edge of the clock signal.

Commands c are similar to those in software languages.
Symbols η are unique identifiers for program points and can
be ignored for now. A feature of Verilog not found in most
programming languages is the distinction between blocking
assignment v =η e and nonblocking assignment v ⇐η e. The
effects of blocking assignments are visible immediately, but
those of nonblocking assignments are delayed until the end
of the current time unit. For example, consider the two code
fragments x = 1; y ⇐ x and x ⇐ 1; y ⇐ x. If the value
of x is initially 0, then y becomes 1 in the first piece of code,
but 0 in the second.

We provide a formal operational semantics for SecVerilog
in the supplementary material [50].

4. SecVerilog: Type system
The SecVerilog type system statically controls information
flow in a rigorous and verifiable way. The most novel features
of the type system include: 1) mutable, dependent security
labels, 2) a permissive yet sound way of controlling label
channels, and 3) a modular design that decouples the program
analyses required for precision from the type system. These
novel features are essential for statically verifying highly
efficient, practical hardware designs.

4.1 Type syntax
Types in SecVerilog are simply Verilog types extended with
security label expressions, whose syntax is shown in Figure 4.
The simplest form of label τ is a concrete security level `
drawn from the security lattice L.

Unlike in most previous work on language-based security,
SecVerilog supports dynamic labels: labels that can change



Γ, pc,M ` skipη
T-SKIP

Γ, pc,M ` c1 Γ, pc,M ` c2
Γ, pc,M ` c1; c2

T-SEQ
Γ ` e : τ v 6∈ FV(Γ(v)) |= P (•η)⇒ τ t pc v Γ(v)

Γ, pc,M ` v =η e Γ, pc,M ` v ⇐η e
T-ASSIGN

Γ ` e : τ
v ∈ FV(Γ(v))

v′ 6∈ Γ
|= P (•η)⇒ pc v Γ(v) if v 6∈M

|= P (•η), v′ = beca ⇒ τ t pc v Γ(v)
{
v′/v

}
Γ, pc,M ` v =η e Γ, pc,M ` v ⇐η e

T-ASSIGN-REC

Γ ` e : τ
Γ, pc t τ,M∩ DA(η) ` c1
Γ, pc t τ,M∩ DA(η) ` c2

Γ, pc,M ` ifη (e) c1 else c2
T-IF

Figure 5. Typing rules: commands.

at run time. A dynamic label f(v) is constructed using a
type-valued function f applied to a variable v. Type-valued
functions are needed in order to decode the simple values that
the hardware can convey into labels from the lattice L.

Dynamic labels are needed to accurately describe infor-
mation flows in complex hardware designs, where hardware
resources can be used by multiple security levels. One exam-
ple is the label Par(way) used in Figure 2(a). Note that all
security labels in SecVerilog, including dynamic labels and
label-decoding functions, only exist for compile-time type
checking; they have no run-time manifestation.

Because security labels can mention terms (in particu-
lar, variables such as way), the type system has dependent
types. Dependent security types have been explored in some
prior work on security type systems that track information
flow (e.g., [25, 43, 51]), where they provide valuable expres-
sive power. However, in order to support analysis of hard-
ware security, the type system for SecVerilog includes some
unique features: first, the use of type-valued functions for la-
bel decoding, and second, even more unusual, the presence
of mutable variables in types—that is, types may depend on
variables whose value can change at run time.

The design philosophy of SecVerilog is to offer an ex-
pressive language with a low annotation burden, along with
fast, automatic type checking. Following this philosophy, the
only kind of term to which a label decoding function can be
applied is a variable. This restriction ameliorates two prob-
lems: first, the undecidability of type equality involving gen-
eral program expressions, and second, side effects changing
the meaning of types.

Despite this restriction, dependent types in SecVerilog
nevertheless turn out to be expressive enough for the intended
use in hardware design. Restricting dependent types allows
type checking to be fast (e.g., two seconds to verify a com-
plete MIPS CPU in Section 6.1) and fully automatic. The syn-
tax also alleviates the resulting limitations on expressiveness
by allowing joins (t) and meets (u) of labels.

4.2 Typing rules
Typing rules for expressions have the form Γ ` e : τ where
Γ is a typing environment that maps variables to security
labels, e is the expression, and τ is its label. Since these
rules are mostly standard [35], we leave the details in the
supplementary material [50].

The typing rules for commands are shown in Figure 5.
The typing judgment has the form Γ, pc,M ` c. Similar to
the usual program-counter label [35] for software languages,
pc is used to control implicit flows. More interesting is M,
which tracks a set of variables that must be modified in all
alternative executions. The type system uses M to improve
its precision, as we see shortly.

In the next three sections, we explore the challenges of
designing the SecVerilog type system and along the way
explain the rules of Figure 5 in more depth.

4.3 Mutable dependent security labels
Dependent types need to mention mutable variables in prac-
tical hardware designs. For example, variable way in Fig-
ure 2(a) can be modified whenever a new read request comes
to the data cache, updating which cache way to use. Muta-
bility creates some challenges for the soundness of the type
system. We begin by illustrating these challenges.

