
Prediction-Guided Performance-Energy Trade-off for
Interactive Applications

Daniel Lo, Taejoon Song, and G. Edward Suh
Cornell University
Ithaca, NY, USA

{dl575, ts693, gs272}@cornell.edu

ABSTRACT
Many modern mobile and desktop applications involve
real-time interactions with users. For these interac-
tive applications, tasks must complete in a reasonable
amount of time in order to provide a responsive user ex-
perience. Conversely, completing a task faster than the
limits of human perception does not improve the user
experience. Thus, for energy efficiency, tasks should be
run just fast enough to meet the response-time require-
ment instead of wasting energy by running faster. In
this paper, we present a predictive DVFS controller that
predicts the execution time of a job before it executes in
order to appropriately set the DVFS level to just meet
user response-time deadlines. Our results show 56%
energy savings compared to running tasks at the max-
imum frequency with almost no deadline misses. This
is 27% more energy savings than the default Linux in-
teractive power governor, which also shows 2% deadline
misses on average.

Categories and Subject Descriptors
C.0 [Computer Systems Organization]: Hardware
/ Software Interfaces

Keywords
DVFS, energy efficiency, run-time prediction

1. INTRODUCTION
Many modern applications on mobile and desktop

systems are highly interactive. That is, users will pro-
vide inputs and expect a response in a timely manner.
For example, games must read in user input, update
game state, and display the result within a small time
window in order for the game to feel responsive. Previ-
ous studies on human-computer interaction have shown

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACM must be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from Permissions@acm.org.
MICRO-48 December 05-09, 2015, Waikiki, HI, USA
Copyright 2015 ACM. ISBN 978-1-4503-4304-2/15/12 $15.00
DOI: http://dx.doi.org/10.1145/2830772.2830776.

that latencies of 100 milliseconds are required in order
to maintain a good experience [1, 2, 3] while variations
in response time faster than 50 milliseconds are imper-
ceptible [4, 5]. These tasks are effectively soft real-time
tasks which have a user response-time deadline. The
task must finish by the deadline for good user experi-
ence, but finishing faster does not necessarily improve
the user experience due to the limits of human percep-
tion.

As finishing these tasks faster is not beneficial, we can
use power-performance trade-off techniques, such as dy-
namic voltage and frequency scaling (DVFS), in order
to reduce energy usage while maintaining the same util-
ity to the user. By reducing the voltage and frequency,
we can run the task slower and with less energy usage.
As long as the task still completes by the deadline, then
the experience for the user remains the same.

Existing Linux power governors [6] do not take into
account these response-time requirements when adjust-
ing DVFS levels. More recent work has looked at using
DVFS to minimize energy in the presence of deadlines.
However, these approaches are typically reactive, using
past histories of task execution time as an estimate of
future execution times [7, 8, 9, 10]. However, the exe-
cution time of a task can vary greatly depending on its
input. Reactive controllers cannot respond fast enough
to input-dependent execution time variations. Instead,
proactive or predictive control is needed in order to ad-
just the operating point of a task before it runs, de-
pending on the task inputs. This has been explored
for specific applications [11, 12, 5, 13], but these ap-
proaches were developed using detailed analysis of the
applications of interest. As a result, they are not easily
generalizable to other domains.

In this paper, we present an automated and gen-
eral framework for creating prediction-based DVFS con-
trollers. Given an application, we show how to create
a controller to predict the appropriate DVFS level for
each task execution, depending on its input and pro-
gram state values, in order to satisfy response-time re-
quirements. Our approach is based on recognizing that
the majority of execution time variation can be ex-
plained by differences in control flow. Given a task,
we use program slicing to create a minimal code frag-
ment that will calculate control-flow features based on
input values and current program state. We train a

while�(true)�{�
��task();�
}�

Job 0 Job 1

deadline
time

Job 2

Application

···

budget

Figure 1: Example of tasks, jobs, and deadlines.

model to predict the execution time for a task given
these features. At run-time, we are able to quickly run
this code fragment and predict the execution time of
a task. With this information, we can appropriately
select a DVFS level in order to minimize energy while
satisfying response-time requirements. Our main con-
tributions include:

1. An automated approach for generating control flow
features.

2. A method for training a model to map features to
execution times in such a way as to be conservative
and avoid deadline misses.

3. Application of these predictions to DVFS control
in order to minimize energy in the presence of
deadlines.

We implemented a prototype of this method on an
ODROID-XU3 development board. We tested eight
different applications, including games, speech recog-
nition, video decoding, and a web browser. Our results
show energy savings of 56% over running at maximum
frequency with almost no deadline misses. This is 27%
energy savings compared to the default Linux interac-
tive governor which shows 2% deadline misses. Com-
pared to a PID-based governor, our approach sees only
a 1% improvement in energy savings but the PID-based
controller shows 13% deadline misses on average.

The rest of the paper is organized as follows. Sec-
tion 2 discusses general characteristics of interactive ap-
plications and the challenges of designing a DVFS con-
troller to take advantage of execution time variation.
Section 3 discusses our method of predicting execution
time and using this to inform DVFS control. Section 4
discusses the overall framework and system-level issues.
Section 5 shows our evaluation results. Finally, Sec-
tion 6 discusses related work and Section 7 concludes
the paper.

2. EXECUTION TIME VARIATION IN IN-
TERACTIVE APPLICATIONS

2.1 Tasks and Jobs
We define a task as a portion of an application that

has an associated response-time requirement. We re-
fer to the time period in which it must complete as its
time budget. For example, games are typically written

50 100 150 200 250
Job (Frame)

26

28

30

32

34

E
xe

cu
tio

n
Ti

m
e

[m
s]

Figure 2: Execution time of jobs (frames) for ldecode
(video decoder).

with a main task that handles reading user input, up-
dating game state, and displaying the output. In order
to maintain a certain frame rate (e.g., 30 frames per
second), this task must finish within the frame period
budget (e.g., 33 milliseconds for 30 frames per second
operation).

We define a job as a dynamic instance of a task. Fig-
ure 1 shows how a task maps to multiple jobs. Each
job has a deadline which is the time by which it must
finish execution. For example, for a game running at
30 frames-per-second, 30 jobs for the game loop task
are run each second. Each of these jobs has a dead-
line which is 33 milliseconds after the job’s start time.
These jobs all correspond to the same set of static task
code, but their dynamic behavior differs due to differ-
ent inputs and program state. For example, one job
may see that the user has pressed a button and thus
execute code to process this button press. Other jobs
may see no new user input and skip the need to process
user input. As a result, job execution times can vary
depending on input and program state.

2.2 Variations in Execution Time
These variations in execution times between jobs can

be significant. Figure 2 shows the execution time per
job (frame) for a video decoder application (ldecode)
running on an ODROID-XU3 development board (see
Section 5 for full experimental setup). We can see that
there are large variations in execution time from job to
job due to differences in input and program state when
each job executes. Because of this large variation, set-
ting the appropriate DVFS level is a difficult problem.

Using a single DVFS level based on the average exe-
cution time (28.6 milliseconds) will lead to a number of
jobs missing their deadline. On the other hand, look-
ing at the worst-case execution time (32.3 milliseconds)
implies that the application must be run at its maxi-
mum frequency, which means that minimal energy sav-
ing from DVFS is possible. The large variations from
job to job imply that we need a fine-grained, per-job
decision of the DVFS level to use in order to minimize
energy usage while avoiding deadline misses.

