Efficient Memory Integrity
Verification and Encryption for
Secure Processors

G. Edward Suh, Dwaine Clarke,
Blaise Gassend, Marten van Dijk,
Srinivas Devadas

Massachusetts Institute of Technology

New Security Challenges

« Current computer systems have a large Trusted
Computing Base (TCB)

— Trusted hardware: processor, memory, etc.
— Trusted operating systems, device drivers

* Future computers should have a much smaller TCB
— Untrusted OS

— Physical attacks - Without additional protection, components
cannot be trusted

 Why smaller TCB?

— Easier to verify and trust
— Enables new applications

G. Edward Suh — MIT Computer Science and Artificial Intelligence Laboratory MICRO36 — December 3-5, 2003

Applications

Emerging applications require TCBs that are secure
even from an owner

Distributed computation on Internet/Grid computing
— SETI@home, distributed.net, and more

— Interact with a random computer on the net > how can we
trust the result?

Software licensing
— The owner of a system is an attacker

Mobile agents
— Software agents on Internet perform a task on behalf of you
— Perform sensitive transactions on a remote (untrusted) host

G. Edward Suh — MIT Computer Science and Artificial Intelligence Laboratory MICRO36 — December 3-5, 2003

Single-Chip AEGIS Secure Processors

* Only trust a single chip: tamper-resistant

— Off-chip memory: verify the integrity and encrypt

— Untrusted OS: identify a core part or protect against OS attacks
« Cheap, Flexible, High Performance

Identify or
))| Protect against Check Integrity.
Untrusted «(60 Environment Encrypt
OS ~ Fo\
d) /0O @\

G. Edward Suh — MIT Computer Science and Artificial Intelligence Laboratory MICRO36 — December 3-5, 2003

Secure Execution Environments

 Tamper-Evident (TE) environment

— Guarantees a valid execution and the identity of a program; no
privacy

— Any software or physical tampering to alter the program
behavior should be detected

-> Integrity verification

* Private Tamper-Resistant (PTR) environment
— TE environment + privacy
— Assume programs do not leak information via memory access

patterns

- Encryption + Integrity verification
— G. Edward Suh — MIT Computer Science and Artificial Intelligence Laboratory MICRO36 — December 3-5, 03

Other Trusted Computing Platforms

- IBM 4758 cryptographic coprocessor

— Entire system (processor, memory, and trusted software) in a
tamper-proof package

— EXxpensive, requires continuous power

« XOM (eXecution Only Memory): David Lie et al
— Stated goal: Protect integrity and privacy of code and data
— Memory integrity checking does not prevent replay attacks
— Always encrypt off-chip memory

 Palladium/NGSCB: Microsoft

— Stated goal: Protect from software attacks
— Memory integrity and privacy are assumed (only software attacks)

G. Edward Suh — MIT Computer Science and Artificial Intelligence Laboratory MICRO36 — December 3-5, 2003

Memory Encryption

Memory Encryption

(e write 4)
ENCRYPT | ~
DECRYPT | < I
read
_ Processor)

\Untrusted RAM J

 Encrypt on an L2 cache block granularity
— Use symmetric key algorithms (AES, 16 Byte chunks)
— Should be randomized to prevent comparing two blocks
— Adds decryption latency to each memory access

G. Edward Suh — MIT Computer Science and Artificial Intelligence Laboratory MICRO36 — December 3-5, 2003

Direct Encryption (CBC mode): encrypt

vy)
o
S
Rl
D
>
>
m
n
P

vy
—
W
Rl
A 4
» D
XV

|
!

!

|

!

|

AES, :
!

AES, |
!

!

|

!

|

|

!

|

vy,
r—
N
[l
4
» D
"\

vy
—
-
Rl
A 4
» D
XV

AES,

G. Edward Suh — MIT Computer Science and Artificial Intelligence Laboratory MICRO36 — December 3-5, 2003

Direct Encryption (CBC mode): decrypt

L2 Miss!!

