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Abstract 

This paper presents an efficient hardware architecture 

that enables run-time data race detection with high coverage 

and minimal performance overhead. Run-time race detec­

tors often rely on the happens-before vector clock algorithm 

for accuracy, yet suffer from either non-negligible perfor­

mance overhead or low detection coverage due to a large 

amount of meta-data. Based on the observation that most 

of data races happen between close-by accesses, we intro­

duce an optimization to selectively store meta-data only for 

recently shared memory locations and decouple meta-data 

storage from regular data storage such as caches. Experi­

ments show that the proposed scheme enables run-time race 

detection with a minimal impact on performance (4.8% over­

head on average) with very high detection coverage (over 

99%). Furthermore, this architecture only adds a small 

amount of on-chip resources for race detection: a 13-KB 

buffer per core and a l-bit tag per data cache block. 

1. Introduction 

Data race detection is widely used as a way to identify 

potential concurrency bugs in parallel programs due to unsyn­

chronized memory accesses. Even though data races cannot 

detect all concurrency bugs, they provide a general condition 

to identify a broad range of bugs without application-specific 

knowledge. This paper presents an efficient algorithm and 

architecture that enable run-time data race detection with 

both high coverage and near-zero performance overhead. 

The proposed technique enables parallel programs to be con­

tinuously monitored for races even in production systems, 

which are extremely sensitive to run-time overhead. 

Because checking data races purely in software can in­

troduce substantial run-time overhead, several hardware­

assisted techniques have been proposed [5, 18, 19,22, 23, 

30]. However, existing hardware techniques either show 

noticeable performance overhead or trade off detection cov­

erage or scalability for lower overhead. For example, precise 

data race detection algorithms often depend on vector clocks 

[8, 27] to capture the happens-before relations [12] between 

memory accesses. While effective in accurately detecting 

data races, efficient and scalable hardware support for vector 
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clocks is challenging because the size of vector clocks grows 

with the number of threads. For example, an early hard­

ware vector clock scheme [23] could only support a small 

number of threads. The state-of-the-art vector clock scheme 

[5] provides good scalability with comprehensive detection 

coverage, but reports significant performance overhead at 

run-time (80% on average). Alternatively, a scheme based 

on scalar clocks was shown to have low overhead, but also a 

noticeably lower detection coverage of 77% [22]. 

This paper proposes a set of optimizations to selectively 

manage meta-data, which enable accurate race detection 

based on the happens-before relations in hardware with mini­

mal performance overhead and without noticeably sacrificing 

the detection capability and scalability. The main optimiza­

tion comes from the observation that only a small fraction of 

memory locations are accessed by multiple threads within a 

relatively short period where most data races happen. As a 

result, we found that storing meta-data only for those shared 

locations can greatly reduce the overhead with minimal im­

pacts on coverage. While selectively maintaining vector 

clocks for statically shared memory locations has been pro­

posed recently [5], we found that limiting the bookkeeping to 

locations that are dynamically shared within a small window 

is critical to achieve low overhead. 

The proposed race detector only requires minor hardware 

changes with a small amount of state - a 13-KB buffer per 

core and a I-bit tag per data cache block. Experimental 

results show that the selective bookkeeping does not sig­

nificantly impact the race detection capability. In our ex­

periments, the optimized detection scheme detected all 13 

real-world data race bugs that we tested, and detected more 

than 99% of hundreds of data races that we injected to multi­

threaded programs. Moreover, the experiments show that the 

proposed scheme has a minimal performance impact, with a 

4.8% slowdown on average. In essence, the proposed scheme 

represents a new trade-off point between performance and 

coverage that was not possible before, making a deployment 

of continuous race detection in production systems feasible. 

The rest of the paper is organized as follows. Section 2 

presents a traditional (baseline) data race detection scheme 

based on vector clocks. Then, Section 3 describes how an ac­

curate race detection can be efficiently realized in hardware 



with selective meta-data management along with architec­

tural optimizations. Section 4 evaluates the effectiveness and 

overhead of the proposed race detector. Section 5 discusses 

related work, and Section 6 concludes the paper. 

2. Data Race Detection Overview 

While there are multiple approaches to detect data races, 

checking happens-before relations [12] is generally consid­

ered the most accurate technique in identifying data races. In 

this section, we provide an overview of data race detection 

based on happens-before relations, including the assump­

tions and intuitions behind the approach. We also describe 

a state-of-the-art race detection algorithm that uses vector 

clocks [8, 27] to capture the happens-before relations. This 

algorithm will be used as a baseline in this paper. 

2.1. Assumptions 

In this paper, we make a couple of assumptions that are 

common across many data race detection schemes, namely 

the shared memory programming model and identification 

of synchronization operations. 

This work considers programs that are written under the 

shared memory programming model. Except for creating a 

thread and waiting for a termination, threads communicate 

through accesses to shared memory locations. 

To distinguish data race bugs from legitimate synchro­

nization operations, which often use races, we assume that 

synchronization operations can be explicitly identified. Pro­

grammers often rely on a library such as Pthreads to imple­

ment synchronization operations. In such cases, synchroniza­

tion operations can be easily identified from the library calls. 

If a programmer uses custom synchronization primitives, 

our approach assumes that such primitives can be either ex­

plicitly marked or automatically identified. For example, 

previous studies showed that primitives such as spinlocks 

could be automatically detected [26, 28]. 

To be general, we describe synchronization operations us­

ing release and acquire instead of individual synchronization 

operations in the rest of the paper. W hile there exist many 

types of synchronization primitives, they can fundamentally 

be considered as acquiring and releasing tokens. For exam­

ple, mutual exclusion requires for each thread to acquire a 

token (lock) before entering a critical section and releases 

a token after the critical section. Similarly, barrier synchro­

nization can be realized by having each thread release its 

token after reaching a barrier and wait for acquiring tokens 

from all other threads before proceeding. In this paper, we 

refer to synchronization tokens as synchronization objects. 

