
Global Built-In Self-Repair for 3D Memories with
Redundancy Sharing and Parallel Testing

Xiaodong Wang1 Dilip Vasudevan† Hsien-Hsin S. Lee
xw285@cornell.edu dv2@cs.ucc.ie leehs@gatech.edu

School of Electrical and Computer Engineering † CEOL, Department of Computer Science
Georgia Institute of Technology University College Cork

Atlanta, GA 30332, USA Cork, Ireland

ABSTRACT
3D integration is a promising technology that provides high mem-
ory bandwidth, reduced power, shortened latency, and smaller form
factor. Among many issues in 3D IC design and production, testing
remains one of the major challenges. This paper introduces a new
design-for-test technique called 3D-GESP, an efficient Built-In-Self-
Repair (BISR) algorithm to fulfill the test and reliability needs for
3D-stacked memories. Instead of the local testing and redundancy
allocation method as most current BISR techniques employed, we
introduce a global 3D BISR scheme, which not only enables redun-
dancy sharing, but also parallelizes the BISR procedure among all the
stacked layers of a 3D memory. Our simulation results show that our
proposed technique will significantly increase the memory repair rate
and reduce the test time.

1. INTRODUCTION
3D stacked IC is an emerging integration process. By stacking in-

dividual die vertically using face-to-face vias or through silicon vias
(TSVs), it promises to provide benefits to improve interconnect la-
tency, power, bandwidth, etc. Additionally, it results in a more com-
pact form for the integrated system. More importantly, it continues to
increase device density and their functionality for a given footprint to
track Moore’s Law without scaling down the devices.

Among many different 3D-stacked architecture alternatives, homo-
geneous 3D-stacked memory is becoming one of the first commer-
cial 3-D IC products. Recently, Samsung announced to mass-produce
stacked 40nm DDR3 DRAM using TSV. Other stacking architectures
such as memory-on-logic, have also been studied or prototyped [2, 4,
10, 13, 20] to demonstrate the benefits brought by stacking memory
tiers directly atop of the processing elements to improve performance
(both latency and bandwidth) and power consumption.

Yielding will gradually become a critical issue for 3D memories as
the number of layers stacked grows [12]. Built-in self-repair (BISR),
a common technique to boost the yield of traditional 2D memories [7,
11, 16] should be appropriately applied to 3D memories. For 3D
memories, techniques such as through-silicon vias redundancy struc-
ture to replace faulty TSV were recently prototyped [5, 9].

At first glance, it seems very straightforward that the BISR algo-
rithm of 2D memories can be directly applied to 3D memories with-
out any modification, because the way of accessing memory chips
remain the same for 2D and 3D memories although the physical struc-
ture has been greatly changed. However, after examining the charac-
teristics of 3D memories more carefully, we found the inefficiency

1Xiaodong Wang is currently a graduate student at Cornell Univer-
sity. This research was performed when he was an exchange student
at Georgia Tech.

Figure 1: 3D SRAM Array Architecture

in direct application and proposed a real global BISR algorithm and
physical structure specifically tailored for 3D memories. We found
that on average, the repair rate of our scheme is increased by 27.01%
over the traditional local BISR scheme, and 8.26% over another global
MESP BISR algorithm. In the meantime, the testing time can be re-
duced down to 1

n
(n is the number of layers) of 2D memories given

the same memory capacity.
The rest of the paper is organized as follows. Section 2 reviews

background. Section 3 motivates and introduces our global BISR for
3D memories. Section 4 proposed our 3D-GESP algorithm. Section 5
analyzes our simulation results. Section 6 concludes.

2. BACKGROUND

2.1 3D Memory Architecture
3D TSV-based memories are generally designed by stacking 2D

planar memory layers with the address and data lines running across
them vertically. The vertical connections of the address and data lines
through the silicon are accomplished by using TSV. Thus the data
storage spans across multiple die layers in contrast to the 2D design,
where both the logic and memory are on the same plane.

A typical 3D memory architecture with vertical bitlines and 3D de-
coders was described in [15]. An abstract view of the architecture
is illustrated in Figure 1. In which, several banks of SRAM are dis-
tributed vertically across different die layers. The original 2D decoder
is also dissected and partitioned across the 3D layers. This example
is one variant of possible 3D SRAM implementations. According to
[15], their 128-entry multi-ported SRAM array can reduce energy and
latency by 36% and 55%, respectively.

�����

���

MUX

sense amplifier

ro
w

 d
ec

o
d
er

column decoder

N
o

rm
al

 I
/O

BIST
Fuse
Macro

BIST

BIRA
BIST I/O

(a)

address
data
BIST

address

data
Main

Memory
control

hold result

address

address

local
address

data

info

hit

Memory dataRepair data

data

BISTBIRA
Fault

CACHE

Global

Redundant

Unit

(b)

Figure 2: Two Typical BISR schemes (a) Decoder Redirection
BISR, and (b) Fault Cache BISR

2.2 Typical BISR Architecture
The BISR technique requires several spare rows and columns man-

ufactured as a part of the memory cells in order to replace the faulty
cells in the array. In general, almost all the BISR design and opti-
mization are based on two basic architectures: Decoder Redirection
BISR [19], and Fault Cache BISR [18].