2.3 Existing DVFS Controllers
There are a large number of existing and proposed

10 12 14 16 18 20
Job (Frame)

26

28

30

32

34
E

xe
cu

tio
n

Ti
m

e
[m

s]
Actual PID

Figure 3: Execution time of jobs (blue, solid) and exe-
cution time expected by a PID controller (red, dashed)
for ldecode (video decoder).

DVFS controllers. Most controllers, such as the built-in
Linux governors [6], adjust DVFS based on CPU utiliza-
tion. When utilization is high, voltage and frequency
are increased, while when utilization is low, voltage and
frequency are decreased. This does not explicitly take
into account deadlines and can result in high energy
usage or deadline misses. For example, high CPU uti-
lization can cause a high voltage and frequency level
to be used. However, the time budget for the task
may actually be very long and a lower voltage and fre-
quency would be sufficient, resulting in lower energy
usage. Similarly, CPU utilization for a job could be low
due to memory stalls, causing the controller to lower
voltage and frequency levels. However, if the task has
a tight time budget, then this can result in a deadline
miss, whereas running at higher frequencies may have
been able to meet the deadline.

DVFS has been explored in hard real-time systems in
order to save energy while guaranteeing that deadlines
are met [14, 15, 16, 17]. In order to ensure that dead-
lines are never missed, the analysis must be strictly con-
servative which limits the amount of energy that can be
saved. That is, a task will always be run at a frequency
such that even the slowest jobs will meet the deadline.
However, for most applications, there is no need to be
this conservative and increased energy savings can be
achieved by relaxing these constraints.

Other work has explored using run-time information
to inform DVFS control in the presence of deadlines.
These approaches are largely reactive and use informa-
tion about past job execution times to predict future
job times [7, 8, 9, 10]. This can capture coarse-grained
phase changes in execution time, but cannot capture
the fine-grained job-to-job variations in execution times
as the adjustment in DVFS level happens too late. For
example, Figure 3 shows the expected execution times
that a PID-based controller uses for setting the DVFS
level and the real execution times of the jobs. As we
can see, the PID controller’s decision lags the actual
execution times of the jobs.

More recently, people have investigated predicting
job execution time and setting DVFS in order to meet
deadlines for specific applications (e.g., game render-
ing [11], web browsing [12, 5], web server/Memcached

Job

budget time

Job

time

Job Job

Predict and set DVFS level

Figure 4: Overview of prediction-based control.

[13]). These approaches involved careful analysis of the
application of interest, requiring extensive programmer
effort, in order to design the controller. As a result, the
resulting controllers cannot be applied to other appli-
cations.

2.4 Prediction-Based Control
Our goal in this work is to develop a general and au-

tomated framework that will, given a task and its time
budget requirement, create a prediction-based DVFS
controller that can minimize energy usage without miss-
ing deadlines. Figure 4 shows an overview of the oper-
ation of our proposed prediction-based controller. The
basic idea is to pre-pend tasks with a small segment of
code. This segment of code will predict the appropriate
DVFS level to use for each of the task’s jobs depending
on the job’s input and current program state.

The main source of execution time variation between
jobs is due to different inputs and program state. Thus,
the main challenge in creating a prediction-based DVFS
controller is determining how to map job input and pro-
gram state values to the appropriate DVFS frequency
level. In general, finding a direct mapping from input
values to frequency levels is challenging because the
mapping can be irregular and complicated. In addi-
tion, this mapping varies from application to applica-
tion. For example, for one application, pressing the
“down” key may correspond to a large increase in ex-
ecution time while for other applications it may have
no effect on execution time. Our solution is to take ad-
vantage of the program source to give us hints about
how input values and program state will affect execu-
tion time. We use the program source to automatically
generate a prediction-based DVFS controller.

3. EXECUTION TIME PREDICTION FOR
ENERGY-EFFICIENCY

3.1 Overview
The basic intuition behind our prediction methodol-

ogy is that, to first-order, execution time correlates with
the number of instructions run. Variations in the num-
ber of instructions run are described by the control flow
taken by a specific job. For example, consider the con-
trol flow graph for a task shown in Figure 5. Each node
is marked with its number of instructions. Taking the
left branch instead of the right branch corresponds to
nine more instructions being executed. Similarly, each
additional loop iteration of the last basic block adds five

1

10 1

5

Figure 5: Example control flow graph. Each node is
annotated with its number of instructions.

Generate Program Features

Predict Job Execution Time

Predict Frequency

Job Input and Program State

Feature Values

Execution Time

Frequency

Figure 6: Steps to predict appropriate frequency level
from job input and program state.

instructions to the number of instructions executed. By
knowing which branch is taken and the number of loop
iterations, we can know the number of instructions ex-
ecuted and estimate the execution time. With an esti-
mate of the execution time, we can then estimate the
performance impact of DVFS and choose an appropri-
ate frequency and voltage level to run at in order to just
meet the deadline.

Figure 6 shows the main steps in our method. We first
instrument the task source code and use program slic-
ing to create a code fragment that will calculate control
flow features for a job. The code fragment is run before
a job executes in order to generate the control flow fea-
tures (Section 3.2). Next, we use a linear model, which
we train off-line, to map control flow features to an ex-
ecution time estimate for the job (Section 3.3). Finally,
we use classical linear models [18, 19] that describe the
frequency-performance trade-off of DVFS to select an
appropriate frequency (Section 3.4).

3.2 Program Features
The first step needed for our prediction is to generate

control flow features. That is, we want to know the con-
trol flow of a task when executing with a specific input
and program state. For this purpose, we instrument
the task source to count these control flow features. We
instrument the task to count the following features:

• Number of iterations for each loop

• Number of times each conditional branch is taken

• Address of each function pointer call

Figure 7 shows examples of how these features are in-
strumented. We focus on control flow features because
these explain most of the execution time variation. How-
ever, other features, such as variable values or memory

if�(condition)�{�
��…�
}�

if�(condition)�{�
��feature[0]++;�
��…�
}�

Original Code Instrumented Code

for�(i=0;�i<n;�i++)�{�
��…�
}�
�
while�(n�=�nŞ>next)�{�
��…�
}�

feature[1]�+=�n;�
for�(i=0;�i<n;�i++)�{�
��…�
}�
while�(n�=�nŞ>next)�{�
��feature[2]++;�
��…�
}�

C
on

di
tio

na
l

Lo
op

s

(*func)();� (*func)();�
feature[3]�=�func;�C

al
l

Figure 7: Example of feature counters inserted for con-
ditionals, loops, and function calls.

accesses, could be included to improve the prediction
accuracy.

Generating these features using an instrumented ver-
sion of the task code is not suitable for prediction be-
cause the instrumented task will take at least as long
as the original task to run. Instead, we need to quickly
generate these features before the task execution. In
order to minimize the prediction execution time, we use
program slicing [20, 21] to produce the minimal code
needed to calculate these features. Figure 8 shows a
simple example of this flow. By removing the actual
computation and only running through the control flow,
the execution time can be greatly reduced. Since the
information from this slice will ultimately be used to
make a heuristic decision on DVFS control, the slice
does not need to perfectly calculate the features. In-
stead, using an approximate slice can reduce the slice’s
size and execution time. For example, our tool tracks
dependences based only on variable names and ignores
possible pointer aliasing. As long as inaccuracies in the
generated features are low, an approximate slice is ade-
quate for our prediction needs. We refer to the resulting
program slice that computes the control flow features as
the prediction slice or simply as the slice.