2.2. Data Races 

A data race is defined as two conflicting memory ac­

cesses execute without any synchronization operation be­

tween them. Here, we define conflicting accesses as accesses 

from different threads to the same memory location, which 

include at least one write. 

Thread 1 Thread 2 
1.1 if (thd-> proc_info) ". . .. 

( 
.. .... 2.1 thd->proc_info = NULL; 

.-
1.2 fputs(thd->proc_infof ... 

J 

MySQL ha innadb.cc 

Figure 1. A data race bug in MySQL due to a 
missing critical section. The example is ob­
tained from a previous study [13]. 

At run-time, data races can be accurately detected by 

checking if a pair of conflicting accesses is ordered by 

happens-before relations, which refer to an ordering between 

two events, in particular synchronization operations [12]. In 

other words, if a program is data race free, then every pair 

of conflicting accesses should be ordered by happens-before 

relations between synchronization operations [19]. 

As an example, Figure 1 shows a data race in MySQL. 

In this example, none of the accesses to the shared pointer 

thd->proc_info is protected by synchronization. As a re­

sult, these accesses can execute in an arbitrary order, and 

potentially result in a fault if the pointer is set to be NULL 

by 2.1 between 1.1 and 1.2. Here, there are two pairs of con­

flicting accesses, namely 1.1-2.1 and 1.2-2.1. Data races can 

be detected as both conflicting access pairs are not ordered 

by happens-before relations. To fix the bug, both 1.1 and 1.2 

need to be protected by a mutex lock, and 2.1 needs to be 

protected by the same lock to ensure an atomic execution. 

2.3. Baseline Race Detection Algorithm 

Here, we discuss a race detection algorithm based on 

vector clocks [8,27]. We call this algorithm RaceVC, and 

use it as a baseline in the rest of this paper. Overall, RaceVC 

first identifies conflicting memory accesses, and checks if the 

conflicting accesses are ordered by happens before relations 

using vector clocks. 

As shown in Figure 2, there are multiple vector clocks 

needed for the traditional RaceVC scheme. In the scheme, 

each thread is uniquely identified by a thread ID (TID) . Vec­

tor clocks are used to encode the access history and happens­

before relations among conflicting memory accesses and 

synchronization operations. 

For a parallel program with N threads, each thread main­

tains a vector clock with N elements, as shown in Figure 2(a). 

Conceptually, elements in ThreadVClk encode the order­

ing constraint (i.e. happens-before relations) between two 

threads. For example, ThreadVClk [i] [j] shows the ear­

liest that a memory access from Thread i can be executed 

in terms of Thread j'S local time without violating the 

happens-before relations among synchronization operations. 

ThreadVClk [i] [i] represents Thread i's local clock that 

is incremented on each synchronization operation within the 

thread. 



ThreadVClk[TID11[TID21: 
A vector clock per thread. 
N x N time stamps for 
a program with N threads 

I Thr;�d 1 I Thr;�d 2 1"'1 Thr;�d N J) z 

I Thread 1 I Thread 21"'1 Thread NJ TS TS I TS 

iii Timestamps 

(a) Thread Vector Clock 

SyncObjVClkrSyncObj][TID): 
A vector cloc� per sync. obJ. 
MxN time stamps for a 
program with M sync. objs 
and N threads 

N 
Timestamps 

(b) Sync. Obj. Vector Clock 

PrevReadVClk[Addrl[TIDI 
PrevWriteVClk[AddiHTIDI : 
Two vector clocks per 
memory location, for 
read/write accesses. 
Kx2N time stamps for a 
program with K accessed 
memory locations and N 
threads 

I 
2N 

Timestamps 

(c) Memory Location Vector Clock 

Figure 2. The meta-data required for baseline 
race detection algorithm (RaceVC). Each ele­
ment in a vector clock records a time stamp 

(TS) for the associated thread. 

The algorithm also maintains a vector clock for each syn­

chronization object as shown in Figure 2(b). SyncObjVClk 

is used to encode the ordering constraints from each 

synchronization operation. On a release operation, the 

SyncObjVClk is updated with the ThreadVClk of the thread 

that performs the release (take the later timestamp for each 

element). The SyncOb jVClk represents the earliest that the 

following acquire operation can happen in each thread's lo­

cal time. On an acquire operation, a ThreadVClk is updated 

with the corresponding SyncObjVClk. 

As shown in Figure 2(c), the algorithm uses 

PrevReadVClk and PrevWriteVClk to record timestamps 

for the most recent read and write from each thread to each 

memory location. The access timestamps are recorded based 

on each thread's local clock (i.e. ThreadVClk [i 1 [i 1 for 

Thread i). If the vector clocks are properly maintained, one 

can check if the current memory access from Thread i and 

a previous access from Thread j are ordered by happens­

before relations by comparing Thread i's vector clock value 

ThreadVClk [i 1 [j 1 with the timestamp of the previous ac­

cess from Thread j. If the timestamp is greater or equal to 

ThreadVClk [i 1 [j 1 , a data race is detected. 

Figure 3 shows the detailed RaceVC algorithm. On a 

memory access, the algorithm first detects conflicting mem­

ory accesses, i.e. read-after-write, write-after-read, and 

write-after-write from multiple threads to the same mem­

ory location (detect_conflict_access (» . Then, the 

algorithm determines if the conflicting access pair indicates 

RaceVC Algorithm 
Functions: 
detect_conflict_access(TID, Addr, Type, ThreadVClk[TID] [TID]) 

I. Check the most recent write in each thread: 
(a) For all valid threadID i # TID, call 

check_order (TID, if PrevWriteVClk[Addr] [ill. 

2. Check the most recent read in each thread: 
(a) If (Type == Read), skip Step 2. 
(b) For all valid threadID i # TID, call 

check_order (TID, if PrevReadVClk[Addr] [ill. 