Request

|
|
|
|
|
] Memory
|
|
|
|

« Off-chip access latency

= latency for the last chunk of an L2 block + AES + XOR
-> Decryption directly impacts off-chip latency

G. Edward Suh — MIT Computer Science and Artificial Intelligence Laboratory MICRO36 — December 3-5, 2003

One-Time-Pad Encryption (OTP): encrypt

“““““““““

One-Time-Pad (OTP)
Time Stamp (TS)

B[4]
(Addr,TS,4}—| AES, " D

B[3] t —
(Addr,TS,3)}—| AES, " D

B[2] t —
(Addr,TS,2}—| AES, " D

| BII 1 t —
--------------- (Addr,TS,1— AES, " D

To Memory

Processor

G. Edward Suh — MIT Computer Science and Artificial Intelligence Laboratory

MICRO36 — December 3-5, 2003

One-Time-Pad Encryption (OTP): decrypt

| Processor aqqr s 4)—»
L2 Miss!! |

(Addr,TS,3) —

« Off-chip access latency = MAX(latency for the time stamp
+ AES, latency for an L2 block) + XOR

-> Overlap the decryption with memory accesses

G. Edward Suh — MIT Computer Science and Artificial Intelligence Laboratory MICRO36 — December 3-5, 2003

Effects of Encryption on Performance

« Simulations based on the SimpleScalar tool set
— 9 SPEC CPU2000 benchmarks
— 256-KB, 1-MB, 4-MB L2 caches with 64-B blocks
— 32-bit time stamps and random vectors - No caching!
— Memory latency: 80/5, decryption latency: 40

* Performance degradation by encryption

Direct (CBC) | One-Time-Pad
Worst Case 25% 18%
Average 13% 8%

G. Edward Suh — MIT Computer Science and Artificial Intelligence Laboratory

MICRO36 — December 3-5, 2003

Security and Optimizations

* The security of the OTP is at least as good as the
conventional CBC scheme

— OTP is essentially a counter-mode (CTR) encryption

* Further optimizations are possible

— For static data such as instructions, time stamps are not
required - completely overlap the AES computations with
memory accesses

— Cache time stamps on-chip, or speculate the value

* Will be used for instruction encryption of Philips media
processors

G. Edward Suh — MIT Computer Science and Artificial Intelligence Laboratory MICRO36 — December 3-5, 2003

Integrity Verification

Difficulty of Integrity Verification

~

Program Processor Untrusted RAM
\\f Vv write C\ddress 0x45
E | ENCRYPT N
S = [E(124),
I MAC(0x45, 124)
F |
F | DECRYPT <7 = I ,
rea E(120),
3)

&

y

Cannot simply MAC on writes and check the MAC on reads
- Replay attacks

Hash trees for integrity verification

G. Edward Suh — MIT Computer Science and Artificial Intelligence Laboratory

MICRO36 — December 3-5, 2003

Hash Trees

Processor

Logarithmic overhead
for every cache miss

- Low performance
(10x slowdown)

- Cached hash trees

Data Values

Untrusted Memory

G. Edward Suh — MIT Computer Science and Artificial Intelligence Laboratory MICRO36 — December 3-5, 2003

Cached Hash Trees (HPcA’03)

|
VERIFY

Processor

h,=h(V;.V,)
| VERIFY

Untrusted Memory

G. Edward Suh — MIT Computer Science and Artificial Intelligence Laboratory

Cache hashes in L2

v L2 is trusted
v’ Stop checking earlier

- Less overhead (22%
average, 51% worst case)

—> Still expensive

MICRO36 — December 3-5, 2003

Can we do better?

« Some applications only require to verify memory accesses after
a long execution

— Distributed computation
— No need to check after each memory access
- Can we just check a sequence of accesses?,

)
Q) _
=Verify results "enter_aegis
"Execute
- - H(Pro
g (Prog)
. - signature »Get results
< J
Program,
Data

Processor’s

Processor’s Private Key

Public Key

Job Dispatcher Secure Processor

G. Edward Suh — MIT Computer Science and Artificial Intelligence Laboratory MICRO36 — December 3-5, 2003

Log Hash Integrity Verification: Idea

At run-time, maintain a log of reads and writes
— Reads: make a ‘read’ note with (address, value) i
— Writes: make a ‘write’ note with (address, value)

» check: go thru log, check each read has the most recent value
written to the address

* Problem!!: Log grows - use cryptographic hashes

& [)
Write (0x40, 1)

Write (0x50, 2)
Read (0x50, 2)
Read (0x40, 1)

C)

Checker Log Untrusted Memory

G. Edward Suh — MIT Computer Science and Artificial Intelligence Laboratory MICRO36 — December 3-5, 2003

Log Hash Algorithms: Run-Time

 Use set hashes as compressed logs
— Set hash: maps a set to a fixed length string
— ReadHash: a set of read entries (addr, val, time) in the log
— WriteHash: a set of write entries (addr, val, time) in the log