One problem that arises with running this prediction
slice before a task is the issue of side-effects. That is,
the slice could write to global variables and break the
correctness of the program. In order to prevent this, the
slice creates local copies of any global variables that are
used. Values for these local copies are updated at the
start of the slice and writes are only applied to the local
copy. A similar process is applied to any arguments that
are passed by reference.

3.3 Execution Time Prediction Model
Next, we need to predict the execution time from the

control flow features. This section describes our model
that maps features to execution time. Table 1 sum-
marizes the variables and notation that are used in this
section. We use a linear model to map features to execu-
tion time as this captures the basic correlation. Higher-
order or non-polynomial models may provide better ac-

if�(conditon)�{�
��compute();�
}�
�
for�(i=0;�i<n;�i++)�{�
��compute2();�
}�

if�(condition)�{�
��feature[0]++;�
��compute();�
}�
�
feature[1]�+=�n;�
for�(i=0;�i<n;�i++)�{�
��compute2();�
}�

if�(condition)�{�
��feature[0]++;�
}�
�
feature[1]�+=�n;�
�

Original Code Instrumented Code Program Slice

Figure 8: Example of program slicing for control flow features.

Variable Type Description

ȳ Scalar Predicted execution time
x Vector Feature values
β Vector Model coefficients

y Vector Profiled execution times
X Matrix Profiled feature values

Xβ − y Vector Prediction errors

α Scalar Under-predict penalty weight
γ Scalar Number of terms penalty weight
‖ · ‖ Scalar L2-norm (sum of squares)
‖ · ‖1 Scalar L1-norm (sum of absolute values)

Table 1: Variable and notation descriptions.

curacy. However, a linear model has the advantage of
being both simple to train and fast to evaluate at run-
time. In addition, it is always convex which allows us to
use convex optimization-based methods to fit the model.
Our linear model can be expressed as

ȳ = xβ

where ȳ is the predicted execution time, x is a vector
of feature values, and β are the coefficients that map
feature values to execution time. These β coefficients
are fit using profiling data. We profile the program to
produce a set of training data consisting of execution
times y and feature vectors X (i.e., each row of X is a
vector of features, xi, for one job). Note that for ad-
dresses recorded for function calls, each unique address
represents a different control flow which can correlate to
a different effect on execution time. In order to properly
represent each address as a feature, addresses recorded
for function calls are converted to a one-hot encoding
indicating whether particular function addresses were
called or not.

The most common way to fit a linear model is to use
least squares regression. Least squares regression finds
the coefficients β that minimize the mean square error:

min
β

‖Xβ − y‖2

Essentially, this aims to minimize the sum of the ab-
solute errors in the prediction. That is, it weighs neg-
ative and positive errors equally. However, these two
errors lead to different behaviors on our system. Neg-
ative errors (under-prediction) lead to deadline misses
since we predict the job to run faster than its actual ex-
ecution time. On the other hand, positive errors (over-
prediction) result in an overly conservative frequency
setting which does not save as much energy as possi-

0 1 2 3 4 5
1/frequency [ns]

50
0

50
100
150
200
250
300

E
xe

cu
tio

n
tim

e
[m

s]

Figure 9: Average execution time of jobs (frames) for
ldecode (video decoding) as frequency level varies.

ble. In order to maintain a good user experience, we
would prefer to avoid deadline misses, possibly at the
cost of energy usage. In other words, we should place
greater weight on avoiding under-prediction as opposed
to over-prediction.

We can place greater weight on under-prediction by
modifying our optimization objective:

min
β

‖pos(Xβ − y)‖2 + α‖neg(Xβ − y)‖2

where pos(x) = max{x, 0} and neg(x) = max{−x, 0}
and these functions are applied element-wise to vectors.
Thus, ‖pos(Xβ−y)‖2 represents the over-prediction er-
ror and ‖neg(Xβ−y)‖2 represents the under-prediction
error. α is a weighting factor that allows us to place a
greater penalty on under-predictions by setting α > 1.
Since this objective is convex, we can use existing con-
vex optimization solvers to solve for β.

Coefficients which are zero imply that the correspond-
ing control flow features do not need to be calculated
by the prediction slice. We can use this information to
further reduce the size and execution time of the pre-
diction slice. We extend our optimization objective to
favor using less features by using the Lasso method [22]:

min
β

‖pos(Xβ − y)‖2 + α‖neg(Xβ − y)‖2 + γ‖β‖1

where ‖ · ‖1 is the L1-norm and γ is a weighting factor
that allows us to trade-off prediction accuracy with the
number of features needed.

3.4 DVFS Model
Given a predicted execution time, we need to esti-

mate how the execution time will change with varying
frequency. For this, we use the classical linear model

Job

time

Predictor DVFS

effective budget
original budget

Figure 10: The effective budget decreases due to slice
and DVFS execution time.

found in literature [18, 19]:

t = Tmem +Ndependent/f

where t is the execution time, Tmem is the memory-
dependent execution time that does not scale with fre-
quency, Ndependent is the number of CPU cycles that do
not overlap with memory and scale with frequency, and
f is the frequency. In order to verify this linearity as-
sumption, we measured average job execution times as
frequency was varied. Figure 9 shows the average job
execution time versus 1/f for ldecode (video decoder
application). We can see that t and 1/f do show a lin-
ear relationship. We saw similar results for the other
applications we tested.

By predicting the execution time at two points, we
can determine Tmem and Ndependent for a job and cal-
culate the minimum frequency f to satisfy a given time
budget tbudget. More specifically, we predict the execu-
tion time t̄fmin at minimum frequency fmin and the ex-
ecution time t̄fmax at maximum frequency fmax. Using
these two points, we can calculate Tmem and Ndependent

as

Ndependent =
fminfmax(t̄fmin − t̄fmax)

fmax − fmin

Tmem =
fmaxt̄fmax − fmint̄fmin

fmax − fmin

For a given budget tbudget, we want the minimum
frequency fbudget that will meet this time. This can be
calculated as

fbudget =
Ndependent

tbudget − Tmem

Since execution time can vary even with the same job
inputs and program state, we add a margin to the pre-
dicted execution times used (tfmin and tfmax). In our
experiments we used a margin of 10%. A higher margin
can decrease deadline misses while a lower margin can
improve the energy savings. The resulting predicted
frequency is the exact frequency that we expect will
just satisfy the time budget. However, DVFS is only
supported for a set of discrete frequency levels. Thus,
the actual frequency we select is the smallest frequency
allowed that is greater than fbudget.

The execution of the prediction slice and DVFS switch
reduces the amount of time available for a job to execute
and still satisfy its budget. Thus, the effective budget
when choosing a frequency to run at needs to consider
these overheads (see Figure 10). Although the execution
time of the prediction slice can be measured, the DVFS
switching time must be estimated, as the switch has
not been performed yet. This is done by microbench-
marking the DVFS switching time. Figure 11 shows

200 400 600 800 100012001400
End Frequency [MHz]

200

400

600

800

1000

1200

1400

S
ta

rt
Fr

eq
ue

nc
y

[M
H

z]

0

300

600

900

1200

1500

1800

2100

2400

S
w

itc
hi

ng
 ti

m
e

[u
s]

Figure 11: 95th-percentile switching times for DVFS.

the 95th-percentile DVFS switching times for our test
platform for each possible start and ending frequency.
We use the 95th-percentile switching times in order to
be conservative in our estimate of DVFS switching time
while omitting rare outliers.