2.2.1 Decoder Redirection BISR
The block diagram of this conventional BISR architecture [19] is

depicted in Figure 2 (a). It consists of four major parts.

• Redundant Row/Column. As shown in Figure 2(a), the faulty
cells (marked as “X”) are replaced by the redundant row and col-
umn (shaded squares) with necessary modifications on the de-
coder, in order to guarantee the correctness of memory operation.

• Built-in Self-Test (BIST) circuit. It generates test patterns, and
then sends it to the memories. The march-like algorithm that gives
high coverage, linear testing time, and simple hardware imple-
mentation, is the most widely used technique in memory testing.

• Built-in Redundancy-Analysis (BIRA) circuit. It collects the
fault information from the BIST and then allocates the redundant

units for the memory array.

• Fuse Macro. It stores the fault information and modifies the de-
coder to redirect the address from faulty cells to redundant units.

This architecture is easy to implement. However, it is inherently
a local architecture because it is difficult for a decoder to redirect its
local faulty cells to the neighboring redundant resources.

2.2.2 Fault Cache BISR
The block diagram of this BISR architecture [18] is depicted in

Figure 2(b). It comprises the BIST, BIRA circuit, Fault Cache, and
spare memories called Global Redundant Units (GRUs).

• Global Redundant Unit. Rather than manufactured together with
the memory blocks, the GRU is fabricated separately. Nonethe-
less, its function to replacing the faulty cells remains the same.

• Fault Cache. The information of the BISR replacement is stored
in it. During the normal operation, Fault Cache will determine
whether the memory cell the system accesses has been replaced
by the GRU. If so, it will generate a “hit” signal along with its
local address to the GRU array, and choose the data from GRU
for the data bus. When it is a cache miss, the data retrieved from
the main memory will be used.

This “Fault Cache” BISR architecture does not reconfigure the de-
coder, so its redundancy resources can be global. However, this scheme
requires extra components and more complicated wiring compared
with the Decoder Redirection BISR.

3. GLOBAL BISR SCHEME

3.1 Motivation
Based on the two basic BISR architectures in Section 2, a number

of optimizations have been proposed to improve the repair rate and
the area overhead. Tseng et al. [19] proposed a ReBISR scheme for
the RAMs in SOCs . In their scheme, multiple RAMs can share the
same global BIRA circuits. However, the redundancy resources are
not shareable — the neighboring memory blocks cannot share their
redundancy with each other. Such local replacement may cause a
problem. When the number of redundant units around a single block
are insufficient, there will be repair failure, while some redundancy
resources remain unused in other blocks, thus wasted. To solve this
“local” problem, studies in [1, 21] proposed global replaceable re-
dundancy schemes, allowing the use of the redundancy in one mem-
ory block to repair faults in others. However, these techniques not
only require large area overheads, but also reduce the routability of
the memory, and thus are less practical for traditional 2D memories.

Fortunately, one key feature of 3D IC is that the total length of in-
terconnect can be reduced considerably via TSV. Therefore, for 3D
memories, the routability problem of 2D memories with “global”
redundancy can be resolved by intelligent 3D design. Toward this,
Chou et al. [3] proposed a memory repair technique by stitching good
parts of bad dies and stacking them together through TSV. However,
their replacement is at the block level rather than at the row level
as most BISR schemes do, so it will result in huge wastage. More
recently, Jiang et al. [8] introduced a wise redundancy sharing tech-
nique across the dies for 3D memories. However, their scheme is
pairwise only and not scalable for multi-layer 3D design. In addition,
their proposal did not consider the test time, which is a critical issue
for the cost and profitability.

3.2 Real Global 3D BISR Architecture
As discussed above, the current local BISR redundancy alloca-

tion cannot fully utilize the redundant resources on chip. This sit-
uation becomes even worse for 3-D memories. Since each memory

�����

row

BIST Circuit

grant

grant

Memory Layer 0

decoder
row

layer
index

reference req

reference

fault

req

upper

reqreference
fault

 resetMemory Layer 1

1−to−2 decoder

decoder

 Comparator

 FSM Control
layer
index

upper

 FSM Control
layer
index

OR
Gate

OR
Gate

grant

 reset

BIRA Circuit

 Comparator

BISR Layer

 column decoder & SA

 column decoder & SA

hit

Fault Cache

 Global

Redundant Unit

data

address

data bus

fault address

address bus

Figure 3: Schematic of our Global BISR Design

layer is produced separately, the number of faulty cells may vary for
each layer. Therefore, besides the block-level wastage, the layer-level
wastage will occur, where the redundant resources may be insufficient
in certain layers while wasted in the other layers.

In addition, it may not be desirable to conduct BISR procedure se-
rially among the memory layers. For 2D memories, it is difficult to
parallelize the test among memory blocks, because a new datapath,
which directly connects the BISR and every block, needs to be cre-
ated. This complicates routing and incurs too much area overhead for
a planar design. For 3D memories, the wiring constraint will be much
alleviated by TSV with modest area overhead.