Implicit declassification. Whenever a variable changes, the
meaning of any security label that depends on it also changes.
To be secure, SecVerilog needs to prevent such changes from
implicitly declassifying information. Consider the example in
Figure 6. This code is clearly insecure since it copies secret
into public when x changes from 1 to 0 (not shown for
brevity).

At the assignment to y in the first branch, its level is H,
but at the assignment to public, the level of y has become
L. The insecurity arises from the change to the label of y

during the execution, while its content remains the same. In
other words, if x changes from 1 to 0, the label of y cannot
protect its content.

We rely on a dynamic mechanism to erase register con-
tents when the old label is not bounded by the new one. Code
to dynamically zero out registers is automatically inserted as
part of the translation to Verilog. Note that wires in hardware
are stateless, so dynamic erasure only applies to registers.

reg[7:0] {H} secret, {L} public, {L} x;
reg[7:0] {LH(x)} y; // LH(0)=L LH(1)=H
always@(posedge clock) begin
if (x==1) begin y ⇐ secret; end
else begin public ⇐ y; end
end

end

Figure 6. An example of implicit declassification.



1 reg{H} high;
2 reg{L} low, low’;
3 reg{LH(x)} x;//LH(0)=L LH(1)=H
4 ...

5 if (high) begin
6 x ⇐ 1;

7 end
8 if (x==0 && low==1) begin
9 low’ ⇐ 0;

10 end
11 low ⇐ 1;

12 ...

(a) Insecure program with a label channel.

1 reg{H} hit2, hit3;
2 reg[1:0]{Par(way)} way;
3 // Par(0)=Par(1)=L

4 // Par(2)=Par(3)=H

5 ...

6 if (hit2 || hit3) begin
7 way ⇐ (hit2 ? 2’b10 : 2’b11);

8 end
9 else begin
10 way ⇐ 2’b10;

11 end
12 ...

(b) No-sensitive-upgrade rejects secure code.

1 reg{H} high;
2 reg{L} low, low’;
3 reg{Par(x)} x;
4 // Par(0)=Par(1)=L

5 // Par(2)=Par(3)=H

6 ...

7 if (x==0) begin
8 low ⇐ 1;

9 end
10 else begin
11 high ⇐ 1;

12 end
13 low’ ⇐ low;

14 ...

(c) Flow-sensitive systems reject secure code.

Figure 7. Examples illustrating the challenges of controlling label channels.

While this dynamic mechanism may affect the functional-
ity of the original hardware design, we believe that it is not a
major issue in practice for the following reasons:

1. Dynamic erasure happens very rarely in our design ex-
perience. Most variables with dynamic labels are wires
in our prototype processor design (e.g., way, tag_in and
write_enable in Figure 2(a)). So the dynamic mecha-
nism has no effect on these variables.

2. For registers with dynamic labels, this clearing is indeed
necessary for security; hardware designers need to explic-
itly implement it anyway. Consider dFsmState in Fig-
ure 2(b), the state of the cache controller. It is reset any-
way in a secure design, when the pipeline is flushed in the
case that the timing label changes from H to L.

3. Further, the compiler can notify a designer when auto-
matic clearing is generated, and ask the designer to ex-
plicitly approve such changes.

Label channels. Mutable dependent types create label
channels in which the value of a label becomes an infor-
mation channel. For instance, consider the code snippet in
Figure 7(a). This example appears secure as the assignment
to low’ only occurs when the label of x is L (when x is 0).
When high is 1, the label of x becomes H, which correctly
protects the secrecy of high. However, this code is insecure
because the change of label x also leaks information. Sup-
pose that the variables represent flip-flops that are initialized
to (x = 0, low = 0, low′ = 1) on a reset. The value of x
in the second clock cycle after a reset is determined by the
value of high in the first cycle; 1 if high is 1, 0 if high is 0.
Then, low’ in the third clock cycle reflects the value of x in
the second cycle, leaking information from high to low’.

Similar vulnerabilities have also been observed in the lit-
erature on flow-sensitive security types, in which security la-
bels of a variable may change dynamically (e.g., [5, 18, 34]).
However, prior solutions are all too conservative (i.e., they
reject secure programs) for practical hardware designs.

The first approach is no-sensitive-upgrade [5], which for-
bids raising a low label to high in a high context. However,

this restriction rules out useful secure code, such as the se-
cure code in Figure 7(b), adapted from our partitioned cache
design. This code selects a cache way to write to. Variables
hit2 and hit3, representing the existence of a hit in high
cache, have label H. No-sensitive-upgrade rejects this pro-
gram, since way might be L before the assignment.

The second approach [18, 34] raises the label of variables
modified in any branch to the context label (the label of the
branch condition). Returning to the example in Figure 7(a),
the label of x would become H because of the if-statement at
lines 5–7. This over-approximation can be too conservative
as well. For example, consider the secure code in Figure 7(c).
Here, the label of x specifies an invariant: whenever x is 0 or
1 (i.e., Par(x)=L), nothing is leaked by the value of x nor by
the time at which its value changes. Hence, low’s transition
to 1 at line 8 is secure. However, the approach in [18] raises
the label of low to Par(x) after the if-else statement. This
conservative label of low makes checking at line 13 fail, since
there is a flow from H to L when x is 2 or 3. Even a more
permissive approach rejects this secure code. When x is 2
or 3, the dynamic monitor described in [34] tracks a set of
variables that may be modified in another branch (low in this
case), and raises their label to the context label (H). Hence,
line 13 is still rejected.