3. Update the history for the memory location 
(a) If (Type == Read), 

PrevReadVClk [Addrl [TIDI = ThreadVClk [TIDI [TIDI. 

(b) Otherwise, 
PrevWriteVClk [Addrl [TIDI = ThreadVClk [TIDI [TIDI. 

check_order (TID, PrevTID, PrevTimeStamp) 

I. Check if the memory accesses can be re-orderd: 
lfThreadVClk [TID] [PrevTID] S PrevTimeStamp, 

report a data race. 

update_release (TID, SyncObj) 

I. ThreadVClk[TIDI [TIDI++; 

2. For each element in the vector clock, SyncObjVClk [SyncObj I [il = 

MAX (ThreadVClk [TIDI [ii, SyncObjVClk [SyncObjl [il). 

update_acquire (TID, SyncObj) 

I. ThreadVClk[TIDI [TIDI++; 

2. For each element in the vector clock, ThreadVClk [TIDI [i I = 

MAX (ThreadVClk [TIDI [ii, SyncObjVClk[SyncObjl [il). 

Figure 3. RaceVC: Baseline algorithm. 

a data race by checking whether the accesses are ordered 

by happens-before relations (check_order () ). Lastly, the 

algorithm updates the associated memory location's vector 

clock based on each thread's local clock. On a synchro­

nization release or acquire operation, update_release () 

or update_acquire () is called respectively to update vec­

tor clocks to encode the happens-before relations, and to 

increment the calling thread's local clock. 

2.4. Challenges for Efficient HW Support 

The main challenge in hardware support for data race de­

tection lies in managing meta-data efficiently without signif­

icantly sacrificing scalability or detection coverage. A large 

amount of meta-data could result in large hardware structures 

or noticeable interference with regular program execution. 

On the other hand, reducing the amount of meta-data may 

limit the maximum number of threads that hardware can sup­

port or result in undetected races. In this context, traditional 

detection schemes based on vector clocks, such as RaceVC, 

are particularly challenging to support in hardware because 

they require vector clocks, whose size increases linearly with 

the number of threads, and for each memory location. 

Specifically, as shown in Figure 2, RaceVC requires vector 

clocks for each thread, each synchronization object, and 

each memory location. The dominating portion of meta­

data overhead comes from vector clocks for each memory 

location. This is because the number of accessed memory 

locations is typically significantly larger than the number 

of threads or the number of synchronization objects in a 

multithreaded program. Quite often, the size of vector clocks 

for threads and synchronization objects is negligible when 



compared to the size of per-location vector clocks. Therefore, 

the main challenge is to efficiently manage meta-data for 

memory locations. 

A recent algorithm, named FastTrack [9], showed that 

storing the last write per location, instead of a vector of 

writes (one from each thread), is enough for comprehensive 

data race detection. However, we note that even with a single 

clock for each write, the size of meta-data still increases 

linearly with the number of memory locations as we still 

need vector clocks for read operations. For the simplicity of 

presentation, we use vector clocks for both reads and writes 

in the RaceVC algorithm. RaceVC can be made to include the 

optimization by a simple change to only check the globally 

most recent write in Step 1 of Figure 3. 

To reduce the overhead, previous proposals for happens­

before data race detection in hardware store meta-data at a 

coarse granularity, often one or two vector clocks for each 

cache block [22, 23]. Also, these designs integrate the meta­

data into data caches, adding storage for each cache block. 

Unfortunately, such integrated designs trade off flexibility 

and coverage for lower overheads. Ideally, the hardware sup­

port should have low overhead while allowing fine-grained 

bookkeeping to maintain high detection coverage. 

3. HW-Assisted Race Detection 

In this section, we describe an optimized race detection 

scheme, named RaceSMM, along with a hardware architec­

ture support. The proposed optimizations are based on the 

insight that it is sufficient to maintain meta-data for a small 

number of recently shared memory locations. The design 

also decouples meta-data storage from caches and uses scalar 

meta-data to make the hardware scalable to a large number 

of threads. 

3.1. Selective Bookkeeping 

The main optimizations in our architecture design comes 

from the insight that the bookkeeping for race detection is 

only necessary for "shared" memory locations. Previous 

studies [10, 13, 15, 30] also observed that real-world race 

bugs typically manifest within a short window. Therefore, 

most real-world data races can be detected by maintaining 

meta-data for "shared" memory locations, which have con­

flicting accesses within a certain time period. Such shared 

memory locations are a fraction of the entire memory space, 

especially for a small window where most data races happen. 

Table 1 shows the ratio of shared locations for various 

window sizes. Here, we define the window size by counting 

the total number of memory accesses (reads+writes) from 

all threads. The ratio is calculated by using the number of 

unique locations with conflicting accesses divided by the 

total number of unique locations accessed within a window. 

For PARSEC and SPLASH2 benchmarks, less than 0.6% 
of memory locations have conflicting accesses that happen 

within a window of 100,000 memory accesses. In general, 

Table 1. Percentage of shared locations in 

memory within various access window sizes. 

(P) - PARSEC, (5) - SPLASH2. 
1,000 10,000 100,000 

Accesses Accesses Accesses 

Blackscholes(P) 0.000023% 0.00014% 0.00028% 

Bodytrack(P) 0.0030% 0.0059% 0.02% 

Fluidanimate(P) 0.0016% 0.014% 0.12% 

LU(S) 0.00021% 0.0030% 0.12% 

Ocean(S) 0.0020% 0.015% 0.11% 

Radix(S) 0.0023% 0.29% 0.60% 

Swaptions(P) 0.0012% 0.017% 0.22% 

Water-nsquare(S) 0.00013% 0.0040% 0.08% 

Water-spacial(S) 0.000087% 0.00079% 0.023% 

Geomean 0.00049% 0.0058% 0.05% 

For every memory access: 

Update Scalar 
Clocks for Most 

Recent RIW 

Entire 
Execution 

40.27% 

69.79% 

26.70% 

99.28% 

1.52% 

72.38% 

33.11% 

42.53% 

57.43% 

34.24% 

Figure 4. Flow chart for operations on mem­

ory accesses with the change (dark block) for 

selectively bookkeeping. 

a 100,000 access window is big enough for the purpose of 

race detection as almost all data races happen within a much 

smaller window (1,000-10,000 window). This is true for all 

real-world experiments done in our evaluation and also con­

curs with previous studies [13, 15]. Recent studies [4, 11] 
have also confirmed that a significant percentage of the mem­

ory blocks are only accessed locally by one thread, even in 

parallel applications. Therefore, keeping meta-data such as 

timestamps and thread IDs (TIDs) for all memory locations 

is extremely wasteful. Instead, in our design, we decouple 

the detection of shared locations and the rest of bookkeeping 

so that most meta-data are stored only for memory locations 

with conflicting accesses. 