In this paper, global is defined according to the discussion above.

• Shareable global redundancy. The redundant resources can be
shared by all the memory layers of a single 3D memory chip. In
this way, the redundant resources can be fully utilized, and the
overall yield will be increased.

• Parallel testing. Besides the yield issue, the global BISR should
also provide parallel testing among memory blocks. The test time
will be significantly reduced, so will the cost.

We choose the “Fault Cache BISR” architecture as the basis of our
scheme for it can help realize a real global BISR design. As Fig-
ure 2(b) demonstrated, the Global Redundant Unit (GRU) can be used
to repair the faulty cells of all the memory blocks, avoiding the restric-
tion set by the decoder. On the other hand, its wiring (i.e., routability
of this architecture can be resolved by 3D technology through intel-
ligent design. The detailed hardware and software BISR design will
be discussed in Section 4.

4. 3D-GESP ALGORITHM

In this section, we introduce our global 3D BISR hardware design.
The architecture is illustrated in Figure 3. To support this hardware
layout for realizing the real global BISR scheme defined in Section 3,
we also introduce a 3D-Global ESP (3D-Global Essential Spare Piv-
oting) algorithm. This algorithm is a combination of two algorithms
we proposed: a Global ESP (GESP) and a 3D-BISR algorithm.

4.1 Global ESP Algorithm Extension
The GESP algorithm is specifically designed for the shareable global

redundancy, corresponding to the first definition of global in Sec-
tion 3. As Figure 3 shows, the redundancies (GRUs), Fault Cache,
BIST, BIRA circuits, and all other auxiliary circuits, are placed at
the bottom layer called the “BISR Layer”, and are shared by all the
memory layers.

The MESP scheme, a widely used algorithm in industry [14], can
directly be applied to our hardware of Figure 3. However, the original
scheme was specifically designed for traditional 2D memories. For
our 3D BISR, we made several improvements mentioned below to
further utilize the global characteristics and increase the repair rate.

Because the GRU architecture uses the Fault Cache to determine
whether the main memory cell or GRU is the one that should be ac-
cessed, there is no need to set a boundary required by the architecture
which modifies the decoder. This situation is shown in Figure 2. Thus
we propose two more characteristics for achieving an efficient GESP
algorithm.

1. We do not differentiate spare row or column as MESP did. One
GRU entry can be used either as a spare row or column, accord-
ing to the preference of the BIRA algorithm. This can avoid the
situation where the BIRA needs additional one more spare row
but all the spare rows have been used up. In that case, MESP

�����

(a) (b)

Figure 4: The Comparison between BIRA Algorithms. (a) Re-
pairing of the MESP, and (b) Repairing of our GESP.

may have to use at least one or typically more spare columns to
replace that 1-row repair. In our scheme, we can dynamically
configure the spares as spare row or column, and thus, as long
as there are some spares left, we can always use it as the BIRA’s
wish. This will further exploit the global characteristics of our
scheme.

2. Unlike a conventional MESP the replacement must start at an
aligned boundary (shown in Figure 4(a)) in a memory row or
column, in our architecture, each GRU entry can point to any
arbitrary location of a memory row or column for replacement
as demonstrated in Figure 4(b).

According to the figure, after having detected a new fault, which
is not covered by any allocated GRUs, that fault will always
serve as the “start point” of the new allocated GRU. Assuming
this point’s location is (xi, yi), and the coverage length of GRU
is L. When the future faults are detected, BIRA will check
whether it resides within the range of the previous GRU cov-
erage, i.e., [xi + L, yi] (row repair) or [xi, yi + L] (column
repair). On the contrary, for MESP, the “start point” of an GRU
entry is always the boundary of the memory blocks, no matter
where the faults are located.

As shown in Figure 4, for the same fault map, MESP requires five
GRUs (three row entries plus two column entries) whereas our GESP
requires only four. If clustered faults are present, in particular, cross-
ing the alignment boundary in the memory array (eight squares in the
figure), our GESP algorithm will provide more benefits and a higher
repair rate. We will show our simulation results in Section 5.

Obviously, these two improvements can be applied to traditional
2D memories. However, it is only applicable to “Fault Cache BISR”,
which is described in Section 2.2.2. For the “Decoder Redirection
BISR” scheme, row decoders will not have the ability to access spare
columns, and the column decoders cannot access spare rows.

However, the “Decoder Redirection BISR” is more common in
industry, because it is simpler and will incur less routability prob-
lem, as Figure 2 demonstrates. Moreover, even if the memory applies
the “Fault Cache BISR”, implementing our improvements will suffer
from additional area overhead, which will be discussed in Section 5.
However, this overhead problem can be hidden by our 3D memory
structure, which will also be discussed in Section 5.

