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COORDINATED RESOURCE ALLOCATION CS|i:

= Global allocation space very large
* Exponentially increasing with the number of cores, the number
of resources, and the granularity of resources

+ Hill climbing unlikely to scale gracefully
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COORDINATED RESOURCE ALLOCATION

= Global allocation space very large

* Exponentially increasing with the number of cores, the number
of resources, and the granularity of resources

+ Hill climbing unlikely to scale gracefully

= Performance-resource relationship not trivial
* Not even convex for some resources (e.g., cache)
* Phase changes

= Balance between system throughput and fairness
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REAL-LIFE CUE: MARKET-LIKE BEHAVIOR CSIE:

= Compromise global optimality for simplicity
* Calculate global optimum is very expensive
* Optimal outcome is not practical

 Simple, distributed mechanisms can be reasonably good

Source: Wikipedia
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A MARKET-BASED APPROACH

* Central idea: Pricing CMP resources
 Every resource is assigned a price
* Reflects supply and demand relationship

= Market players (cores)
* Have finite budgets to purchase resources in the system
* Try to maximize their own utility regardless of others
* Price-takers: no monopolistic behavior

= Market equilibrium
* Prices are such that supply = demand
* Our approach: Dynamic price discovery
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STRONG ALLY: FIRST WELFARE THEOREM CSIE:

= First welfare theorem

» Competitive market equilibrium is Pareto optimal, if
players have monotonic increasing utilities

= Pareto optimality

* An allocation is Pareto optimal if there is no way to
reallocate goods so that someone is made better off
without making someone else worse off

 Caveat: Not “perfect world” by itselt!
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DYNAMIC PRICE DISCOVERY

= Market side

* How to set prices to satisty demand from cores?

converge

Prices not
converge

= Player side (cores)
* What are my preferences (utility function)?
* How do I bid to maximize my utility?
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FIRST TAKE: A SIMPLE MARKET

= Market side: proportional pricing [Kelly, ETT 1997]

E-bidif resource.. = bid’j
rice. = L i ]
% price;

7 total _resource ;

= Player side: linear utility function

* Find preferences: Sparse off- and/or on-line profiling
utility, = Ej preference; X resource;

* Bidding strategy: [Wu and Zhang, STOC 2007]

preference, xresource,
— -budget,
utility,

bid;; =

XCHANGE

%’; Cornell University

Simple Market

5 Computer Systems Laboratory
Page 9 of 22



FIRST TAKE: A SIMPLE MARKET

= Market side: proportional pricing [F. Kelly]

Ei bid, bid,

resource; = —
price;

price; = j
total _resource ;

g v
() lﬂ E

N Ba]arm]qwgﬁ vastRismoktithtaorec
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utility, = E _prieference; X resource;;
. on
 Bidding strategy: [Wu.arid Zhang 2007]
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A HEURISTIC PLAYER MODEL CSiili:

= Separate memory and compute phases
* Memory phase: cache capacity, memory bandwidth, etc.
« Compute phase: power budget, ROB, FUs, etc

= We focus on allocating cache capacity and power
budget in this paper
* Market framework can be applied to any other resources if
an accurate utility model is built
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A HEURISTIC PLAYER MODEL

= Memory phase
 Combine Miftakhutdinov! and UMON?

Perf. counters
Length of
# hits mem. phase
# misses

# hits Al
# misses A1l

# hits A2
# misses A2

Assume MLP constant

length Al length A2

marginal utility
A1>A2

A Heuristic Approach

#hit xt, +#missxt

MLP =

mem. phase

[1] Miftakhutdinov et al, MICRO 2012
[2] Qureshi and Patt, MICRO 2006
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A HEURISTIC PLAYER MODEL CcSi=

= Memory phase
 Combine Miftakhutdinov! and UMON?