We propose a more permissive mechanism that accepts se-
cure programs in Figure 7(b) and 7(c). Our insight is that
no-sensitive-upgrade is needed for security, but only when
the modified variable might not be assigned in an alternative
path. For example, in Figure 7(b), the variable way is modi-
fied in both branch paths. Here, the label of way is checked for
both branch paths on the assignments to way (line 7 and 10),
ensuring that the label of way must be higher than the con-
text label (H) at the merge point. In other words, the fact that
the label of way becomes H leaks no information. Hence, the
no-sensitive-upgrade check is unnecessary in this case. This
insight is formally justified in our soundness proof in the sup-
plementary material [50].

This insight motivates using a definite-assignment analy-
sis, which identifies variables that must be assigned to in any



possible execution. Definite assignment analysis is a com-
mon static program analysis useful for detecting uninitial-
ized variables. Since SecVerilog, like Verilog, has no aliasing,
definite-assignment analysis is simple; we omit the details.

We assume an analysis that returns DA(η), variables that
must be assigned to in any possible execution of the com-
mand at location η. The type system propagates this infor-
mation to branches, so that for an assignment to v, the no-
sensitive-upgrade check is avoided if v must be assigned to in
other paths. For example, the program in Figure 7(b) is well-
typed because way is modified in both branches, avoiding the
limitations of [5]. Moreover, the type system still enables the
remaining (necessary) no-sensitive-upgrade checks. So there
is no need to raise the label of a variable assigned to in an al-
ternative path. For example, there is no need to check the as-
signment to low at line 8 of Figure 7(c) in a high context (the
else branch), avoiding the limitations of [18, 34]. Soundness
is preserved despite the extra permissiveness (see Section 5).

4.4 Constraints and hypotheses
The design goal of SecVerilog is to achieve both soundness
and precision, with a low annotation burden. The key to preci-
sion is to make enough information about the run-time values
of variables available to the type system. For instance, con-
sider the assignment to hit at line 10 in our cache controller
(Figure 2(b)). To rule out an insecure flow from hit2 and
hit3 (with label H) to hit (with label LH(timingLabel)),
the type system must ensure H v LH(timingLabel). In
other words, in any possible evaluation of the assignment, the
label H must be bounded by LH(timingLabel). In fact, this
must be true because the condition timingLabel=1 holds
whenever the assignment happens (note that timingLabel
is a single bit). However, a naive type system without knowl-
edge of run-time values of timingLabel has to conserva-
tively reject the program.

We use a modular design to separate the concerns of
soundness and precision of our type system. In this de-
sign, the type system, along with a race-condition analysis
in Section 5.3, ensures soundness (i.e., observational deter-
minism in Section 5.2). The precision of the type system is
improved further, without harming soundness, by integrating
two program analyses: a predicate transformer analysis and
the definite-assignment analysis already discussed.

Specifically, the type system generates proof obligations:
partial orderings that must hold on pairs of security labels,
regardless of the run-time values of those labels. To statically
check a partial ordering on labels, we might require the par-
tial ordering to hold for any possible values of free variables:

τ1 v τ2 ⇔ ∀~n . τ1 {~n/~v} v τ2 {~n/~v}

where ~v = FV(τ1) ∪ FV(τ2), and FV(τ) is the free variables
in τ . However, this static approximation is too conservative.

To escape this conservatism, the type system uses a more
precise approximation of the possible hardware states that
can arrive at each program point. We denote the facts that

bnca=n bvca = v beca = > (otherwise)

be1 bop e2cb=


be1cb bop be2cb if bop ∈ {∧,∨}
be1ca bop be2ca if bop ∈ {=, 6=}
> otherwise

buop ecb=

{
¬becb if uop ∈ {¬} , becb 6= >
> otherwise

{P} skipη {P}
{P} c1 {Q} {Q} c2 {R}

{P} c1; c2 {R}

Q = remove(v, P )

{P} v =η e {Q ∧ (v = beca)} {P} v ⇐η e {P}

{P ∧ (becb)} c1 {Q} {P ∧ (¬becb)} c2 {R}
{P} ifη (e) c1 else c2 {Q ∩R}

Figure 8. Predicate generation in Hoare logic.

program analysis has derived about the hardware states as
predicates indexed by command identifiers η. The predicates
P (•η) and P (η•) respectively denote overapproximations
of the hardware states that can exist before and after the
execution of the command at location η. Using even sim-
ple program analyses to generate these predicates consid-
erably improves the precision of information flow analy-
sis without harming soundness. Returning to our example,
supposing that the program analysis can derive P (•η) =
(timingLabel = 1). The type system then only needs to
know that the flow from H to LH(timingLabel) is secure
when timingLabel is 1. This requirement can be expressed
as an (easily verified) constraint:

timingLabel = 1⇒ H v LH(timingLabel)

4.5 Generating state predicates
Many techniques can be used to generate predicates describ-
ing the run-time state, with a tradeoff between precision and
complexity. For example, weakest preconditions [10] could
be used. However, shallow knowledge of run-time state is
enough for our type system to be effective. We use a sim-
ple abstract interpretation to propagate predicates forward
through each thread definition, starting from the predicate
true and overapproximating the postcondition at each pro-
gram point. The rules defining this analysis are given in Fig-
ure 8. The algorithm generates predicates in linear time.