In the literaure, some other prior efforts were made over the MESP
to achieve higher repair rates. For example, Huang et al. [6] proposed
HYPERA to effectively increase the repair rate. But their design will
incur severe timing penalty when accessing memories. Our GESP
algorithm, however, does not suffer from the timing penalties because
the main memory and the redundancies are accessed simultaneously,

 No Fault

 reset=0

#layer=HiZ

 Fault

 reset=0

#layer=HiZ

 Repair

 reset=1

 #layer=X

fault=0 upper=1

fault=1

fa
u

lt=0

gra
nt

=1
, u

p
p

e
r=

0

Figure 5: State Transition Diagram of the Control FSM

according to Figure 2(b). Some additional overhead will be required,
but it’s comparable with traditional MESP and can be hidden by our
3D memory layout. We’ll analyze these overheads in Section 5 in
details.

4.2 3D-BISR Algorithm
Besides the shareable global redundancy, our hardware design in

Figure 3 can also enable parallel testing, corresponding to the sec-
ond definition of global in Section 3. Combined with our 3D-BISR
algorithm, the BISR procedure is parallelized for all memory layers.
Therefore, no matter how many layers are stacked, the testing time
will remain the same as if testing one-layer memory. The key point
of this 3D parallel testing is to test all the memory layers simultane-
ously. At the system level, the 3D-BISR can be described as follows.

• Step 1: Perform BIST for one cell among all layers. The address
allocator (1-to-2 decoder in Figure 3) will ignore the layer address
(higher-order bits), sending the data and local address to every
memory layer.

• Step 2: All memory layers determine whether any cell is faulty.

• Step 3: From Layer 1 to N, serially report to the bottom layer
whether any tested cell of that layer is faulty.

• Step 4: Allocate GRU resources. Return to BIST.

This system-level scheme needs one OR gate, one comparator, and
one FSM controller to be added in each layer as shown in Figure 3.
Figure 5 shows the state transition diagram. Here we define the vari-
ables in the diagram.

• Fault: When the layer comparator detects that the content of the
memory differs from the reference value provided by the BISR
layer, it indicates a fault. The variable will be set to ‘1’, otherwise
‘0’. It is one input of the OR gate as depicted in Figure 3.

• Upper: For a certain local location, when there is a fault in the
upper layer, the “upper” signal is set to ‘1’, another input of the
OR gate.

• Request: The output of the OR gate. For a certain layer, when
there are faults in that layer or in its upper layer, this signal will
always be set to ‘1’.

• Reset: Clear the comparator when it is set to ‘1’. This will set
the “Fault” signal to ‘0’, and continue the 3D-BISR procedure.

• Grant: This is the signal sent by the BISR layer, telling the FSM
of the layer which is in its “Fault” state to report the layer index
if its “Upper” signal is ‘0’.

• #index: Reporting the layer index to the BISR layer when the
FSM enters “Repair” state. For example, layer 1 will report “01”,
and layer 2 will report “10”.

�����

Request

Cycle 1 2 3 4 5 Cycle 1 2 3 4 5

Cycle 1 2 3 4 5

Figure 6: Timing Diagram of an Example for 3D-BISR

Whenever the BIST detects a faulty cell in certain layers, the “re-
quest” signal of the BIRA circuit will be set to “1” by the compara-
tor and OR gates as shown in Figure 3. The BIST procedure will
be stopped, and restored only after the fault information has been re-
ported. For a specific layer, the 3D-BISR can be described as follows.

• Step 1: Perform BIST for the cell specified.

• Step 2: Determine whether the cell is faulty. If not, wait for the
next cell’s BIST. If yes, set “Fault” as ‘1’ and go to step 3. Its
FSM will enter “Fault” state.

• Step 3: If the layer’s “Upper” equals ‘0’, and “Grant” equals ’1’,
go to step 4. The FSM will enter the “Repair” state. Otherwise,
keep step 3.

• Step 4: Report its layer index through “#layer” signal. Set “Fault”
signal to ‘0’. The “FSM” will enter “No Fault” state. Then, wait
for the BIST of the following memory cells.

4.2.1 Example for 3D-BISR algorithm
We show an example for detailing our algorithm. Suppose a four-

layer memory stack where layer 0, 1, and 2 each contains a faulty
cell at one exact location with a local row address 0x00 and local col-
umn address 0x00; that is, the memory locations: 0x00000, 0x10000,
and 0x20000 are faulty. We assume layer 0 is the top layer. Firstly,
the BIST begins testing 0x0000 of all four memory layers. Then, the
comparators will determine whether the tested cell is faulty. After
that, the status of our 3D-BISR related circuits will function accord-
ing to the algorithm described in Section 4.2. Figure 6 shows the
timing diagram which illustrates how our 3D-BISR scheme works
cycle-by-cycle.

4.2.2 New 3D redundancy structure
As can be seen from the above example, the memory access and

result comparison are done in parallel, while the reporting is done in
a serial manner. This is because we want to save the quantity of the
TSV and make our design scalable. Our design only needs log

2
(N)

reporting TSV shown in Figure 3, while at least N TSV are needed
for the parallel reporting scheme. However, it is obvious that in the
worst case when all the cells along the vertical axis are faulty, the test

address
data
BIST_mode

address

data
Main

Memory
control

hold result

address

address

local
address

data

info

hit

Memory data
Row/column

data

Data bus

BISTBIRA
Fault

Cache

Redundant

Rows &

Columns

Redundant

Cylinders

Cylinder data

local
address

data

(a)

Memory Layer 0

Memory Layer 1

Memory Layer 2

Memory Layer 3

Cylinder

 Redundant

(b)

Figure 7: 3DR Architecture: (a) Modified Block Diagram, (b)
Detailed Replacement Scheme

and the repair procedure will be completely serial.
To address this shortcoming, we propose a novel 3D redundant

structure. The current 2D BISR algorithm uses the spare rows and
columns for 2D replacement. For 3D memories, 3D redundancy
structure can be developed intuitively. Besides the spare rows and
columns, the spare cylinder structure is introduced in this section.