The proposed design dynamically detects shared memory 

locations by augmenting each data cache block with a I-bit 

tag, which indicates whether the block is shared between 

multiple threads or not, leveraging cache coherence events. 

The rest of the bookkeeping and detection are only performed 



PrevReadTS [Addrl. 
PrevWrite TS+ TID[Addrl: 
Two scalar clocks per memory 
location. for most recent 
read/write in each core. 
2K timestamps+ K TID for a 
program with K accessed 
memory locations 

� 
� 
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Figure 5. Per-location per-core meta-data for 
RaceSMM; only use scalar variables. 

for those locations that are marked as shared (see Figure 4). 
While RADISH [5] also discusses reducing meta-data by 

using a static analysis to identify memory locations that are 

never shared for the entire program execution, we found that 

limiting bookkeeping only to dynamically shared locations 

within a time period is critical to achieve low overhead. As 

shown in Table i, the ratio of shared locations over the entire 

program execution is significant, several orders of magnitude 

higher than the one for a short period. 

Based on the intuition that most data races happen within 

a relatively small window, we propose to selectively maintain 

meta-data only for memory locations that are dynamically 
detected to be shared while in on-chip caches As we will 

demonstrate in the evaluation section, the dynamic detection 

of shared locations and selective bookkeeping allow a much 

more efficient architecture while maintaining high detection 

coverage. 

3.2. Distributed Scalar Clocks 

Even with the selective bookkeeping, the vector clocks 

to track recent reads and writes, pose a significant chal­

lenge in building a scalable hardware-based race detector 

because their size increases linearly with the number of 

threads. While a previous work has shown that keeping in­

formation on only one write per location is sufficient [9], 

maintaining a vector clock per location for reads still poses 

a scalability challenge. 

To address the challenge, RaceSMM stores scalar times­

tamps for writes and distributed scalar timestamps for reads 

for each memory location while using vector clocks for syn­

chronization objects. The insight is that the read vector 

clocks can be maintained distributed across multiple cores 

so that only one scalar timestamp is stored in each core's 

meta-data buffer. Effectively, each core can keep a scalar 

timestamp for the most recent read access from the local 

thread and a scalar timestamp for the global most recent 

write access for each memory location. 

As shown in Figure 5, in each core, RaceSMM only keeps 

track of timestamps (PrevReadTS/PrevWriteTS) and the 

write TID (PrevWri teTID) of the most recent read and write 

for each memory location. As each core keeps timestamps 

for reads for a local thread, we do not need to keep the read 

TID. Compared to RaceVC, the meta-data for each memory 
location no longer grows linearly with the number of threads. 

On the other hand, in order to accurately capture the 

L3$ 

Off-Chip Memory 

Shared Location Detection: I-bit shared tag for Ll/2/3 

cache block, set on LI/2 cache coherence downgrade 

event, propagate to L3. 

Access History Buffer (AHB): Meta-data for most recent 

read/write to a shared location. Including PrevTIDs and 

PrevTSs. 

Checker Module: Keeps active TID and ThreadVClk. On 

shared access from LI, records access to AHB, checks for 

data races. Bookkeeping ThreadVClk and SyncObjVClk on 

sync. operations. 

Sync. Object Vector Clocks (not shown here): 

SyncObjVClks are stored and accessed through existing 

memory hierarchy. 

Figure 6. A block diagram for the overall ar­
chitecture. Blue (dark) blocks are additional 
hardware support needed for RaceSMM. 

happens-before relations of synchronization objects and de­

tect data races effectively, RaceSMM uses the same meta­

data structures and bookkeeping operations as RaceVC for 

ThreadVClk and SyncObjVClk. 

3.3. Architecture Support 

Figure 6 shows the high-level block diagram for our archi­

tecture with support for data race detection. In the figure, the 

blue (dark) blocks indicate the new hardware components 

needed to support RaceSMM. The overall detection operations 

of our architecture closely follows the RaceVC algorithm, 

with the addition of using scalar timestamps in each core and 

selective bookkeeping for shared locations. 

3.3.1. Extension for Shared Location Detection. In our 

architecture, each block in data caches has a i-bit tag, which 

indicates whether the block is shared. The shared bit is set 

when a cache coherence event indicates that multiple cores 

access the same cache block with at least one write. More 

specifically, the shared bit is set when there is a downgrade 

request that changes the cache block to either shared or 

invalid coherence state. For example, in a MESI protocol, the 

shared bit is set with the following requests: M-> S, M-> I, 

E->S, E->I, S->I, etc. Greathouse et al. [10] have 

also found that the cache coherence events are indicative of 

data sharing between threads, and can be leveraged to drive 
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Thread 1 

TS 

Detection/Bookkeeping Logic 

Figure 7. Checker: keeps current thread ID 
(TID), a thread vector clock (ThreadVClk), and 
detection/bookkeeping logic. 

data race detection. This shared bit follows the data on-chip; 

a shared bit is written back to the lower cache levels, and the 

bit is read with data on a cache miss. However, the shared bit 

is cleared when a cache block is evicted to or read from off­

chip memory. Effectively, this mechanism detects memory 

blocks that are shared within a time window, while the block 

exists in multiple private (LlIL2) caches, and keeps this 

history while the block is on-chip. While this design implies 

that we cannot detect shared locations with a large window 

between accesses from multiple threads, our experimental 

results suggest that this design, for cache sizes in modern 

processors, is sufficient to detect virtually all races tested. 