3.5 Extensions for Prediction Models
In this section, we have described our specific predic-

tion strategy for each step in our overall prediction flow
shown in Figure 6. However, we note that each step in
this prediction flow can be substituted with alternate
models as long as it produces the needed prediction for
the next step. The most obvious change would be to
use more complex prediction models for each step (e.g.,
more features generated and higher-order, non-linear
models). For the benchmarks we evaluated, we saw
relatively little gain to be had from improved predic-
tion (see Section 5.3) and thus the increased overheads
of more complex models were not justified. Instead, we
discuss here some potential extensions.

For feature generation, we have focused on automated
generation in order for the approach to be general and
limit the need for domain-specific expertise. However,
this does not preclude the programmer from manually
adding “hints” that they expect would correlate well
with a job’s execution time. For example, the program-
mer may be able to extract meta-data from input files
and manually provide these as features.

One interesting extension to execution time predic-
tion involves modifying the prediction in order to influ-
ence which features need to be generated. Additional
constraints could be added to the execution time predic-
tion in order to limit the use of features which require
high overhead to generate. Features over some overhead
threshold could be explicitly disallowed or the overhead
for each feature could be introduced as penalties in the
optimization objective.

The last step in our flow focuses on selecting an ap-
propriate frequency level for DVFS control. However,
this last step could be substituted to support other
performance-energy trade-off mechanisms, such as het-
erogeneous cores. By using alternate models for how
the execution time scales with the performance-energy
trade-off mechanism, an appropriate operating point

while�(true)�{�
��#pragma�start_task�50ms�
��task();�
��#pragma�end_task�
}�

while�(true)�{�
��task();�
}�

Original Code Programmer Annotation

Figure 12: Example of programmer annotation to mark
task boundaries and time budgets.

can be selected for the mechanism of interest.

4. SYSTEM-LEVEL FRAMEWORK
This section describes the overall framework and op-

eration of our prediction-based controller.

4.1 Programmer Annotation
In order to apply our framework to an application, we

require the individual tasks and their time budgets to
be identified. These are identified by programmer anno-
tations. The programmer must annotate the start and
the end of a task and the desired response-time require-
ment. Figure 12 shows an example of this annotation.
For ease of analysis and to ensure that tasks that start
always end, we require the start and end of a task to
be within one function. Arbitrary code paths can be
modified to fit this model by using a wrapper function
or re-writing the code. Multiple non-overlapping tasks
can be supported, though we only considered one task
in the applications we tested.

4.2 Off-line Analysis
Figure 13 shows the overall flow of our framework for

creating prediction-based DVFS controllers. Given pro-
grammer annotation to identify tasks, we can automat-
ically instrument these tasks to record control flow fea-
tures. Off-line, we profile these tasks in order to collect
traces of feature values and job execution times. This
is used to train our execution time prediction model, as
described in Section 3.3. Since execution time depends
on the specific hardware and platform that an applica-
tion is run on, profiling and model training needs to be
done for the platform that the application will be run
on. For common platforms, the program developer can
perform this profiling and distribute the trained model
coefficients with the program. Alternatively, profiling
can be done by the user during application installation.

The trained execution time model only requires a sub-
set of all the features to perform prediction. Specif-
ically, features whose model coefficients are zero can
be excluded from the prediction slice. Program slic-
ing is used to create a minimal code fragment to cal-
culate only the needed control flow features. Note that
since the features needed depends on the training of
the execution time prediction model, which is platform-
dependent, the features needed could vary across plat-
forms. However, we expect the features that are needed
are primarily a function of the task semantics (i.e., exe-
cution time variations across control paths) rather than
the platform it is run on. In fact, we compared the
predictions made for an x86-based (Intel Core i7) plat-

Pipelined

Predictor Job

1

time

Sequential 1

Parallel

2 2 3 3

1

1

2

2

3

3

1 2

1

3

2

Figure 14: Options for how to run predictor.

form when using the features selected for an ARM-based
ODROID-XU3 platform and for the features selected
for the x86 platform itself. For all but three of the
benchmarks we tested, the features selected were ex-
actly the same. For one of these three benchmarks, the
features selected by the x86 platform were a subset of
those selected by the ARM platform and so the pre-
dicted times were exactly the same. For the remaining
two benchmarks, the predicted times differed by less
than 3%. Although we had to re-train the execution
time model coefficients, the same prediction slice was
applicable across both platforms.

4.3 Run-time Prediction
The prediction slice, execution time predictor, and

frequency predictor are combined to form the DVFS
predictor or simply predictor. There are several options
for how to run the predictor in relation to jobs. Fig-
ure 14 shows some of these options. The simplest ap-
proach is to run the slice just before the execution of a
job. This uses up part of the time budget to perform
slicing, as mentioned in Section 3.4. However, if this
time is low, then the impact is minimal.

An alternative option would be to run the predic-
tors and jobs in a parallel, pipelined manner such that
during job i, the predictor for job i + 1 is run. This
ensures that the DVFS decision is ready at the start
of a job with no impact on time budget from the pre-
dictor. However, this assumes that information needed
by the prediction slice, specifically the job inputs and
program state, is ready one job in advance. This is not
possible for interactive tasks which depend on real-time
user inputs or tasks which are not periodic.

The predictor could also be run in parallel with the
task. This avoids the issue of needing input values early.
In terms of time budget, this mode of operation still re-
duces the effective budget by the predictor execution
time because an appropriate frequency cannot be se-
lected until after the predictor is run. However, part of
the task also executes during the prediction time. By
accounting for this, the energy savings may be higher
than running in a sequential manner. Running in par-
allel also avoids the issue of side-effects caused by the
prediction slice that was discussed in Section 3.2. How-
ever, running in parallel either requires forking off the
predictor for each job or sharing data with a dedicated

Instrument Features

O
ff-

lin
e

Source Code Instrumented Code Profile

Sample Inputs

Feature Values,
Execution Times Train Model

Execution Time Model Generate Slice feature selection Prediction Slice

R
un

-ti
m

e Job
Inputs

Generate
Features

Feature
Values

Predict
Execution Time

Predict
Frequency

Execution
Time Frequency

Run Prediction Set DVFS Execute Job

DVFS Predictor

Figure 13: Overall flow for prediction-based DVFS control.

predictor thread, both of which can introduce overhead.
For our target applications, we found that the execu-

tion time of the predictor was low. Thus, we decided to
run the predictor and task in a sequential manner. For
applications which require more complicated predictors,
these alternative operation modes may be beneficial.

5. EVALUATION

5.1 Experimental Setup
We applied our framework for prediction-based DVFS

control to a set of eight benchmark applications includ-
ing three games, a web browser, speech recognition, a
video decoder and two applications from the MiBench
suite [27]. Table 2 lists and describes these benchmarks.
It also shows the minimum, average, and maximum job
execution times for these benchmarks when run at max-
imum frequency. User inputs for the games and the web
browser were scripted to ensure consistency across runs.