On the additional BISR layer, the 3D redundancy (3DR) unit —
Redundant Cylinder is added as shown in Figure 7(a). Basically,
our redundant cylinder has the same functionality as the redundant
row/column does. However, instead of replacing the faulty row/column
in a 2D manner, our redundant cylinder structure replace the faulty
cells along the vertical axis, as demonstrated in Figure 7(b).

In order to support this cylinder replacement scheme, the fault
cache should store the local row and column address of the faulty
cylinder, and ignore the layer address. Whenever there is a address
“hit” during normal operation, the system will access the redundant
cylinder, rather than the faulty cells for read and write.

Now we’ll describe how this Redundant Cylinder structure help to
fully parallize the BISR procedure. When executing BIST, the same
cells along the vertical axis of all the 3D memory layers will be tested
simultaneously. If no more than one fault is detected and reported,
the BISR procedure will remain the same as described previously.
However, if multiple faults are deteceted, our BISR algorithm will not
spend more cycles in accepting the fault information from the second
and other faults. To be more specific, after the BISR logic receives the
first fault information and send a “grant” signal, it finds out that the
“request” signal is still ‘1’, which means some other layer wants to
report a fault. In this case, our scheme will not waste time in listening
to any more fault information. Instead, it will allocate a redundant
cylinder immediately, which replaces all the memory cells that have
the same local location, just as shown in Figure 7(b). Therefore, the

�����

Request

Cycle 1 2 3 4 Cycle 1 2 3 4

Cycle 1 2 3 4

NoFault

NoFault

Accept
 Info

Allocate
Cylinder

Figure 8: Timing Diagram of an Example for 3DR

maximum test time will be constrained to the upper limit of 2-layer
3D memories no matter how many layers the 3-D memory has.

4.2.3 Example for 3DR allocation
We show an example for our 3DR structure. Similar to the as-

sumption in the previous example, layer 0, 1, and 2 each contains a
faulty cell on their local address 0x0000. Figure 8 shows the timing
diagram. The first two cycles remain the same as in Figure 6 .

Cycle 3: The “Request” input of BIRA is still ‘1’, indicating that
there is more than one fault along the vertical axis. Instead of accept-
ing the second fault layer’s index, it sends the “Reset” signal to all
the memory layers (needs one additional shared TSV to transfer this
“Reset” in Figure 3), and allocates a spare cylinder to this location as
shown in Figure 7.

Cycle 4: All the comparators have been reset, so the “Request”
input of BISR will go back to “0”. Then the BISR circuit will de-
assert the “hold” signal to the BIST and continues testing. No more
cycles are needed.

5. SIMULATION RESULTS AND ANALYSIS

5.1 Experiments
To evaluate the effect of our proposed algorithm, we use the clus-

tered fault model in [17]. According to [17], the probability of not
introducing an error into a given circuit area during a time interval
Δt of the manufacturing process is:

p(Δt | k, l1, l2, . . . , ln) = c(x, y) + b× k + d× l(x, y)

Where l(x, y) is the number of faulty neighboring memory cells around
a memory location (x,y), c(x, y) is the susceptibility parameter spec-
ified by the fabrication process, k is the number of faults already on
that layer, b and d are the clustered factors.

Δt0: It is the beginning of the fault generation. l(x, y) = 0 and
k = 0. The probability of the memory cells to be faulty is c(x, y)
coherently across the layer. Then we generate an evenly distributed

0%

20%

40%

60%

80%

100%

GRU=5 GRU=6 GRU=7 GRU=8 GRU=9 GRU=10

R
e
p

a
ir

 R
a
te

Local Semi-Global Global

Figure 9: Comparison of Global and Local BISR Schemes

random value (0 to 1) for each memory cell. If the value is larger than
its corresponding probability, then we determine that there is a fault
on that location.

Δt1: First we calculate the l(x, y) and k after the first Δt0. Then
according to the probability equation, we still generate an evenly dis-
tributed random value (0 to 1) for each memory cell to determine
whether there is a fault.

Δt2—Δtn: Repeat Δt1.
There is no need to set an average number of faults for each layer,

since this equation implicitly sets that value. Assume c = 0.85, b =
0.04, c = −0.1. The maximum l(x, y) will be 8 (i.e., all the neigh-
boring cells are faulty). When the probability equation generates a
value greater than 100%, there will be no faults generated. The rela-
tionship is shown below.

p(Δtn | k, l1, l2, . . . , ln) = c(x, y) + b× k + d× l(x, y)

p = 0.85 + 0.04× k − 0.1× 8 < 100%

k <
1− 0.85 + 0.1× 8

0.04
= 23.75

Therefore, when k > 23.75, even if l(x, y) = 8, the probability
will never be smaller than 100%, indicating that there will be no fault
generated. Therefore, the upper limit of faults on one layer in this
example is set to 24.