Expression results are coarsely approximated by track-
ing only constant values and variables, and replacing more
complex expressions with the “unknown” value >. Opera-
tors beca and becb estimate the arithmetic and boolean values
of e, respectively. The result of binary operators is > if any
operand is >. The translation rules on commands are written
as admissible weakenings of the rules of Hoare Logic [17].
They should be read as specifying how to compute a post-



condition from a precondition. To make reasoning practical,
the rules do not derive the strongest possible postcondition—
but of course it is sound to weaken postconditions. Conse-
quently, postconditions and preconditions are represented as
conjunctions. The rule for assignment weakens the strongest-
postcondition rule [11] by discarding all conjuncts that men-
tion the assigned variable, in remove(v, P ). For efficiency,
the rule for if weakens the obvious postcondition, Q∨R, by
syntactically intersecting the sets of conjuncts in Q and R.

4.6 Discussion of typing rules
The most interesting rules in Figure 5 are (T-ASSIGN), (T-
ASSIGN-REC) and (T-IF). Proof obligations are generated
for assignments v =η e and v ⇐η e. These proof obligations
are discharged by an external solver; our implementation uses
Z3 [9]. The informal invariants the type system maintains
are 1) the new label of v is more restrictive than both the
context label pc and label of e, 2) the no-sensitive-upgrade
check is enabled if there might not be an assignment to v in
an alternative branch. Rule (T-ASSIGN-REC) checks these
invariants explicitly. To check the invariant after update, the
rule generates a fresh variable v′ to represent the new value
of v. Though pc and the security level of e may also change
after the assignment, the rule checks against the old value
since semantically, information flows from the old state to
variable v. The no-sensitive-upgrade check is enforced with
the condition v 6∈ M adding precision in the case where
the variable is assigned in every branch. The single check
in Rule (T-ASSIGN) is sufficient for these invariants since
Γ(v) remains the same when there is no self-dependency,
and the check entails no-upgrade-check (because pc v τ t
pc). To improve precision of the type system, predicates on
states are used only as hypotheses in these proof obligations.
Blocking and nonblocking assignments use the same typing
rule, differing only on when the assignment takes effect.

Rule (T-IF) propagates the set of variables that must be
modified in both branches (DA(η)) to c1 and c2. Taking the in-
tersection ofM and DA(η) is needed for nested if-statements.

4.7 Scalability of type checking
Queries sent to Z3 are generated by typing rules (T-ASSIGN)
and (T-ASSIGN-REC) in Figure 5. Note that these queries are
essentially predicates on a (finite) lattice of security labels. In
another word, only simple theories (e.g., no quantifiers, no
real numbers) of the full-fledged Z3 solver are utilized by the
type system. These queries can be efficiently solved by Z3.

Moreover, the static analyses used by SecVerilog to en-
able precise type checking (definite assignment analysis and
predicate generation) are both modular. Race condition anal-
ysis may vary depending on the hardware design tool, but is
scalable for most tools.

For the complete MIPS CPU in Section 6.1, it takes a total
of only two seconds to generate all 1257 constraints by the
type system, and solve them with Z3, suggesting that type
checking is likely to scale to larger hardware designs.

4.8 Well-formed typing environments
The use of dynamic labels also puts constraints on the typing
environment Γ: Γ is well-formed, denoted ` Γ, when 1) no
variable depends on a more restrictive variable, preventing
secrets from flowing into a label, and 2) no dependencies are
chained, preventing cyclic dependencies. If FV(τ) is the free
variables in τ , this can be expressed formally as follows:

DEFINITION 1 (Well-formedness). Γ is well-formed iff

∀v ∈ Vars . (∀v′ ∈ FV(Γ(v)) . Γ(v′) v Γ(v))

∧(∀v′ ∈ FV(Γ(v)) . v′ 6= v ⇒ FV(Γ(v′)) = ∅)

5. Soundness
Central to our approach is rigorous enforcement of a strong
information security property. We formalize this property and
sketch a soundness proof of our type system; the full proof is
available in the supplementary material [50].

5.1 Proving hardware properties from HDL code
Our goal is to prove that the actual hardware implementation
controls information flow. However, information flow is an-
alyzed at the level of the HDL. The argument that language-
level reasoning is accurate has two steps. First, the opera-
tional semantics of SecVerilog correspond directly to hard-
ware simulation at the RTL (Register Transfer Level) of ab-
straction. Second, for a synchronously clocked design, these
RTL simulations accurately reflect behavior of synthesized
hardware; in fact, functional verification of modern hardware
relies mainly on RTL simulation. Thus, HDL-level reasoning
suffices to prove hardware-level security properties.