The I-bit tag may not detect locations that are shared by 

multiple threads on the same core or incorrectly identify a 

block as shared when a single thread moves from one core to 

another. However, we believe that the I-bit tag is sufficient 

if each core runs one thread at a time with infrequent context 

switches or thread migrations. Our experiments show that 

even rather frequent context switches (every lms or even 

less) have negligible impact on detection coverage, and no 

false positives were encountered in our experiments. 

3.3.2. Checker Module. In the proposed architecture, a 

checker module maintains per-thread state and performs 

most of the bookkeeping and checking operations at each 

core. As shown in Figure 7, for the active thread on the core, 

the checker keeps a thread ID (TID), and a thread vector 

clock (ThreadVClk). On a memory access from the core, 

the checker module uses the shared bit in an LI data cache 

to determine if the access is to a "shared" block. If so, the 

checker records the access into the access history buffer 

(AHB), and examines whether there is a data race between 

the most recent read/write accesses and the current access. 

On a local read/write access, the checker module checks 

if the access and the most recent write to the same location 

are ordered by comparing ThreadVClk with PrevWriteTS 

from the local AHB. To allow checking a race between 

remote read accesses and a local write, on a write to a 

shared location, the checker broadcasts the local thread's 

ThreadVClk to other checkers. Each remote checker then 

checks if the broadcasted write and the most recent read from 

its own thread are ordered by happens-before relations by 

comparing the broadcasted ThreadVClk with PrevReadTS 

from its own AHB (i.e. check_order () ). 

Access History Buffer (AHB) 

Addr Prevo Prevo Prevo 
Read Write Write 

Tag TS TS TID 
... ... ... 

... 

Figure 8. AHB stores meta-data for the most 
recent read/write to shared locations. 

The access to local AHB can be done in parallel to local 

LI accesses, and the ThreadVClk is kept locally within 

the checker module. Hence, the overhead of our detection 

mechanism is kept minimal on a read. On a write, however, 

broadcasting the write access and ThreadVClk can incur 

overheads. Fortunately, the broadcasting is needed only 

on writes to shared locations. For all benchmarks that we 

tested, writes to shared locations only account for 0.5% (3% 

worst case) of all memory accesses. Hence, the broadcasting 

overhead on writes is minimal in practice. 

The checker module also coordinates with software layers 

through new instructions. The architecture provides two ad­

ditional instructions to indicate a synchronization operation, 

one for acquire and the other for release. These instruc­

tions also convey the address of the vector clock for the 

corresponding synchronization object (SyncObjVClk). The 

vector clock for synchronization object is accessed and/or 

updated by the checker module on acquire and release oper­

ations through normal memory hierarchy. 

3.3.3. Access History Buffer (AHB). The access history 

buffer (AHB) records information on the most recent read 

and write to a shared location that can be used to detect 

conflicting accesses and to check for data races. As shown 

in Figure 8, the AHB serves as a history table that saves 

PrevReadTS, PrevWriteTS, and PrevWriteTID for re­

cently accessed shared locations. On a memory access to 

a shared location, the checker module records a thread ID 

(only for write accesses), a timestamp (TS), along with the 

memory address tag into the AHB. 

As the AHB has a limited capacity, it works like a cache 

and only keeps the history of recently accessed shared mem­

ory locations. However, there is no backup hierarchy for the 

AHB. If an entry is evicted from an AHB, the information is 

simply thrown away. A miss to the AHB creates a new entry. 

While this design implies that we cannot detect conflicting 

accesses that are far apart, our experimental results suggest 

that an AHB with 1024 entries are sufficient for detecting 

virtually all races tested. Moreover, a miss to the AHB can 

only lead to potential false negatives, not false positives. 

We note that the AHB can store an access history per 

byte because only accesses to shared memory locations are 

recorded. On the other hand, traditional designs that combine 

meta-data into the main cache often had to store information 

on a cache block granularity to keep overheads acceptable. 



The AHB is kept coherent by a cache coherence protocol 

similar to other on-chip caches. We note that only the access 

history of a most recent write needs to be kept coherent. The 

access history of a most recent read is updated and accessed 

locally. We implemented the AHB coherence protocol sepa­

rately from the main data cache for evaluation. As a future 

extension, the AHB coherence operations can be optimized 

by piggybacking on existing data cache coherence protocol, 

as we discuss later in the section. 

3.3.4. Vector Clocks. Our proposed architecture uses two 

types of vector clocks: ThreadVClk and SyncObjVClk. For 

ThreadVClk, our architecture uses dedicated storage in each 

checker module for an active thread on the core. We found 

that ThreadVClk needs to be close to the checker because 

it is used in each check_order () operation. ThreadVClk 
needs to be treated as a part of thread state and managed by 

an operating system. For context switch or thread migration, 

the dormant thread's clock is saved in memory through OS 

support, and restored later. The size of ThreadVClk in each 

checker match the number of cores in a system. 

On the other hand, SyncObjVClk is stored and accessed 

through the existing memory hierarchy. For each syn­

chronization object, software allocates space for a vec­

tor clock in its memory space and passes the location us­

ing the instructions that indicate synchronization opera­

tions. On update_release () and update_acquire () , 

the SyncOb jVClk is accessed and/or updated through the ex­

isting memory hierarchy. We note that SyncObjVClk needs 

to be accessed only on synchronization operations, which 

happen infrequently. As a result, SyncObjVClk accesses 

have a minimal impact on performance. 