Here we also introduce the concept of length of training intervals
(LTI). This fault generation procedure presented in [17] is just like
training. Given enough number of training intervals, the number of
faults on one layer will be very close to the maximum faults. There-
fore, if we set the LTI long enough, the number of faults on one layer
will be stable. In this way, we can better simulate the real manufac-
turing circumstances.

In the following analysis, each memory layer simulated has the size
of 1024×1024×8bit, with an average of 23.5340 faulty cells in each
layer (implicitly set as discussed above). The parameters varied in the
simulation are the following.

• GRU: The number of global redundancy units available for re-
placing the faulty row/column.

• Grid: The width of a row/column that a GRU replaces. For ex-
ample, if grid = 32, the single GRU entry has 32 × 8 bits =
256 bits, which replaces 256-bit horizontally (row) or vertically
(column) in the main memory.

• Cylinder: The number of Cylinder units are used during the whole
BISR process.

5.2 Performance of Proposed GESP Algorithm
First, we quantify the efficiency of our shareable global redun-

dancy structure. This simulation is based on 1,000 samples of an
eight-layer 3D memory. The grid size is chosen to be 128. The re-
sults are shown in Figure 9 where Global means that the eight mem-
ory layers share the GRUs; Semi-global is that every four memory

��	��

��

���

���

���

���

���

	��

��

���

���

����

������ ������ �����	 ����
� ����
� ������

�
�
�
�
��
��
�
	�

(a)

��

���

���

���

���

���

	��

��

���

���

����

������ ������ �����	 ����
� ����
� ������

(b)

��

���

���

���

���

���

	��

��

���

���

����

������ ������ �����	 ����
� ����
� ������

(c)

��

���

���

���

���

���

	��

��

���

���

����

�����������������	����
�����
�������

����

����

(d)

��

���

���

���

���

���

	��

��

���

���

����

������ ������ �����	 ����
� ����
� ������

�
�
�
�
��
��
�
	�

(e)

��

���

���

���

���

���

	��

��

���

���

����

������ ������ �����	 ����
� ����
� ������

(f)

��

���

���

���

���

���

	��

��

���

���

����

������ ������ �����	 ����
� ����
� ������

(g)

��

���

���

���

���

���

	��

��

���

���

����

�����������������	����
�����
�������

����

����

(h)

Figure 10: Comparison of BIRA algorithms. (a) grid=4. (b) grid=8. (c) grid=16. (d) grid=32. (e) grid=64. (f) grid=128. (g) grid=256. (h)
grid=512.

layers share the GRUs, which are not shareable between groups; Lo-
cal means every layer has its own GRUs, no sharing across layers.
The total amount of the GRUs are the same for these three architec-
tures. As shown, we clearly find that the Global scheme achieves
27% higher repair rate than the Local scheme on average (59.9%
maximum improvement for GRU=8 on each layer). Compared with
the Semi-global scheme, our Global scheme has 8.6% improvement
for the repair rate, with a maximal improvement of 22.3%.

Secondly, we evaluate the performance gain of the “cross-boundary”
technique in our proposed GESP algorithm over the MESP algorithm.
Our simulation is based on 1000 samples of a four-layer memory. The
selected grid sizes are 4, 8, 16, 32, 64, 128, 256, and 512. Figure 10
shows the results. As shown, we can see that our GESP has a much
better performance than that of MESP when the grid is small, and that
gap is closing with increased grid size. When the grid reaches half of
the entire memory size, the improvement diminishes. This is not dif-
ficult to understand as we use the clustered fault model to evaluate the
algorithms. When the grid is small, it is more likely for MESP to en-
counter the “cross-boundary” problem, wasting a lot of GRU entries
for repair. For our proposed GESP algorithm, there is no such “cross-
boundary” issue given our GRU could fix them at any arbitrary loca-
tion as explained earlier in Figure 4. When the grid becomes larger,
the likelihood of such “cross-boundary” problem will dwindle, thus
the performance gap of these two algorithms is shrunk. Overall, our
GESP algorithm outperforms the MESP algorithm by 8.26% on av-
erage (27.60% for maximum), with only a little hardware overhead,
which will be described next.

5.3 Hardware overhead analysis
Performance-wise, our 3D-GESP algorithm does not incur timing

penalty when accessing the memory because the memory and the re-
dundancy resources are accessed concurrently. For area, however,
our 3D-GESP scheme needs space for its BISR module. This over-
head has two sources. Firstly, for each memory layer, we dedicate a
comparator, an FSM, and an OR gate to support our global 3D BISR
scheme. Given these are simple logic structure, the main contribu-
tor of the area overhead lie in the TSV. Using data in [13], the pitch
of TSV to be 4 to 10 μm, and for 50nm process, the DRAM den-
sity is 27.9Mb/mm2. Assume a four-layer 3D memory, according

to our 3D BISR design in Figure 3, the comparator needs 8 TSVs,
the FSM needs (log

2
4) TSVs, the OR gate need 1 TSV, and the

“Cylinder Repari” needs 1 TSV for “request” and 1 TSV for “grant”.
In total, each layer requires 13 TSVs, occupying 1300μm2 with a
10μm TSV-pitch. For 1MB main memory each layer, it takes ap-
proximately 285, 714μm2. The area overhead is merely 0.455%.