= Compute phase
* Linear relationship between compute phase and frequency
* Cubic relationship between power and frequency

[1] Miftakhutdinov et al, MICRO 2012
[2] Qureshi and Patt, MICRO 2006
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A HEURISTIC BIDDING STRATEGY CSiii

= Local hill-climbing

* All cores search through their utility function concurrently
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WEALTH REDISTRIBUTION CS|=:

= Budget assighment depends on the definition of
optimality

* Fairness-oriented: Give same budget to everyone

* Performance-oriented: Assigning budgets in proportional
to the performance gap between minimum and maximum
allocation
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DESIGN ISSUES CSi=

= Convergence
* Detected through price fluctuation (<1%)

e Fall-back mechanism after 30 iterations

* Players quickly decide whether they prefer the current allocation
or equal share

= Bankruptcy
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WAIT—WHAT ABOUT THEORETICAL GUARANTEES?

= Pretty much out of the window

» Utility function approximation at best
* Based on architecture heuristics

* Bidding search not exhaustive
* Predictive: past history = future performance

= Nevertheless, reason for optimism
* Plenty of real-life examples that just work
» Utility models captures application behavior well
* First welfare theorem has weak conditions
* We have reasonable fallback mechanism
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EXPERIMENTAL SETUP CSIE:

= Simulation setup
* 4 GHz 4-way Oo00O core, 32 kB i/d L1
e 8- and 64-core CMP
* 512kB L2, 10W per core as equal-share
« DDR3-1600 channels, 4 ranks ea., 8 banks/rank

= Performance analysis

* Mix of SPEC2000 and SPEC2006 multi-programed
workloads

= Comparison to state-of-the-art resource allocation
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SYSTEM THROUGHPUT (WEIGHTED SPEEDUP)
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SYSTEM FAIRNESS (MAXMIN SLOWDOWN)
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SCALABILITY CS|i:

= Execution time for GHC to converge

Cycles 43 1697 6418 24903
% interval 0.87% 9.69% 33.95% 128% 498%

= Execution time for XChange-WR market-
based technique to converge

| #cores | 4| 32 | 64 | 128 | 256

Cycles 9.47 12.49 15.89 22.64 52.70
% interval 0.19% 0.25% 0.32% 0.45% 1.05%

(*) Assume 5M cycle reallocation interval
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CONCLUSIONS CS|i:

= Market-based approach very promising
* Fast and scalable
* Solid results
 Adjustable system throughput and fairness

* Heuristic approach valid
* Plenty of real-life examples that just work
» Utility models captures application behavior well
* First welfare theorem has weak conditions
* We have reasonable fallback mechanism
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BACKUP SLIDES
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PRIOR ART: EXAMPLE OF NON-CONVEXITY CSIE:

= mcf’s IPC vs. cache allocation
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PRIOR ART C Sl

= Key: Performance modeling + resource allocation
= Sampling + hill climbing [Choi and Yeung 2006]

= Predictive model + hill climbing

* Artificial neural network [Bitirgen et al. 2008]
* Analytical model [Chen and John 2011]

= Curve-fitting + elasticity-proportional (Zahedi and
Lee 2014)
* Guarantee game-theoretic fairness at the cost of efficiency
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A MORE SOPHISTICATED PLAYER MODEL

= Compute phase

* Power: assume compute phase is linear to frequency

Ey)\ .2
0

texe (»'f‘) + tmem

toe f =) = 1,. ()

power(f)— power(f —Af)

power(f)=

MUpower (f) =
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IMPLEMENTATION

= Leverage Linux’s APIC timer interrupt
* Every 1 ms, for kernel statistics update
* Designate “master core” to post prices, collect bids

= Modest hardware overhead
* ~4 kB/core (mostly UMON)
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BIDDING STRATEGY CcSi=

= “Guided” hill-climbing
* Tries to go around cache non-convexity issue
* Purchase minimum frequency allocation (800 MHz)

Bid all remaining money to cache

Progressively trade off cache ways for power

Caveat: works only when one resource is non-concave
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SYSTEM THROUGHPUT (WEIGHTED SPEEDUP)
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SYSTEM FAIRNESS (MAXMIN SLOWDOWN)
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SYSTEM PERFORMANCE (HARMONIC SPEEDUP)
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