Hardware counters have a limited number of bits. As a 

result, the clock that each thread uses to represent its local 

time may overflow after many synchronization events. Fortu­

nately, our experiments show that synchronization operations 

are rather infrequent and the thread clocks only increment 

slowly. In fact, we did not see any overflow for PARSEC 

and SPLASH2 benchmarks with 16-bit counters. Given that 

overflows are infrequent, our architecture handles them in a 

relatively slow but straightforward fashion instead of adding 

complex hardware. Upon detecting an overflow in its local 

clock, a checker raises an exception to an operating system, 

which in turn interrupts other cores that run other threads 

from the same program. Then, the operating system clears all 

clocks, and marks all AHB entries to be invalid in each core. 

In order to allow an operating system to clear vector clocks 

for synchronization objects, an application allocates them in 

separate pages that are known to the operating system. 

3.4. ARB Optimizations 

Our architecture includes a couple of optimizations for 

AHB, which are designed to improve detection coverage and 

reduce overhead. We also discuss how the AHB coherence 

operations can be optimized by piggybacking on existing 

data cache coherence protocol here. 

3.4.1. Flexible Granularity. The AHB needs to store an 

access history per byte to avoid false positives from false 

sharing. However, for real-world applications, we noticed 

that only a very small fraction of memory accesses are at a 

byte granularity. Therefore, we implemented our AHB to 

support flexible granularity that defaults to word-granularity. 

For each AHB entry, there is a single-bit flag named word­

granularity flag, which indicates if granularity is per byte 

(flag is false) or per word (flag is true). An additional 4-

bits are appended to each entry to mark which bytes in a 

word are associate with the AHB entry. Accesses to all 

four bytes within a word are mapped to the same AHB 

entry; if the history is different for those bytes, only the 

most recent byte access history stays in the AHB. In this 

way, the architecture avoids using multiple AHB entries for 

a single word-granularity access while maintaining per-byte 

information to avoid false positive. 

3.4.2. Prefetching and Selective Checking. Because 

shared memory locations are detected at a cache block granu­

larity, one AHB access is likely to be followed by more AHB 

accesses to other bytes/words within the same cache block. 

We can exploit this locality and prefetch all corresponding 

AHB entries (write histories) when a cache line is loaded to 

a private data cache. 

We can also reduce the number of write broadcasts ex­

ploiting the coherence state of a cache line. If a cache line 

stays in M state and the write TID for the local AHB entry 

matches the local thread ID, it implies that a write has been 

already broadcasted and there was no remote write to the 

cache line after that. In that case, broadcasts for additional 

writes to the same location can be avoided until there is a 

downgrade request for the cache line. 

Similarly, checks on reads to a cache line that remains in 

SIE state can be avoided with a minimal impact on coverage 

if there is no valid AHB entry. The SIE state indicates that 

there was no remote write to the cache line after the corre­

sponding AHB entries were fetched and checked on a cache 

miss. In that case, additional data races are unlikely until 

the cache line state is downgraded by a write from a remote 

thread. We note that there is a corner case for this optimiza­

tion. For example, when there is write X from Thread 1 

followed by read Y and read X from Thread 2, the race in X 

can be missed if X and Y both belong to the same cache line. 

However, our experiments suggest that this optimization has 

virtually no impact on the static race coverage in practice 

because multiple dynamic race occurrences will happen for 

each static race during a program execution, and our scheme 

always detect at least one dynamic instance of each static 

race in all tests. 

Overall, the above optimizations are effective in reduc­

ing the number and the latency of AHB checks, which may 



Table 2. Baseline architecture parameters. 
I Component I Parameters I 

Core 4 2-GHz in-order single-issue cores 

Caches Ll I/O (private, inclusive): 32KB/32KB 4-ways 
3 cycles Latency 
L2 (private): 256KB, 4-ways 15 cycles latency 
L3 (shared): 8MB, 8-ways 40 cycles latency 

Coho protocol MESI 

DRAM SOns Latency 

Meta-data 8-bit thread IDs, 16-bit clocks 

AHB 1024-entries,8-way, 13KB, 3 cycles latency 

On-chip IGHz 32-bit bus, 2 bus cycles routing time 

Network 2 bus cycles per hop, 2 hops communication delay, 

require sending write histories between AHBs. The optimiza­

tions are particularly useful if a memory read is delayed until 

the race check is done, which is the case for our evaluation, 

3.4.3. Piggybacking AHB Coherence Messages. As a fu­

ture extension, most of the AHB coherence operations can 

piggyback on existing data cache coherence protocol. Specif­

ically, when a cache line is loaded into a private data cache on 

a write, the broadcasting of the local thread's ThreadVClk 

and ThreadID can piggyback on cache invalidation mes­

sages, Similarly on a read, the prefetching of remote AHB 

entries can piggyback on a bus upgrade request to and ac­

knowledgments from remote caches, AHBs need to send 

additional messages for keeping the write histories coherent. 

However, we estimate that such AHB-only messages will 

be needed only for less than 1 % of memory accesses after 

applying the optimizations in this subsection, 

4. Evaluation 

4.1. Evaluation Setup 

Our infrastructure is built on the Pin binary instrumenta­

tion framework [16]. To evaluate the detection capability, 

our tool implements both the baseline RaceVC and RaceSMM 

algorithms by intercepting memory accesses and Pthread 

calls. To evaluate the performance overhead of RaceSMM, we 

implemented a typical memory hierarchy with bookkeeping 

structures in a Pin tool, and also added a timing model with 

an in-order core that runs 1 instruction per cycle, LIIL2IL3 

caches, and a memory interface. 

Table 2 summarizes the baseline architecture parameters. 

We model a processor with 4 cores, 64KB Ll and 256KB 

L2 private caches per core, and an 8MB shared L3 cache. 