In a more general case, assuming the 3D memory has a layers, each
layer has b cells, each cell contains c bits. The total number of TSVs
that require by our scheme is: log

2
a + c + 3. Therefore:

total area overhead =
3488× (log

2
a + c + 3)

b× c

According to most 3D memory configurations, the area overhead
will be less than 1%.

Secondly, for the BIST and BISR circuits, the area overhead for
the MESP scheme was 8.7% as shown in [14]. For our 3D-GESP
scheme, which exploits cross-boundary repair, may need more area.
For MESP, the Fault Cache only needs to store partial address of the
faulty cells because of the existence of the aligned boundary. For
example, only 15 bits is needed in the Fault Cache for a four-layer
3-D memory with a grid size of 128. For our 3D-GESP scheme, all
the address bits need to be stored, which is 31.8% more. Except that,
no other area overhead is needed for our scheme. In the worst case,
our hardware overhead will amount to 11.5%. However, in our 3D
BISR design as depicted in Figure 3, we dedicate an entire layer to
BISR. In this way, the hardware overhead for BISR modules will not
be a problem for implementing 3D-GESP. The real area overhead on
the memory layers is 0.39%.

5.4 Implication of 3D Memories
Finally, during simulation, we made an interesting observation. As

shown in Figure 11, given 1-, 4-, and 8-layer 3D memories with 4,
5, 6, 7, 8, 9, and 10 GRU per layer to guarantee the hardware over-
head ratio is the same, the 8-layer memory has the smallest repair rate
among others when the number of the GRU is small; on the contrary
the 8-layer memory has the highest repair rate when the number of
the GRU is sufficient. Here the overhead ratio is defined as:

��
��

0%

20%

40%

60%

80%

100%

GRU=5 GRU=6 GRU=7 GRU=8 GRU=9 GRU=10

R
e
p

a
ir

 R
a
te

1-layer 4-layer 8-layer

Figure 11: Layer’s effect on the repair rate given the same
GRU/layer

Overhead =
GRU resources provided

total cells of 3D memory product

This is a characteristics of 3D memory. We assume that all the
memory layers are produced separately and have no correlation in
fault map, the average number of faults for each layer is m, and the
standard deviation is σ, same to those of one traditional 2D memory.
For an n-layer 3D memory, the average faults for each layer is m and
the standard deviation is σ√

n
. Since the standard deviation of a 3D

memory is smaller than that of a 2D memory, the average number of
faults of each 3D memory layer will be converged into the range of
m ± p. To simplify the problem, we use the following example by
assuming the number of GRU can only repair no more than 16 faults
of each layer, and the average number of faults m = 20. Since the
standard deviation is smaller for 3D memories, the possibility for a
certain 3D memory product to have faults less than 16 for each layer
is assumed to be 10%, while that of 2D memory is 20%. Therefore,
2D memory will result in a higher repair rate. On the other hand,
when the number of GRU can repair no more than 24 faults of each
layer, the possibility for a certain 3D memory product that cannot be
repaired is 10%, while that of 2D memory is 20%. The 2D memory
will suffer from a lower repair rate under that circumstance.

Since it is always desirable to have more than 90% repair rate, 3D
memories will show their advantage over 2D. As shown in Figure 11,
with above 90% repair rate, the 3D memories need fewer GRU per
layer than their 2D counterpart.

6. CONCLUSION
In this paper, we present a novel hardware and software design for

3-D BISR. Our scheme, 3D-GESP, is a real Global BISR technique,
which enables the global redundancy sharing and parallel testing. The
experimental results showed that our 3D-GESP scheme can achieve
27.01% higher repair rate compared to the local BISR, and 8.26%
over another global algorithm MESP. In addition, our scheme only re-
quires 1

n
testing time compared with the traditional BISR procedure,

where n is the number of stacked layers of 3D memories. Therefore,
our scheme will significantly improve the manufacturing yield, repair
rate, and testing throughput of 3D die-stacked memories.

7. ACKNOWLEDGMENTS
This work was sponsored by an NSF grant CCF-0811738, ITRI

Taiwan, and gift from Intel Corp. Xiaodong Wang conducted this
work while he was an exchange student at Georgia Tech from Shang-
hai Jiao Tong University. Dilip Vasudevan was a visiting scholar at
Georgia Tech sponsored by the University of College Cork at Ireland.

8. REFERENCES

[1] S. Bahl. A Sharable Built-in Self-repair for Semiconductor Memories
with 2-D Redundancy Scheme. In 22nd IEEE International Symposium
on Defect and Fault Tolerance in VLSI Systems, pages 331–339, 2007.