We ran our experiments on an ODROID-XU3 [30] de-
velopment board running Ubuntu 14.04. The ODROID-
XU3 includes a Samsung Exynos5422 SoC with ARM
Cortex-A15 and Cortex-A7 cores. We show results here
for running on the more power-efficient A7 core but we
saw similar trends when running on the A15 core. In
order to isolate measurements for the application of in-
terest, we pinned the benchmark to run on the A7 core
while using the A15 to run OS and background jobs.
We measured power using the on-board power sensors
with a sampling rate of 213 samples per second and
integrated over time to calculate energy usage.

We compare our proposed prediction-based DVFS con-
troller with existing controllers and previously proposed
control schemes. Specifically, we measure results for the
following DVFS schemes:

1. performance: The Linux performance governor
[6] always runs at the maximum frequency. We
normalize our energy results to this case.

2. interactive: The Linux interactive governor [6]
was designed for interactive mobile applications. It
samples CPU utilization every 80 milliseconds and

changes to maximum frequency if CPU utilization
is above 85%.

3. pid: The PID-based controller uses previous pre-
diction errors with a PID control algorithm in or-
der to predict the execution time of the next job
[7]. The PID parameters are trained offline and
are optimized to reduce deadline misses.

4. prediction: This is our prediction-based controller
as described in this paper.

5.2 Energy Savings and Deadline Misses
Figure 15 compares energy consumption and dead-

line misses for the different DVFS controllers across our
benchmark set. These experiments are run with a time
budget of 50 ms per job as running faster than this is
not noticeable to a user [4, 5]. pocketsphinx takes at
least 100s of milliseconds to run (see Table 2) so we use
a 4 second deadline. This corresponds to the time limit
that a user is willing to wait for a response [3]. Energy
numbers are normalized to the energy usage of the per-
formance governor. Deadline misses are reported as the
percentage of jobs that miss their deadline.

We see that, on average, our prediction-based con-
troller saves 56% energy compared to running at max
frequency. This is 27% more savings than the inter-
active governor and 1% more savings than the PID-
based controller. For ldecode, pocketsphinx, and rijn-
dael, prediction-based control shows higher energy con-
sumption than PID-based control. However, if we look
at deadline misses, we see that PID-based control shows
a large number of misses for these benchmarks. On
average, the interactive governor shows 2% deadline
misses and the PID-based controller shows 13% misses.
In contrast, our prediction-based controller shows 0.1%
deadline misses for curseofwar and no deadline misses
for the other benchmarks tested. Overall, we see that
the interactive governor has a low number of deadline
misses, but achieves this with high energy consumption.
On the other hand, PID-based control shows lower en-
ergy usage than the prediction-based controller in some
cases, but this comes at the cost of a large number of

2048

curseofwar
ldecode

pocketsphinx
rijn

dael
sha uzbl

xpilot
average

0
20
40
60
80

100
120

E
ne

rg
y

[%
]

performance interactive pid prediction

2048

curseofwar
ldecode

pocketsphinx
rijn

dael
sha uzbl

xpilot
average

0
5

10
15
20
25
30
35
40
45

M
is

se
s

[%
]

Figure 15: Normalized energy usage and deadline misses.

0.6 0.8 1.0 1.2 1.4
Normalized Budget

0
50

100
150
200
250

E
ne

rg
y

[%
]

performance interactive pid prediction

0.6 0.8 1.0 1.2 1.4
Normalized Budget

0
20
40
60
80

100

M
is

se
s

[%
]

(a) 2048

0.6 0.8 1.0 1.2 1.4
Normalized Budget

0
20
40
60
80

100

E
ne

rg
y

[%
]

performance interactive pid prediction

0.6 0.8 1.0 1.2 1.4
Normalized Budget

0

5

10

15

20

M
is

se
s

[%
]

(b) curseofwar

0.6 0.8 1.0 1.2 1.4
Normalized Budget

0
20
40
60
80

100
120

E
ne

rg
y

[%
]

performance interactive pid prediction

0.6 0.8 1.0 1.2 1.4
Normalized Budget

0
10
20
30
40
50
60
70

M
is

se
s

[%
]

(c) ldecode

0.6 0.8 1.0 1.2 1.4
Normalized Budget

0
20
40
60
80

100
120

E
ne

rg
y

[%
]

performance interactive pid prediction

0.6 0.8 1.0 1.2 1.4
Normalized Budget

0
10
20
30
40
50
60

M
is

se
s

[%
]

(d) pocketsphinx

0.6 0.8 1.0 1.2 1.4
Normalized Budget

0
20
40
60
80

100
120

E
ne

rg
y

[%
]

performance interactive pid prediction

0.6 0.8 1.0 1.2 1.4
Normalized Budget

0
10
20
30
40
50
60

M
is

se
s

[%
]

(e) rijndael

0.6 0.8 1.0 1.2 1.4
Normalized Budget

0
20
40
60
80

100

E
ne

rg
y

[%
]

performance interactive pid prediction

0.6 0.8 1.0 1.2 1.4
Normalized Budget

0
5

10
15
20
25
30
35
40
45

M
is

se
s

[%
]

(f) sha

0.6 0.8 1.0 1.2 1.4
Normalized Budget

0
20
40
60
80

100

E
ne

rg
y

[%
]

performance interactive pid prediction

0.6 0.8 1.0 1.2 1.4
Normalized Budget

0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5

M
is

se
s

[%
]

(g) uzbl

0.6 0.8 1.0 1.2 1.4
Normalized Budget

0
20
40
60
80

100
120

E
ne

rg
y

[%
]

performance interactive pid prediction

0.6 0.8 1.0 1.2 1.4
Normalized Budget

0
20
40
60
80

100

M
is

se
s

[%
]

(h) xpilot

Figure 16: Normalized energy usage and deadline misses as time budget is varied.

Benchmark Description Task
Job Times [ms]

Min Avg Max

2048 [23] Puzzle game Update and render one turn 0.52 1.2 2.1
curseofwar [24] Real-time strategy game Update and render one game loop iteration 0.02 6.2 37.2
ldecode [25] H.264 decoder Decode one frame 6.2 20.4 32.5
pocketsphinx [26] Speech recognition Process one speech sample 718 1661 2951
rijndael [27] Advanced Encryption Standard (AES) Encrypt one piece of data 14.2 28.5 43.6
sha [27] Secure Hash Algorithm (SHA) Hash one piece of data 4.7 25.3 46.0
uzbl [28] Web browser Execute one command (e.g., refresh page) 0.04 2.2 35.5
xpilot [29] 2D space game Update and render one game loop iteration 0.2 1.3 3.1

Table 2: Benchmark descriptions and execution time statistics when running at maximum frequency.

deadline misses. Instead, on average, our prediction-
based control is able to achieve both better energy con-
sumption and less deadline misses than the interactive
governor and PID-based control.