We also model the MESI cache coherence protocol. For the 

additional bookkeeping, we model the AHB with an 8-bit 

thread ID and a 16-bit timestamp per read/write access. For 

cache and AHB coherence, we model an on-chip communi­

cation network with IGHz 32-bit wide buses, 2 bus cycles 

routing time, 2 bus cycles per hop, and 2 hops for on-chip 

communication delay, 

To evaluate the detection capability, we use two types of 

benchmarks, namely kernel bugs (KB) and real programs. 

The kernel bugs are created based on real-world applica­

tion race bugs (MySQL, Apache, and Mozilla) from previ­

ous studies [13, 14, 29], We also use three data race bugs 

Table 3. Detection capabilities. 

Apache Yes Yes Yes 

MySQL-I Yes Yes Yes 

MySQL-2 Yes Yes Yes 

KBI(MySQL) Yes Yes Yes 

KB2(MySQL) Yes Yes Yes 

KB3(MySQL) Yes Yes Yes 

KB4(Apache) Yes Yes Yes 

KB5(Mozilla) Yes Yes Yes 

KB6(Mozilla) Yes Yes Yes 

KB7(Mozilla) Yes Yes Yes 

KB8(Mozilla) Yes Yes Yes 

KB9(Mozilla) Yes Yes Yes 

KB I O(Mozilla) Yes Yes Yes 

from two large real-world server applications ( Apache and 

MySQL). We use 30 threads for Apache and 10 threads for 

MySQL. For a further study on coverage, we also perform 

random race injections to benchmarks from SPLASH2 [3] 

and PARSEC [1]. The race injection is performed by ran­

domly selecting a critical section and ignoring the critical 

section for the entire program execution. The SPLASH2 and 

PARSEC benchmarks were run using 4 threads with the de­

fault input size for SPLASH2 benchmarks and simmedium 

input size for PARSEC, 

4.2. Race Detection Capability 

We compare the race detection capabilities of two 

schemes: RaceVC and RaceSMM, RaceVC is implemented 

only in software, as we only need to use its detection capabil­

ity as a baseline, RaceSMM is implemented in both software 

(RaceSMM-SW) and hardware (RaceSMM-HW). RaceSMM-SW 

keeps a vector clock for the most recent reads and only a 

scalar timestamp for the most recent write for each byte in 

memory, whereas RaceSMM-HW relies on caches and AHBs, 

both with limited capacities, for bookkeeping, We note that 

as suggested in previous study [9], RaceSMM-SW has the 

same coverage for static races as RaceVC. Hence, for the 

rest of this section, we only discuss results for RaceVC and 

RaceSMM-HW. We also use RaceSMM to denote RaceSMM-HW 

implementation in the rest of the paper, 

4.2.1. Detection Coverage. Here, we present the static race 

detection coverage results after a single run of each program. 

We believe that the usefulness of a race detection scheme is 

mostly dependent on its static detection rate, as suggested 

in previous studies [22, 23]. This is because as long as one 

dynamic instance of a data race is detected, the data race is 

effectively exposed and can then be subsequently fixed if 

necessary. While not shown here due to space constraints, on 

average RaceSMM detects 60% of dynamic race occurrences. 

Table 3 shows detection results for real-world data race 

bugs. The results show that both RaceVC and RaceSMM 

detect all races, indicating our hardware approach do not 

significantly affect detection coverage. 

In theory, RaceVC may be able to detect data races that 

RaceSMM cannot. This is because the hardware implementa­

tion of RaceSMM relies on caches to detect shared locations 



Table 4. Race injection study results. 50 
races were randomly injected into the bench­
marks.(P} - PARSEC, (S) - SPLASH2. 

RaceVC RaceSMM 

Blackscholes (P) 50 50 

Body track (P) 50 50 

F1uidanimale (P) 50 49 

LU(S) 50 50 

Ocean (S) 50 49 

Radix (S) 50 50 

Swaptions (P) 50 50 

Waler-Nsquared (S) 50 49 

Waler-sSpacial (S) 50 50 

Total 450/450 447/450 

and AHBs to keep information on recent accesses. Because 

the caches and AHBs have limited capacities, relevant infor­

mation may be evicted, causing potential false negatives. As 

shown in Table 4, RaceSMM did not detect 3 data races in our 

race injection study whereas RaceVC detected all. 

Overall, results for both real-world race bugs in Table 3 

and injected races in Table 4 suggest that RaceSMM's detec­

tion coverage is comparable to that of RaceVC. RaceSMM de­

tected more than 99% of the injected races. Previous studies 

[13, 15] observed that real-world race bugs typically mani­

fest within a short window. This explains why the hardware 

implementation with limited bookkeeping shows comparable 

detection coverage to the software implementation. 

RaceSMM signals a race when two conflicting (same loca­

tion, at least one write) memory accesses are not ordered by 

happens-before relations, which is precisely the definition 

of a data race. W hile it is possible to have false negatives 

due to limited bookkeeping, in theory, RaceSMM would never 

flag a pair of conflicting accesses when a data race does 

not exist. However, a false positive may happen in practice 

when aggressive thread switching happens. In such case, a 

memory location accessed by a single thread can be mistak­

enly identified as shared because a thread moves from one 

core to another. To eliminate the false positives, a thread 

ID can be added to the cache line in order to identify which 

thread each access comes from. The overhead would still be 

quite low as only one thread ID needs to be maintained per 

cache block. In our study, both the software and hardware 

implementations of RaceSMM report no false positives for 

Apache, MySQL, SPLASH2, and PARSEC applications. 

We have also studied the impact of context switches on 

the detection coverage of our proposed scheme. Each core's 

AHB was periodically cleared to mimic the effect of a con­

text switch on a core. Overall, the impact of context switches 

on detection coverage is negligible. For example, if a context 

switch occurs every 1ms on each core, our proposed architec­

ture would still detect virtually all data races tested (coverage 

remains at 99%). In our experiments, the 1024-entry AHBs 

are filled within O.Olms on average and 0.04ms in the worst 

case, which is a fraction of typical time quanta. Also, a 

data race is often detected many times over an execution; so 

.32KB/256KB/8MB D16KB/128KB/4MB D8KB/64KB/2MB 

(a) Caches size study. 