[2] B. Black and et al. Die Stacking (3D) Microarchitecture. In Proc. of the
International Symposium on Microarchitecture, 2006.

[3] Y.-F. Chou, D.-M. Kwai, and C.-W. Wu. Memory Repair by Die
Stacking with Through Silicon Vias. In IEEE International Workshop
on Memory Technology, Design, and Testing, pages 53–58, 2009.

[4] M. Healy, K. Athikulwongse, R. Goel, M. Hossain, D. Kim, Y.-J. Lee,
D. Lewis, T.-W. Lin, C. Liu, M. Jung, B. Ouellette, M. Pathak, H. Sane,
G. Shen, D. H. Woo, X. Zhao, G. Loh, H.-H. S. Lee, and S. K. Lim.
Design and Analysis of 3D-MAPS: A Many-Core 3D Processor with
Stacked Memory. In IEEE Custom Integrated Circuits Conference,
2010.

[5] A.-C. Hsieh, T.-T. Hwang, M.-T. Chang, M.-H. Tsai, C.-M. Tseng, and
H.-C. Li. TSV Redundancy: Architecture and Design Issues in 3D IC.
In Proceedings of the Conference on Design Automation and Test in
Europe, pages 166–171, 2010.

[6] T.-C. Huang and et al. HYPERA: High-Yield Performance-Efficient
Redundancy Analysis. In 19th IEEE Asian Test Symposium (ATS),
pages 231–236, 2010.

[7] W. K. Huang, Y.-N. Shen, and F. Lombardi. New approaches for the
repairs of memories with redundancy by row/column deletion for yield
enhancement. IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems, 9(3), March 1990.

[8] L. Jiang, R. Ye, and Q. Xu. Yield Enhancement for 3D-Stacked
Memory by Redundancy Sharing across Dies. In Proc. of International
Conference on Computer-Aided Design, 2010.

[9] U. Kang and et al. 8 Gb 3-D DDR3 DRAM Using Through-Silicon Via
Techndology. IEEE Journal of Solid-State Circuits, 45(1):111–119,
2010.

[10] D. H. Kim, K. Athikulwongse, M. B. Healy, M. M. Hossain, M. Jung,
I. Khorosh, G. Kumar, Y.-J. Lee, D. Lewis, T.-W. Lin, C. Liu, S. Panth,
M. Pathak, M. Ren, G. Shen, T. Song, D. H. Woo, X. Zhao, J. Kim,
H. Choi, G. H. Loh, H.-H. S. Lee, and S. K. Lim. 3D-MAPS: 3D
Massively Parallel Processor with Stacked Memory. In IEEE
International Solid-State Circuits Conference (ISSCC), 2012.

[11] I. Kim and et al. Built-in self-repair for embedded high density sram. In
IEEE International Test Conference, pages 1112–1119, 1998.

[12] H.-H. S. Lee and K. Chakrabarty. Test Challenges for 3D Integrated
Circuits. IEEE Design and Test of Computers, Special Issue on 3D IC
Design and Test, 26(5):26–35, Sep/Oct 2009.

[13] G. H. Loh. 3D-Stacked Memory Architectures for Multi-Core
Processors. In Proceedings of the International Symposium on
Computer Architecture, pages 453–464, 2008.

[14] S.-K. Lu and et al. Efficient BISR Techniques for Embedded Memories
Considering Cluster Faults. IEEE Transactions on Very Large Scale
Integration (VLSI) Systems, 18(2), February 2010.

[15] K. Puttaswamy and G. Loh. 3D-Integrated SRAM Components for
High-Performance Microprocessors. IEEE Transactions on Computers,
58(10):1369 –1381, 2009.

[16] R. Rajsuman. Design and test of large embedded memories: An
overview. IEEE Design and Test of Computers, 18(3), May 2001.

[17] C. H. Stapper. Simulation of spatial fault distributions for integrated
circuit yield estimations. IEEE Transactions on Computer-Aided
Design of Integrated Circuits and Systems, 8(12), 1989.

[18] A. Tanabe and et al. A 30-ns 64-Mb DRAM with Built-in Self-Test and
Self-Repair Function. IEEE Journal of Solid-State Circuits,
27(11):1525–1533, 1992.

[19] T.-W. Tseng, J.-F. Li, and C.-C. Hsu. ReBISR: A Reconfigurable
Built-In Self-Repair Scheme for Random Access Memories in SOCs.
IEEE Transactions on Very Large Scale Integration (VLSI) Systems,
18(6), 2010.

[20] D. H. Woo, N. H. Seong, D. L. Lewis, and H.-H. S. Lee. An optimized
3d-stacked memory architecture by exploring excessive, high-density
tsv bandwidth. In Proceedings of the 16th International Symposium on
High-Performance Computer Architecture, pages 429–440, 2010.

[21] T. Yamagata and et al. A Distributed Globally Replaceable Redundancy
Scheme for Sub-Half-Micron ULSI Memories and Beyond. IEEE
Journal of Solid-State Circuits, 31(2):195–201, 1996.

�����

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 1
 /Optimize false
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /SABAEN44
 /SAKURAalp
 /Shruti
 /SimSun
 /STSong
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Required" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