Since our prediction-based controller takes the time
budget into account, it is able to save more energy with
longer time budgets. Similarly, with shorter time bud-
gets, it will spend more energy to attempt to meet the
tighter deadlines. In order to study this trade-off, we
swept the time budget around the point where we ex-
pect to start seeing deadline misses. Specifically, we set
a normalized budget of 1 to correspond to the maxi-
mum execution time seen for the task when running at
maximum frequency (see Table 2). This corresponds
to the tightest budget such that all jobs are able to
meet their deadline. Figure 16 shows the energy us-
age and deadline misses for the various benchmarks as
the normalized budget is swept below and above 1. We
see that our prediction-based controller is able to save
more energy with longer time budgets and continues
to outperform the interactive governor and the PID-
based controller. For normalized budgets less than 1,
our prediction-based controller shows deadline misses.
However, the number of misses is typically close to the
number seen with the performance governor. This im-
plies that most of the deadline misses are ones that are
impossible to meet at the specified time budget, even
with running at the maximum frequency. Note that in
some cases, we see normalized energy usage over 100%
(i.e., energy usage greater than the performance gov-
ernor). This occurs because the time to switch DVFS
levels also contributes to energy usage. For extremely
short deadlines (e.g., a normalized budget of 1 for 2048
corresponds to 2.1 milliseconds), this switching time can
have a significant impact on energy usage. As the per-
formance governor never switches DVFS levels, it does
not pay this penalty.

5.3 Analysis of Overheads and Error
Figure 17 shows the average times for executing the

predictor and for switching DVFS levels. On average,
the predictor takes 3.2 ms to execute and DVFS switch-
ing takes 0.8 ms. Excluding pocketsphinx, the average
total overhead is less than 1 ms which is 2% of a 50 ms
time budget. pocketsphinx shows a long execution time
for the predictor. However, this time is negligible com-
pared to the execution time of pocketsphinx jobs which
are on the order of seconds.

The overheads of executing the predictor and DVFS

2048

curseofwar
ldecode

pocketsphinx
rijn

dael
sha uzbl

xpilot
average

0
1
2
3
4
5

Ti
m

e
[m

s]

24 25
predictor dvfs predictor+dvfs

Figure 17: Average time to run prediction slice and
switch DVFS levels.

2048

curseofwar
ldecode

pocketsphinx
rijn

dael
sha uzbl

xpilot
average

0
20
40
60
80

100

E
ne

rg
y

[%
]

prediction w/o dvfs w/o predictor+dvfs oracle

Figure 18: Normalized energy usage with overheads re-
moved and oracle prediction.

switching decrease the energy savings achievable. This
is due to the energy consumed to perform these opera-
tions as well as the decrease in effective budget. Better
program slicing and/or feature selection could reduce
the predictor execution time. Similarly, faster DVFS
switching circuits [31, 32, 33] have shown switching
times on the order of tens of nanoseconds. In order
to explore the limits of what is achievable, we evalu-
ated our prediction-based control when the overheads
of the predictor and DVFS switching are ignored. Fig-
ure 18 shows the energy and deadline misses when these
overheads are removed. These results are shown for a
time budget of 4 s for pocketsphinx and 50 ms for all
other benchmarks. On average, we see a 3% decrease
in energy consumption when removing the overheads of
DVFS switching. Removing the overhead of running the
predictor shows negligible improvement past removing
the DVFS switching overhead.

In addition to these overheads, the accuracy of our
prediction limits the effectiveness of the prediction-based
controller. Figure 19 shows box-and-whisker plots of
the prediction error. The box indicates the first and
third quartiles and the line in the box marks the median

2048

curseofwar
ldecode

rijn
dael

sha uzbl
xpilot

30
20
10
0

10
20
30

P
re

di
ct

io
n

E
rr

or
 [m

s]

Figure 19: Prediction error where positive/negative
numbers correspond to over/under-prediction.

40 50 60 70 80 90 100 110
Energy [%]

0.5
0.0
0.5
1.0
1.5
2.0

D
ea

dl
in

e
M

is
se

s
[%

]

α=1 α=10 α=100 α=1000

Figure 20: Energy vs. deadline misses for various under-
predict penalty weights (α) for ldecode.

value. Outliers (values over 1.5 times the inner quartile
range past the closest box end) are marked with an “x”
and the non-outlier range is marked by the whiskers.
Positive values represent over-prediction and negative-
numbers represent under-prediction. We can see that
the prediction skews toward over-prediction with aver-
age errors greater than 0. Most benchmarks show pre-
diction errors of less than 5 ms, which is only 10% of a 50
ms time budget. ldecode and rijndael show higher pre-
diction errors, which limits the energy savings possible.
pocketsphinx (not shown) has errors ranging from 60
ms under-prediction to 2 seconds over-prediction with
an average of 880 ms over-prediction. Although these
errors are larger in absolute terms than the other bench-
marks, they are on the same order of magnitude when
compared to the execution time of pocketsphinx jobs.

In order to explore the possible improvements with
perfect prediction, we implemented an“oracle”controller
that uses recorded job times from a previous run with
the same inputs to predict the execution time of jobs.
Figure 18 also includes these oracle results. The oracle
results include ignoring the overheads of the predictor
and DVFS switching. We see that an additional 11%
energy savings are achievable with oracle on top of re-
moving the predictor and DVFS switching overheads.
Note that we do not have oracle results for uzbl and
xpilot as non-deterministic variations in the ordering of
jobs across runs made it difficult to implement a good
oracle controller.

5.4 Under-prediction Trade-off
In Section 3.3, we discussed how we can vary the

penalty weight for under-prediction, α, when we fit our
execution time prediction model. Placing greater penalty
on under-prediction increases the energy usage but re-

duces the likelihood of deadline misses. Figure 20 shows
the energy and deadline misses for varying under-predict
penalty weights for ldecode. We see that as the weight
is decreased, energy consumption decreases but dead-
line misses increase. Reducing the weight from 1000
to 100 keep misses at 0, but reducing the weight to 10
introduces a small number of deadline misses (0.03%).
Other benchmarks show similar trends and we found
that across the benchmarks we tested, an under-predict
penalty weight of 100 provided good energy savings
without sacrificing deadline misses. The results in this
paper have been shown with a weight of 100.

5.5 Idling Between Jobs
One possible way to further improve energy savings

is to decrease the clock frequency and voltage level be-
tween jobs to a minimum. We refer to this idea as
“idling”. Figure 21 shows the normalized energy for
each controller with and without idling applied. The
energy is normalized to the energy usage of the perfor-
mance governor without idling. These results are shown
for a deadline of 4 seconds for pocketsphinx and 50 mil-
liseconds for all other benchmarks and is an analogous
setup to the results shown in Figure 15.

The amount of energy saved depends on the amount
of idle time between jobs. The performance governor
finishes jobs the fastest, and thus sees the largest ad-
ditional energy savings by reducing the frequency be-
tween jobs. However, for all benchmarks except pock-
etsphinx, the prediction-based DVFS controller without
idling still saves more energy than the performance gov-
ernor with idling. For pocketsphinx, the performance
governor with idling achieves similar energy usage to
the prediction-based controller. However, by also reduc-
ing the frequency between jobs for the prediction-based
controller, it is able to achieve further energy savings
and outperform the performance governor with idling.
The prediction-based controller with idling saves more
energy than the performance and interactive governors
for all of the benchmarks we tested. For some cases,
the prediction-based controller uses more energy than
the PID-based controller. However, as this technique
does not affect the number of deadline misses, the PID-
based controller is still missing many of its deadlines.
On average, with idling enabled, the prediction-based
controller uses 35% less energy than the performance
and interactive governors and 18% less energy than the
PID-based controller.