5.2 Observational determinism
Our formal definition of information flow security is based on
observational determinism [33, 48], a generalization of non-
interference [12] that provides a strong end-to-end security
guarantee even for nondeterministic systems. Observational
determinism requires that in any two executions that receive
the same low (adversary-visible) input, the system’s low be-
havior must also be indistinguishable regardless of both high
inputs and (possibly adversarial) nondeterministic choices.

Formalizing this property in the presence of dynamic la-
bels presents some challenges, since the security level of a
variable may differ in two hardware states. We start by defin-
ing a low-equivalence relation ≈` on hardware states σ, in-
dexed by a level ` ∈ L. Two states are low-equivalent at level
` if they cannot be distinguished by an adversary able to ob-
serve information only at that level or below.

We assume a typing environment Γ that maps variables to
security labels. Given state σ, the security level of a variable
x is: T (x, σ) = `′, where `′ is the value of label Γ(x) in σ.
We formalize the low-equivalence relation as follows:

DEFINITION 2 (Low equivalence at level `). Two states are
low-equivalent at level ` iff any variable whose label is below
` in one state must have the same label and value in the other:



∀σ1, σ2 . σ1 ≈` σ2 ⇐⇒ ∀x∈Vars .

(T (x, σ1) v `⇔ T (x, σ2) v `)
∧ (T (x, σ1) v `⇒ σ1(x) = σ2(x))

It is straightforward to check that ≈` is an equivalence
relation. Note that we require the level of x to be bounded by
` in σ2 whenever T (x, σ1) v `. This definition corresponds
to our adversary model: all variables below ` are observable
to the adversary. For example, consider the case Γ(x) =
LH(x), σ1(x) = 0 and σ2(x) = 1. Since x has different labels
in the two states, σ1 6≈L σ2. This is necessary because the
ability to make the observation itself leaks information.

An event is a pair (t, σ), meaning that state σ occurred at
clock cycle t. Assuming synchronous logic, events are pro-
duced only when a clock tick occurs. A trace T is a countably
infinite sequence of events. We write 〈σ, Prog〉 ↪→ T if exe-
cuting Progwith initial states σ produces a trace T . Since the
semantics is nondeterministic, there can be multiple traces
T such that 〈σ, Prog〉 ↪→ T . Two traces are low-equivalent
when the states in traces are clockwise low-equivalent.

We formalize observational determinism as follows:

DEFINITION 3 (Observational Determinism). Program Prog

obeys observational determinism if for any low-equivalent
states σ1 and σ2, execution from those states always pro-
duces low-equivalent traces:

σ1 ≈L σ2 ∧ 〈σ1, Prog〉 ↪→ T1 ∧ 〈σ2, Prog〉 ↪→ T2

=⇒ T1 ≈L T2

Note that traces include the clock-cycle counter, so this defi-
nition is timing-sensitive, controlling timing channels.

5.3 Soundness of SecVerilog
The type system in Section 4 along with a race-condition
analysis ensures that well-typed SecVerilog programs satisfy
observational determinism.

Race freedom. Today’s synchronous hardware design meth-
ods disallow race conditions in order to produce deterministic
systems. Existing synthesis tools prevent races by ensuring
that only one thread updates each variable once per clock
cycle. Intuitively, a program is race-free if the sequence of
thread executions does not affect the synchronized state.

Soundness proof. We use the notation 〈c, σ〉 ⇓ σ′ to denote
a big step: fully evaluating command c in state σ results in
state σ′. To simplify notation, V(τ, σ) represents the security
level resulting from evaluating type τ in σ.

The first lemma states that any variable assigned to in a
high context has a high label in the final state.

LEMMA 1 (Confinement). Let 〈σ, c〉 ⇓ σ′. If c can be typed
under a given program counter label pc and well-formed
typing environment Γ, then for every variable v assigned in
command c, we have

V(pc, σ) v T (v, σ′)

Proof. By induction on the structure of c. The correctness of
the predicate transformer analysis is used for assignments. �

The next theorem states that running a command atomi-
cally to finish enforces noninterference.

THEOREM 1 (Single-command noninterference). If the states
σ1, σ2 are low-equivalent at the beginning of a clock cycle,
running any well-typed command c in σ1 and σ2 produces
low-equivalent states at the beginning of next cycle as well:

(` Γ)∧(Γ ` c)∧(σ1 ≈L σ2)∧〈σ1, c〉 ⇓ σ′1∧〈σ2, c〉 ⇓ σ′2
=⇒ σ′1 ≈L σ′2

Proof. By induction on the structure of c. The interesting
case is an if-statement that takes different branches in σ1
and σ2. When both branches assign to v, the label of v must
be higher than L in both σ′1 and σ′2 by Lemma 1. When v
is assigned in only one branch, the correctness of definite-
assignment analysis implies v 6∈ M. Lemma 1 and the no-
sensitive-upgrade check (T-ASSIGN-REC) together ensure
the label of v is higher than L in σ′1 and σ′2. �

Finally, any well-typed SecVerilog program obeys obser-
vational determinism and is therefore secure:

THEOREM 2 (Soundness of the type system). If a SecVer-
ilog program is well-typed under any well-formed typing
environment, the program obeys observational determinism:

(` Γ) ∧ (Γ ` Prog) ∧ (σ1 ≈L σ2)∧
〈σ1, Prog〉 ↪→ T1 ∧ 〈σ2, Prog〉 ↪→ T2

=⇒ T1 ≈L T2

Proof. By induction on the length of T1. For the inductive
step, consider two atomic runs in σ1 and σ2 where all threads
run to finish without being preempted, producing σ′1 and σ′2.
By Theorem 1, states σ′1 and σ′2 are low-equivalent. By the
correctness of the race-freedom analysis, all possible runs
from σ1 and σ2 produce the same states σ′1 and σ′2. Hence,
the final states must be low-equivalent in all runs. �

6. Evaluation
We used SecVerilog to design and verify a secure MIPS
processor. We sketch the processor design, and show how
SecVerilog helped avoid security vulnerabilities, including
some not identified in prior work. We then provide results on
the overhead of SecVerilog and timing channel protection.
Overall, we found that the capability to statically control
information flow at a fine granularity enables efficient secure
hardware designs, and that the SecVerilog type system only
requires a small number of changes to the Verilog code with
no added run-time overhead.

6.1 A secure MIPS processor design
We implemented a SecVerilog compiler based on Icarus Ver-
ilog [1]. The constraints generated by the type system are



Module Name LOC
Fetch 60

Decode + Register File 465
Execute + ALU 218

FPU N/A
Memory + Cache 537

Write Back 20
Control Logic + Forwarding + Stalling 419

Total w/o FPU 1719

Table 1. Lines of Code (LOC) for each processor compo-
nent.

Instruction type Instructions
Additive Arithmetic add, addi, addiu, addu, sub, subu
Binary Arithmetic and, or, xor, nor, srl, sra, sll, sllv

srlv, srav, slt, sltu, slti, sltiu, andi, ori, xori
Multiply/divide mult, multu, div, divu
Floating point add.s, sub.s, mul.s, div.s, neg.s, abs.s

mov.s, cvt.s.w, cvt.w.s, c.lt.s, c.le.s
Branch and jump bne, beq, blez, bgtz, jr, jalr, j, jal

Memory operation lw, lhu, lh, lbu, lb, sw, sh, sb, swc1, lwc1
Others mfhi, mflo, lui, mtc1, mfc1

syscall, break
Security-related setr, setw

Table 2. Complete ISA of our MIPS processor.

solved by Z3 [9]. Using this implementation, we designed a
complete MIPS processor that enforces the timing label con-
tract discussed in Section 2.3. Our processor is based on a
classic 5-stage in-order pipeline with separate instruction and
data caches, both of which are 32kB and 4-way associative.
The processor also includes typical pipelining techniques,
such as data hazard detection, stalling and data bypassing, as
well as a floating point unit (FPU) that we constructed using
the Synopsys DesignWare library.

The Verilog code for our processor has more than 1700
LOC excluding the FPU, as shown in Table 1. LOC for the
FPU is not reported because the source for the DesignWare
library component is not available. Table 2 summarizes the
processor’s ISA, which is rich enough that we can compile a
recent OpenSSL release with an off-the-shelf GCC compiler.
The ISA is at least comparable to the ISAs of prior processors
with formally verified security (e.g., [22]). New instructions
setr and setw are used to set timing labels.

Our secure processor design supports fine-grained shar-
ing of hardware resources between different security levels.
For example, the design allows both high and low cache par-
titions to be securely used by a single program. This effec-
tively increases the cache size and improves performance for
applications with multiple security levels.

To implement such a rich policy, we divide a 4-way cache
into a low partition and a high partition. When the timing
label is H, both low and high partitions can be used securely.
When the timing label is L, both the low and high partitions
are still searched. However, to ensure that timing can be

affected only by the low cache partition, a cache access is
treated as a miss even when there is a hit in the high partition.
To avoid data duplication, the cache line moves from the
high partition to the low partition when the data arrives from
memory, achieving functional correctness without violating
the timing constraint. Since cache states have static labels,
they are not zeroed out when timing label changes.

The pipeline, on the other hand, is dynamically partitioned
using the timing label. When the timing label changes, the
pipeline is flushed to avoid leaking information. A pipeline
that interleaves high and low instructions without flushing is
indeed insecure, since high instructions may stall low ones.

We found that implementing such a complex policy se-
curely would be difficult without using SecVerilog. For ex-
ample, the SecVerilog type checker caught a security flaw
not foreseen by the authors: the dirty bit copied from the high
partition to the low partition created a potential timing chan-
nel. Our solution is to set the dirty bit for every cache line
immediately after it is fetched. This change still allows store
hits to write directly to cache line without writing to memory.