« Use Timer (time stamp) to kee ing of entries

|m e Only one

L (Q) (@ additional time

, | WriteHash| | ReadHash stamp access for |---------
| [(0x40,0,0) [(0x40, 0, 0) each memory

' [(0x50, 0, 0) | access

| |(0x40, 10, 1) |

G) G J

I

I

I

I
l
Timer: 1] Processor : Untrusted Memory

'

G. Edward Suh — MIT Computer Science and Artificial Intelligence Laboratory MICRO36 — December 3-5, 2003

Log Hash Algorithms: Integrity Check
 Read all the addresses that are not in a cache

« Compare ReadHash and WriteHash (same set?)

)) (@)
WriteHash ReadHash

(0x40, 0, 0) (0x40, 0, 0)
(0x50, 0, 0)[fox40, 10, 1)
[(0x40, 10, 1)f [(0x50, 0, 0)

Read all

J

Untrusted Memory

G. Edward Suh — MIT Computer Science and Artificial Intelligence Laboratory MICRO36 — December 3-5, 2003

Checking Overhead of Log Hash Scheme

 Integrity check requires reading the entire memory space

being used

— Cost depends on the size and the length of an application
* For long programs, the checking overhead is negligible

— Amortized over a long execution time

—&— L Hash LHash-RT =— =CHTree
0.6
0.5
0.4 A
£ o3 f /

02 1~ swiM, 1MB L2,
01 | Uses 192MB

0

1.E+00 1.E+02 1.E+04 1.E+06 1.E+08 1.E+10

4

Off-chip Accesses

G. Edward Suh — MIT Computer Science and Artificial Intelligence Laboratory

Check overhead is negligible
for programs w/ more than a
billion accesses

Better than Hash Trees
for programs w/ more than
10 million accesses

MICRO36 — December 3-5, 2003

Performance Comparisons

* Overhead for TE environments
— Integrity verification

CHTree LHash
Worst Case 52% 15%
Average 22% 4%
 Overhead for PTR environments
— Integrity verification + encryption
CHTree + CBC | LHash + OTP
Worst Case 59% 23%
Average 31% 10%

G. Edward Suh — MIT Computer Science and Artificial Intelligence Laboratory

MICRO36 — December 3-5, 2003

Summary

* Untrusted owners are becoming more prevalent
— Untrusted OS, physical attacks - requires a small TCB

« Single-chip secure processors require off-chip protection
mechanisms: Integrity verification and Encryption

« OTP encryption scheme reduces the overhead of
encryption in all cases

— Allows decryption to be overlapped with memory accesses
— Cache or speculate time stamps to further hide decryption latency

 Log Hash scheme significantly reduces the overhead of
integrity verification for certified execution when programs
are long enough

G. Edward Suh — MIT Computer Science and Artificial Intelligence Laboratory MICRO36 — December 3-5, 2003

Questions?

More Information at www.csg.lcs.mit.edu

G. Edward Suh — MIT Computer Science and Artificial Intelligence Laboratory MICRO36 — December 3-5, 2003

	Efficient Memory Integrity Verification and Encryption for Secure Processors
	New Security Challenges
	Applications
	Single-Chip AEGIS Secure Processors
	Secure Execution Environments
	Other Trusted Computing Platforms
	Memory Encryption
	Direct Encryption (CBC mode): encrypt
	Direct Encryption (CBC mode): decrypt
	One-Time-Pad Encryption (OTP): encrypt
	One-Time-Pad Encryption (OTP): decrypt
	Effects of Encryption on Performance
	Security and Optimizations
	Difficulty of Integrity Verification
	Hash Trees
	Cached Hash Trees (HPCA¡¯03)
	Can we do better?
	Log Hash Integrity Verification: Idea
	Log Hash Algorithms: Run-Time
	Log Hash Algorithms: Integrity Check
	Checking Overhead of Log Hash Scheme
	Performance Comparisons
	Summary
	Questions?
	Conventional Tamper-Proof Packages
	Incremental Multiset Hash (Asiacrypt`03)
	Log Hash Algorithms: Integrity Check
	One-Time-Pad Encryption (OTP)
	Secure Context Manager (SCM)
	SCM: Program Start-Up
	SCM: On-Chip Protection
	Digital Rights Management
	Run-time Performance
	Performance Implication: TE processing
	Effects of Encryption on Performance