6. RELATED WORK

6.1 Dynamic Voltage and Frequency Scaling
There have been many designs for DVFS controllers.

Most controllers look to decrease frequency when the
performance impact is minimal. For example, the built-
in Linux governors [6] adjust DVFS based on CPU uti-
lization. However, these controllers do not take into
account performance requirements or deadlines.

DVFS has been studied in the context of hard real-
time systems [14, 15, 16, 17]. For these systems, dead-

2048 curseofwar ldecode pocketsphinx rijndael sha uzbl xpilot average0

20

40

60

80

100
E

ne
rg

y
[%

]
performance interactive pid prediction performance+idle interactive+idle pid+idle prediction+idle

Figure 21: Normalized energy with (+idle) and without running at minimum frequency between jobs

lines are strict requirements that cannot be violated.
Thus, lowering frequency must be done in a conserva-
tive manner. By relaxing this strict requirement, our
prediction-based controller is able to achieve higher en-
ergy savings.

A number of reactive DVFS controllers have been
proposed that use the past history of job execution
times to predict the execution time of future jobs. Choi
et al. [8] used moving averages of job execution time his-
tory to predict execution times for an MPEG decoder.
Similarly, Pegasus [9] used instantaneous and average
job execution times to make DVFS decisions. Nachiap-
pan et al. [10] used a moving average to set DVFS for
multiple IP cores. Gu and Chakraborty [7] used a PID-
based controller to predict execution times of frames
in a game. These history-based, reactive controllers are
not able to adapt fast enough to job-to-job variations in
execution time, resulting in either high energy usage or
deadline misses. Our results show that prediction-based
control outperforms PID-based control.

Prediction-based approaches have been designed for
specific applications. Gu and Chakraborty [11] pre-
dicted the rendering time for a game frame based on
the number of objects in the scene. Zhu et al. used
prediction-based control to select core and DVFS levels
for a web browser based on HTML and CSS features
[12] and event types [5]. Adrenaline [13] looked to re-
duce the tail latency of datacenter applications includ-
ing web search and Memcached by classifying jobs by
query type. These predictive approaches required care-
ful analysis of the applications of interest in order to
identify features and create predictive models. Our ap-
proach presents an automated approach to create these
DVFS predictors for a wide range of applications. For
example, for the web browser we tested, our approach
automatically identifies event types as a feature because
of changes in control flow depending on event type.

6.2 Execution Time Prediction
Worst-case execution time analysis is a well-studied

problem in hard real-time systems [34]. This analysis
looks at the problem of estimating execution time of
a program in the worst-case. This can be used as a
conservative bound for setting DVFS in order to meet
deadlines, but it does not predict the changes in job ex-
ecution time based on specific inputs or program state.

ATLAS [35] looked at predicting execution time in
the context of soft real-time scheduling. Their approach

uses programmer-marked features in a linear model in
order to predict execution time. Instead, our approach
is able to automatically identify features without pro-
grammer assistance. Mantis [20] presents an automated
approach for predicting execution time, similar to the
approach we have presented. However, neither Mantis
nor ATLAS looks at execution time prediction in the
context of DVFS control. Applying execution time pre-
diction to DVFS allocation with deadlines required cre-
ating a prediction method that placed greater penalty
on under-prediction and extending the predictor to se-
lect a DVFS level.

7. CONCLUSION
In this paper, we presented a framework for prediction-

based DVFS control. This controller predicts the appro-
priate frequency to use for a job in order to minimize
energy and just meet the required deadline. Our pre-
diction works by first generating control flow features,
then predicting the execution time of the job, and finally
predicting the appropriate frequency to use. Our results
show 56% average energy savings over running at maxi-
mum frequency with almost no deadlines misses. On av-
erage, our prediction-based controller outperforms both
the Linux interactive governor and a PID-based con-
troller in energy savings and deadline misses.

We note that there are some limitations to our tech-
nique, which may serve as directions for future research.
First, in this work we have studied only running one
application at a time as mobile devices typically run
one interactive application at a time. Extending this
work to multi-threaded or multi-core architectures will
require a way to model and estimate the contention of
multiple threads or workloads. Second, we assume that
inputs are known at the start of a task in order to calcu-
late control flow features. However, tasks which receive
unpredictable input in the middle create new challenges
in how to perform prediction. Finally, for time budgets
on the order of milliseconds, the overhead of running
the predictor and switching DVFS levels will outweigh
the energy savings gained. At these time scales, the
preditor may need to predict the DVFS level for several
jobs at once in order to amortize these overheads.

Acknowledgments
This work was partially supported by the the Office of
Naval Research grant N00014-15-1-2175.

8. REFERENCES
[1] Y. Endo, Z. Wang, J. B. Chen, and M. Seltzer, “Using

Latency to Evaluate Interactive System Performance,” in
Proceedings of the 2nd USENIX Symposium on Operating
Systems Design and Implementation, 1996.

[2] S. K. Card, G. G. Robertson, and J. D. Mackinlay, “The
Information Visualizer, an Information Workspace,” in
Proceedings of the SIGCHI Conference on Human Factors
in Computing Systems, 1991.

[3] R. B. Miller, “Response Time in Man-computer
Conversational Transactions,” in Proceedings of the 1968
Fall Joint Computer Conference, Part I, 1968.

[4] G. Lindegaard, G. Fernandes, C. Dudek, and J. Browñ,
“Attention Web Designers: You Have 50 Milliseconds to
Make a Good First Impression!,” Behavior & Information
Technology, vol. 25, no. 2, 2006.

[5] Y. Zhu, M. Halpern, and V. J. Reddi, “Event-Based
Scheduling for Energy-Efficient QoS (eQoS) in Mobile Web
Applications,” in Proceedings of the 21st Symposium on
High Performance Computer Architecture, 2015.

[6] D. Brodowski, “CPU Frequency and Voltage Scaling Code
in the LinuxTMKernel.”
https://android.googlesource.com/kernel/common/+/
a7827a2a60218b25f222b54f77ed38f57aebe08b/
Documentation/cpu-freq/governors.txt.

[7] Y. Gu and S. Chakraborty, “Control Theory-based DVS for
Interactive 3D Games,” in Proceedings of the 45th Design
Automation Conference, 2008.

[8] K. Choi, K. Dantu, W.-C. Cheng, and M. Pedram,
“Frame-Based Dynamic Voltage and Frequency Scaling for
a MPEG Decoder,” in Proceedings of the IEEE/ACM
International Conference on Computer Aided Design, 2002.

[9] D. Lo, L. Cheng, R. Govindaraju, L. A. Barroso, and
C. Kozyrakis, “Towards Energy Proportionality for
Large-scale Latency-critical Workloads,” in Proceeding of
the 41st International Symposium on Computer
Architecuture, 2014.

[10] N. C. Nachiappan, P. Yedlapalli, N. Soundararajan,
A. Sivasubramaniam, M. T. Kandemir, R. Iyer, and C. R.
Das, “Domain Knowledge Based Energy Management in
Handhelds,” in Proceedings of the 21st Symposium on High
Performance Computer Architecture, 2015.

[11] Y. Gu and S. Chakraborty, “A Hybrid DVS Scheme for
Interactive 3D Games,” in Proceedings of the 14th
Real-Time and Embedded Technology and Applications
Symposium, 2008.