Another security issue caught by the SecVerilog type
checker is a stall at the instruction fetch stage affecting the
memory stage: in our pipeline implementation, a load miss in
an instruction could stall instructions in later pipeline stages.
Thus, when the timing label changes, an instruction with tim-
ing label H can stall another instruction with label L, breaking
the timing-label contract. To make the design type-check, the
pipeline is flushed at every timing-label switch.

6.2 Overhead of SecVerilog
SecVerilog may require designers to add additional branches
to establish invariants needed to convince the type system of
the security of the design. For instance, the type system fails
to infer in our cache design that variable way can only be 2
or 3 at a particular point in the code. In this case, the design
needs to include an if-statement establishing this fact. These
added branches represents the overhead of using SecVerilog.

To measure this overhead, we compare our secure MIPS
processor written in SecVerilog (“Verified”) with another se-
cure design written in Verilog (“Unverified”). The Unveri-
fied design is essentially the same as Verified, including the
same timing channel protections. Because it eliminates the if-
statements necessary for type checking, it cannot be verified.

Designer effort and verification time. The Unverified MIPS
processor comprises 1692 lines of Verilog code. Converting
this design to the Verified processor in SecVerilog required
adding only 27 lines of extra code to the cache module, in
order to establish necessary invariants to convince the type
checker, suggesting that very little overhead is imposed by
imprecision of the type system.

The current implementation of SecVerilog requires a pro-
grammer to explicitly write down one security label for each
variable declaration, unless the variable has the default la-
bel L. However, most security labels can be automatically



inferred via adding type inference (e.g., as in [7, 26, 46]) to
the SecVerilog compiler, which we leave as future work.

The verification process is also fast. For our processor
design, it takes a total of two seconds to both generate all
obligations and then discharge them with Z3.

Delay, area and power. We synthesized the processor de-
signs using the Synopsys synthesis flow, using the 90nm
saed90nm_max digital standard cell library. For all designs,
we increased the frequency of the processors to the maximum
achievable to see what overhead the Verified design adds to
the critical path. The synthesis results are shown in Table 3.
Here “Insecure” represents the baseline, unmodified MIPS
processor without timing channel protection. We discuss the
baseline result in the next subsection.

The Verified design only adds 27 lines of code to Unveri-
fied, so we found that the delay, area, and power consump-
tion of the two designs are almost identical. For example,
area overhead is only 0.16% even without including cache
SRAM, which is identical for all designs. This overhead is
much lower than that of other secure design techniques, as
reported in [22]: GLIFT, 660%; Caisson, 100%; and Sapper,
4%. Power consumption of the two designs is identical. Criti-
cal path delay is slightly lower for Verified, likely due to ran-
domness in synthesis. The results show the benefit of sharing
hardware across security levels and of controlling informa-
tion flow at design time, without run-time checks.

Performance. The Verified design does not add any per-
formance overhead over the Unverified design because the
added logic does not change cycle-by-cycle behavior.

6.3 Overhead of timing channel protection
The timing channel protection mechanisms in our proces-
sor (“Verified”) adds overheads compared to the unmodified
baseline (“Baseline”) without any protection.

Delay, area and power. When an FPU is included, we
found that the critical path delay is identical for both Verified
and Baseline, as shown in Table 3. This is because the criti-
cal path of the processor lies in the FPU, which is largely un-
modified for secure designs. To more meaningfully evaluate
the impact of secure design, we also measured the maximum
achievable frequency without an FPU. Nevertheless, the de-
lay overhead is still only 1.22%. The area overhead of 0.67%
is also quite low, and power overhead is almost negligible.
Because SecVerilog allows hardware resources to be shared
across security levels while properly restricting their alloca-
tions, timing channel protection mostly does not require du-
plicating or adding hardware.

Performance. The timing channel protection in our secure
processor design imposes restrictions on cache usage and re-
sults in additional pipeline flushes and cache write-backs. We
measured the performance overhead of the Verified processor
and tested its correctness on two security benchmarks.

Baseline Unverified Verified
Delay w/ FPU (ns) 4.20 4.20 4.20

Delay w/o FPU (ns) 1.64 1.67 1.66
Area (µm2) 399400 401420 402079
Power (mW) 575.5 575.6 575.6

Table 3. Comparing processor designs.

Our benchmarks include three security programs (blow-
fish, rijndael, SHA-1) from MiBench, a popular embedded
benchmark suite for architectural designs2 [16], as well as ci-
phers and hash functions in a recent release (version 1.0.1g)
of OpenSSL, a widely used open-source SSL library.

Thanks to the rich ISA of our MIPS processor, compil-
ing and running these benchmarks requires only modest ef-
fort. We use an off-the-shelf GCC compiler to cross-compile
the benchmarks to the MIPS 1 platform. We use Cadence
NCVerilog to simulate our processor design running these
binaries. Because we lack an operating system on the pro-
cessor, system calls (e.g., open, read, close, time) are em-
ulated by Programming Language Interface (PLI) routines.
Dynamic memory allocation is implemented by simple code
using preallocated static memory.

