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New Security Challenges

« Current computer systems have a large Trusted
Computing Base (TCB)

— Trusted hardware: processor, memory, etc.
— Trusted operating systems, device drivers

* Future computers should have a much smaller TCB
— Untrusted OS

— Physical attacks - Without additional protection, components
cannot be trusted

 Why smaller TCB?

— Easier to verify and trust
— Enables new applications

G. Edward Suh — MIT Computer Science and Artificial Intelligence Laboratory MICRO36 — December 3-5, 2003



Applications

Emerging applications require TCBs that are secure
even from an owner

Distributed computation on Internet/Grid computing
— SETI@home, distributed.net, and more

— Interact with a random computer on the net > how can we
trust the result?

Software licensing
— The owner of a system is an attacker

Mobile agents
— Software agents on Internet perform a task on behalf of you
— Perform sensitive transactions on a remote (untrusted) host
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Single-Chip AEGIS Secure Processors

* Only trust a single chip: tamper-resistant

— Off-chip memory: verify the integrity and encrypt

— Untrusted OS: identify a core part or protect against OS attacks
« Cheap, Flexible, High Performance

Identify or
) )| Protect against Check Integrity.
Untrusted «(60 Environment Encrypt
OS ~ Fo\
d ) /0O @\
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Secure Execution Environments

 Tamper-Evident (TE) environment

— Guarantees a valid execution and the identity of a program; no
privacy

— Any software or physical tampering to alter the program
behavior should be detected

-> Integrity verification

* Private Tamper-Resistant (PTR) environment
— TE environment + privacy
— Assume programs do not leak information via memory access

patterns

- Encryption + Integrity verification
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Other Trusted Computing Platforms

- IBM 4758 cryptographic coprocessor

— Entire system (processor, memory, and trusted software) in a
tamper-proof package

— EXxpensive, requires continuous power

« XOM (eXecution Only Memory): David Lie et al
— Stated goal: Protect integrity and privacy of code and data
— Memory integrity checking does not prevent replay attacks
— Always encrypt off-chip memory

 Palladium/NGSCB: Microsoft

— Stated goal: Protect from software attacks
— Memory integrity and privacy are assumed (only software attacks)
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Memory Encryption




Memory Encryption
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 Encrypt on an L2 cache block granularity
— Use symmetric key algorithms (AES, 16 Byte chunks)
— Should be randomized to prevent comparing two blocks
— Adds decryption latency to each memory access
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Direct Encryption (CBC mode): encrypt
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Direct Encryption (CBC mode): decrypt
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« Off-chip access latency

= latency for the last chunk of an L2 block + AES + XOR
-> Decryption directly impacts off-chip latency

G. Edward Suh — MIT Computer Science and Artificial Intelligence Laboratory MICRO36 — December 3-5, 2003



One-Time-Pad Encryption (OTP): encrypt
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One-Time-Pad Encryption (OTP): decrypt

| Processor aqqr s 4)—»
L2 Miss!! |

(Addr,TS,3) —

« Off-chip access latency = MAX( latency for the time stamp
+ AES, latency for an L2 block ) + XOR

-> Overlap the decryption with memory accesses
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Effects of Encryption on Performance

« Simulations based on the SimpleScalar tool set
— 9 SPEC CPU2000 benchmarks
— 256-KB, 1-MB, 4-MB L2 caches with 64-B blocks
— 32-bit time stamps and random vectors - No caching!
— Memory latency: 80/5, decryption latency: 40

* Performance degradation by encryption

Direct (CBC) | One-Time-Pad
Worst Case 25% 18%
Average 13% 8%
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Security and Optimizations

* The security of the OTP is at least as good as the
conventional CBC scheme

— OTP is essentially a counter-mode (CTR) encryption

* Further optimizations are possible

— For static data such as instructions, time stamps are not
required - completely overlap the AES computations with
memory accesses

— Cache time stamps on-chip, or speculate the value

* Will be used for instruction encryption of Philips media
processors
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Integrity Verification




Difficulty of Integrity Verification
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Cannot simply MAC on writes and check the MAC on reads
- Replay attacks

Hash trees for integrity verification
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Hash Trees

Processor

Logarithmic overhead
for every cache miss

- Low performance
( 10x slowdown)

- Cached hash trees

Data Values

Untrusted Memory
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Cached Hash Trees (HPcA’03)
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Cache hashes in L2

v L2 is trusted
v’ Stop checking earlier

- Less overhead ( 22%
average, 51% worst case)

—> Still expensive
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Can we do better?

« Some applications only require to verify memory accesses after
a long execution

— Distributed computation
— No need to check after each memory access
- Can we just check a sequence of accesses?,
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Log Hash Integrity Verification: Idea

At run-time, maintain a log of reads and writes
— Reads: make a ‘read’ note with (address, value) i
— Writes: make a ‘write’ note with (address, value)

» check: go thru log, check each read has the most recent value
written to the address

* Problem!!: Log grows - use cryptographic hashes
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Log Hash Algorithms: Run-Time

 Use set hashes as compressed logs
— Set hash: maps a set to a fixed length string
— ReadHash: a set of read entries (addr, val, time) in the log
— WriteHash: a set of write entries (addr, val, time) in the log

« Use Timer (time stamp) to kee ing of entries
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Log Hash Algorithms: Integrity Check
 Read all the addresses that are not in a cache

« Compare ReadHash and WriteHash (same set?)
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Checking Overhead of Log Hash Scheme

 Integrity check requires reading the entire memory space

being used

— Cost depends on the size and the length of an application
* For long programs, the checking overhead is negligible

— Amortized over a long execution time
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Check overhead is negligible
for programs w/ more than a
billion accesses

Better than Hash Trees
for programs w/ more than
10 million accesses
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Performance Comparisons

* Overhead for TE environments
— Integrity verification

CHTree LHash
Worst Case 52% 15%
Average 22% 4%
 Overhead for PTR environments
— Integrity verification + encryption
CHTree + CBC | LHash + OTP
Worst Case 59% 23%
Average 31% 10%
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Summary

* Untrusted owners are becoming more prevalent
— Untrusted OS, physical attacks - requires a small TCB

« Single-chip secure processors require off-chip protection
mechanisms: Integrity verification and Encryption

« OTP encryption scheme reduces the overhead of
encryption in all cases

— Allows decryption to be overlapped with memory accesses
— Cache or speculate time stamps to further hide decryption latency

 Log Hash scheme significantly reduces the overhead of
integrity verification for certified execution when programs
are long enough
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Questions?

More Information at www.csg.lcs.mit.edu
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