[12] Y. Zhu and V. J. Reddi, “High-performance and
Energy-efficient Mobile Web Browsing on Big/Little
Systems,” in Proceedings of the 19th International
Symposium on High-Performance Computer Architecture,
2013.

[13] C.-H. Hsu, Y. Zhang, M. A. Laurenzano, D. Meisner,
T. Wenisch, J. Mars, L. Tang, and R. G. Dreslinski,
“Adrenaline: Pinpointing and Reining in Tail Queries with
Quick Voltage Boosting,” in Proceedings of the 21st
Symposium on High Performance Computer Architecture,
2015.

[14] S. Saha and B. Ravindran, “An Experimental Evaluation of
Real-Time DVFS Scheduling Algorithms,” in Proceedings of
the 5th International Systems and Storage Conference,
2012.

[15] M. Digalwar, S. Mohan, and B. K. Raveendran, “Energy
Aware Real Time Scheduling Algorithm for Mixed Task
Set,” in Proceedings of the International Conference on
Advanced Electronic Systems, 2013.

[16] R. Nassiffe, E. Camponogara, G. Lima, and D. Mossé,
“Optimizing QoS in Adaptive Real-Time Systems with
Energy Constraint Varying CPU Frequency,” in
Proceedings of the III Brazilian Symposium on Computing
Systems Engineering, 2013.

[17] G. Chen, K. Huang, and A. Knoll, “Energy Optimization
for Real-time Multiprocessor System-on-chip with Optimal

DVFS and DPM Combination,” ACM Transactions on
Embedded Computing Systems, vol. 13, no. 3s, 2014.

[18] F. Xie, M. Martonosi, and S. Malik, “Compile-time
Dynamic Voltage Scaling Settings: Opportunities and
Limits,” in Proceedings of the ACM SIGPLAN Conference
on Programming Language Design and Implementation,
2003.

[19] Q. Wu, V. J. Reddi, Y. Wu, J. Lee, D. Connors, D. Brooks,
M. Martonosi, and D. W. Clark, “A Dynamic Compilation
Framework for Controlling Microprocessor Energy and
Performance,” in Proceedings of the 38th International
Symposium on Microarchitecture, 2005.

[20] Y. Kwon, S. Lee, H. Yi, D. Kwon, S. Yang, B.-G. Chun,
L. Huang, P. Maniatis, M. Naik, and Y. Paek, “Mantis:
Automatic Performance Prediction for Smartphone
Applications,” in Proceedings of the 2013 USENIX
Conference on Annual Technical Conference, 2013.

[21] F. Tip, “A Survey of Program Slicing Techniques,” Journal
of Programming Languages, vol. 3, no. 3, 1995.

[22] R. Tibshirani, “Regression Shrinkage and Selection via the
Lasso,” Journal of the Royal Statistical Society. Series B
(Methodological), 1996.

[23] M. van der Schee, “2048.c.”
https://github.com/mevdschee/2048.c.

[24] A. Nikolaev, “Curse of War – Real Time Strategy Game
For Linux.” https://github.com/a-nikolaev/curseofwar.

[25] K. Sühring, “H.264/AVC Software Coordingation.”
http://iphome.hhi.de/suehring/tml/.

[26] D. Huggins-Daines, M. Kumar, A. Chan, A. W. Black,
M. Ravishankar, and A. I. Rudnicky, “Pocketsphinx: A
Free, Real-Time Continuous Speech Recognition System for
Hand-Held Devices,” in Proceedings of the IEEE
International Conference on Acoustics, Speech and Signal
Processing, 2006.

[27] M. R. Guthaus, J. S. Ringenberg, D. Ernst, T. M. Austin,
T. Mudge, and R. B. Brown, “MiBench: A Free,
Commercially Representative Embedded Benchmark Suite,”
in Proceedings of the 4th International Workshop on
Workload Characterization, 2001.

[28] D. Plaetinck, “Uzbl – Web Interface Tools Which Adhere to
the Unix Philosophy.” http://www.uzbl.org.

[29] B. Stabell, K. R. Schouten, B. Gÿsbers, and D. Balaska,
“XPilot.” http://www.xpilot.org/.

[30] “ODROID-XU3.” http://www.hardkernel.com/main/
products/prdt_info.php?g_code=G140448267127.

[31] T. N. Miller, X. Pan, R. Thomas, N. Sedaghati, and
R. Teodorescu, “Booster: Reactive Core Acceleration for
Mitigating the Effects of Process Variation and Application
Imbalance in Low-Voltage Chips,” in Proceedings of the
18th International Symposium on High Performance
Computer Architecture, 2012.

[32] N. Pinckney, M. Fojtik, B. Giridhar, D. Sylvester, and
D. Blaauw, “Shortstop: An On-Chip Fast Supply Boosting
Technique,” in Proceedings of the 2013 Symposium on
VLSI Circuits, 2013.

[33] W. Godycki, C. Torng, I. Bukreyev, A. Apsel, and
C. Batten, “Enabling Realistic Fine-Grain Voltage Scaling
with Reconfigurable Power Distribution Networks,” in
Proceedings of the 47th International Symposium on
Microarchitecture, 2014.

[34] R. Wilhelm, J. Engblom, A. Ermedahl, N. Holsti,
S. Thesing, D. Whalley, G. Bernat, C. Ferdinand,
R. Heckmann, T. Mitra, F. Mueller, I. Puaut, P. Puschner,
J. Staschulat, and P. Stenström, “The Worst-Case
Execution-Time Problem – Overview of Methods and
Survey of Tools,” ACM Transactions on Embedded
Computing Systems, 2008.

[35] M. Roitzsch, S. Wächtler, and H. Härtig, “ATLAS:
Look-Ahead Scheduling Using Workload Metrics,” in
Proceedings of the 19th Real-Time and Embedded
Technology and Applications Symposium, 2013.

https://android.googlesource.com/kernel/common/+/a7827a2a60218b25f222b54f77ed38f57aebe08b/Documentation/cpu-freq/governors.txt
https://android.googlesource.com/kernel/common/+/a7827a2a60218b25f222b54f77ed38f57aebe08b/Documentation/cpu-freq/governors.txt
https://android.googlesource.com/kernel/common/+/a7827a2a60218b25f222b54f77ed38f57aebe08b/Documentation/cpu-freq/governors.txt
https://github.com/mevdschee/2048.c
https://github.com/a-nikolaev/curseofwar
http://iphome.hhi.de/suehring/tml/
http://www.uzbl.org
http://www.xpilot.org/
http://www.hardkernel.com/main/products/prdt_info.php?g_code=G140448267127
http://www.hardkernel.com/main/products/prdt_info.php?g_code=G140448267127

	Introduction
	Execution Time Variation in Interactive Applications
	Tasks and Jobs
	Variations in Execution Time
	Existing DVFS Controllers
	Prediction-Based Control

	Execution Time Prediction for Energy-Efficiency
	Overview
	Program Features
	Execution Time Prediction Model
	DVFS Model
	Extensions for Prediction Models

	System-Level Framework
	Programmer Annotation
	Off-line Analysis
	Run-time Prediction

	Evaluation
	Experimental Setup
	Energy Savings and Deadline Misses
	Analysis of Overheads and Error
	Under-prediction Trade-off
	Idling Between Jobs

	Related Work
	Dynamic Voltage and Frequency Scaling
	Execution Time Prediction

	Conclusion
	References