Most test programs in these benchmarks were used as is.
The only exceptions are a few tests in OpenSSL that take a
long time to simulate. To make evaluation feasible on these
tests, we replace long inputs with shorter ones.

We evaluate two security policies: “nomix”, a coarse-
grained policy where the entire program is labeled H, cor-
responding to the security policy targeted by previous secure
hardware design methods, and “mixed”, a fine-grained pol-
icy allowing mixed H and L instructions, enabled by the new
features of SecVerilog. In the latter case, we use a simple
policy to decide timing labels: for ciphers (e.g., AES, RSA),
the encryption and decryption functions are marked as H; for
secure hash functions (e.g., MD4, SHA512), we pretend part
of the input is secret, and mark the hash functions on these
inputs as H. Performance results for a single run of each test
are shown in Figure 9. Multiple runs are unnecessary for our
evaluation since the simulation is deterministic.

From the MiBench suite, only rijndael shows notice-
able performance overhead, at 19.6%. Overhead is reduced
to 12.2% when the fine-grained model with mixed labels
is used. Overhead on OpenSSL ranges from 0.3% (Blow-
fish) to 34.9% (SHA-0), with an average of 21.0%. For the
fine-grained model, the overhead on OpenSSL ranges from
−3.9% (CAST5) to 21.7% (DES), with an average of 8.8%.
CAST5 runs faster with the partitioned cache because H in-
structions cannot evict frequently used data in the L partition.

The results clearly show the benefit of fine-grained infor-
mation flow control within a single application. Most slow-
down comes from the restriction that H instructions cannot
write to the low cache partition. Allowing mixed H and L in-

2 The only benchmark omitted is PGP, which requires a full-featured OS.
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Figure 9. Performance overhead of timing channel protection.

structions in a single program improves performance because
the restrictions only apply to a subset of program instructions.

We could not compare our performance overhead with
prior work [22, 23, 42] because they do not report the perfor-
mance overhead over a baseline with unpartitioned cache3.

7. Related work
Verifiable secure hardware. Dynamic information flow
tracking is applied at the logic-gate level in GLIFT [28, 29,
40–42]. Dynamic checks in the initial GLIFT design [42]
add high overheads in area, power, and performance. Subse-
quent work [28, 29, 41] checks designs before fabrication,
but enumerates all possible states through gate-level simula-
tion, an approach unlikely to scale to large designs without
rigid time-and-space multiplexing. SecVerilog allows more
flexible resource sharing and identifies security issues early
in the design process.

Sapper [22] also adds logic for tracking information flows,
incurring run-time overhead. Sapper cannot capture the de-
pendencies between types and values needed for complex se-
curity policies. For example, it would not be possible to use
the label LH(timingLabel) for variable stall, as shown in
Figure 2(b), to capture the policy that the label of stall must
be L when timingLabel is 0.

Caisson [23] supports static analysis but with purely static
security levels that prevent fine-grained sharing of hard-
ware resources across security levels. E.g., write_enable,
tag_in and stall in Figure 2 would require duplication
(per security level) since their labels cannot be determined
at compile time. Duplicated resources must be controlled by
extra encoders and decoders, adding run-time overhead.

Dynamic security labels. Some prior type systems for in-
formation flow also support limited forms of dynamic la-
bels [14, 19, 24, 25, 39, 43, 51]. The type-valued functions
needed to express the communication of security levels at the
hardware level are absent in most of these, and none permit
dynamic labels to depend on mutable variables, a feature key
to allowing SecVerilog to verify practical hardware designs.
The modular design of the SecVerilog type system makes it
more amenable to future extension. Fine [37] and F∗ [38]

3 The previous method [22] calls a secure but unverified design “insecure”,
and reports the overhead of verified vs. unverified as we do in Section 6.2.

can verify stateful information flow policies, modeling state
changes with affine types. Affine types suffice for functional
programming, but HDLs need SecVerilog’s new feature of
dependence on mutable variables.

Flow-sensitive information flow control. Flow-sensitive
information flow control [5, 18, 34], where security labels
may change during execution, encounters label channels sim-
ilar to those observed in our type system. Our type system
controls these channels more permissively (Section 4.3) be-
cause it captures the dependency between types and values.

Dependent type systems. Dependent types have been widely
studied and have been applied to practical programming lan-
guages (e.g., [4, 7, 25, 46, 47]). Information flow adds new
challenges, such as precise, sound handling of label chan-
nels. RHTT [27] supports rich information flow policies with
dependent types, but has much more complex specifications
and verification is not automatic.

8. Conclusion
We have shown SecVerilog makes it possible to efficiently
design complex hardware with strong security assurance.
This is enabled by novel features such as type-valued func-
tions for dependent labels, the ability to soundly and precisely
use mutable variables within labels, and the modular incor-
poration of program analyses to improve precision. Using
SecVerilog, a reasonably complex processor can be designed
in such a way that it satisfies a software–hardware contract
for comprehensive control of information flows, including
timing channels. The added overhead and effort required to
design hardware in this way were both small. Our experience
with SecVerilog suggests it will be a useful tool for designing
complex hardware with strong security assurance.
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