• 1024 Entries 0512 Entries 0 256 Entries 

(b) AHB size study. 

Figure 9. T he impact of cache and AHB sizes 
on the detection capability of RaceSMM. We 
injected 50 races to each configuration. We 

reduced L 1, L2, L3 and AHB sizes to 112 
and 1/4 of the baseline configurations (32KB, 

256KB, 8MB, 1024-entries). 

missing one dynamic instance does not necessarily lead to a 

lower static coverage. 

4.2.2. Cache and AHB Size Analysis. The hardware-based 

RaceSMM scheme relies on caches and the AHB for book­

keeping. Therefore, the cache and AHB sizes directly affect 

the detection capability. The race injection study in Fig­

ure 9(a) shows the impact of reducing cache sizes on the 

detection coverage. Here, the L1, L2, and L3 caches are re­

duced to 112 and 114 of the baseline while keeping the AHB 

at the baseline size. As expected, the detection rate decreases 

as the cache sizes decrease. Similarly, Figure 9(b) shows the 

impact of reducing the AHB size. The coverage decreases 

as the AHB size decreases because smaller AHBs can only 

keep history for less memory locations. The exact impact 

of reduced cache and AHB sizes, however, depends on ap­

plication characteristics. For example, memory intensive 

benchmarks such as Fluidanimate are more sensitive than 

others. Overall, the experiments indicate that our scheme 

needs a private (L2) cache of 128-KB, a last level cache (L3) 

of 4-MB, and an AHB with 512 entries in order to provide 

good coverage (around 90%). 

We have also varied individual cache sizes and evaluated 

their effects on detection capability, as shown in Figure 10. 



.256KB 0 128KB D64KB 

(a) L2 cache size study. 

.8MB D4MB D2MB 

(b) L3 cache size study. 

Figure 10. The impact of L2/L3 cache sizes 
on the detection capability of RaceSMM. We 
injected 50 races to each configuration. We 

reduced L2 and L3 cache sizes separately to 
1/2 and 1/4 of their baseline configurations 
(256KB L2, 8MB L3). 

We note that Ll cache is implemented to be inclusive, and 

hence its size does not impact race detection capability. Over­

all, we found that both L2 and L3 cache sizes have compa­

rable impacts on detection capability, though for different 

underlying reasons. As we set the shared bits in the L2 cache 

on cache coherence downgrade requests, the L2 cache size 

impacts the probability of a shared location being detected. 

On the other hand, the L3 cache stores the shared bits while 

the shared cache blocks remain on-chip, and its size has 

a direct impact on how long a shared location's shared bit 

remains set. 

We note that for all configurations shown in Figure 9 and 

10, RaceSMM detected all real-world bugs in Table 3. 

4.3. Performance and Power Overheads 

The software implementation of RaceSMM incurs a 10-

20X performance slowdown compared to the plain Pin exe­

cution of the programs. The overhead excludes the standard 

overhead of Pin, which has 12X overhead on average. The 

current software implementations are not optimized, and we 

expect the overheads to be lower with further optimization. 

Figure 11 shows the normalized execution time for 

RaceSMM. The performance overhead is low at 4.8% on 

average. In the worst case, the overhead is 12.5% for 
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Figure 11. Performance overhead normalized 

to native execution. 

Water-Spacial. Because the architecture mostly uses ded­

icated on-chip structures such as I-bit cache tags and the 

AHB for bookkeeping, the only major source of performance 

overhead comes from communications between AHBs for 

keeping write history coherent, which is responsible for al­

most all of the performance overhead. We note that the 

current communication overhead is conservative as we mod­

eled the communication network bus only with 32-bit width 

and at 1 GHz instead of the more aggressive configurations. 

The communication and check latencies can also be hidden 

if checks are performed in a background while the program 

execution continues instead of having each memory access 

wait for a check. 

Another possible source of overhead comes from access­

ing vector clocks for synchronization objects through the 

normal memory hierarchy. However, the number of vector 

clock accesses are negligible when compared to the number 

of regular data accesses. The vector clocks only introduce 

0.08% additional accesses for Fluidanimate in the worst 

case, and only 0.003% on average. Hence, the overall per­

formance impact due to additional vector clock accesses is 

negligible. The average Ll cache miss rate only increases 

0.03% compared to the baseline. 

Counter overflows may also introduce performance over­

head by requiring timestamps and vector clocks to reset. 

However, we have never encountered any overflow dur­

ing experiments. In the worst case, in Fluidanimate, we 

observed the maximum timestamp value of 47,832 after 

287,748,471 memory accesses when the benchmark finishes. 

In all other benchmarks, the timestamp values never ex­

ceeded 10,000 after the entire execution. Hence, we believe 

that the possible performance overhead introduced by times­

tamp overflows is negligible. 

In terms of the area and power consumption, the AHBs 

are likely to be the main source of overhead. The dynamic 

power consumption of AHBs based on CACTI [17] is esti­

mated to be 56m W on average. 



Table 5. Comparison of HW-assisted data 
race detection schemes. 

ReEnact CORD RADISH RaceSMM 

[23] [22] [5] 
Scalable No Yes Yes Yes 

Detection High 77% 100% over 99% 

Coverage 

False Yes No No No 

Positive 

Hardware High High Low Low 

Overhead 

Average 5.8% 0.4% 80% 4.8% 

Performance 
Overhead 

Worst Case 14.7% 3% 200% 12.5% 

Performance 
Overhead 

4.4. Comparison to Related Schemes 

The proposed RaceSMM scheme is most closely related 

to other hardware supported data race detection techniques 

based on happens-before relations. As shown in Table 5, we 

compare the characteristics of three other hardware assisted 

data race detection schemes with ours. 

ReEnact [23] provides hardware support for logical vector 

clocks for cache lines. Due to its high hardware complexity 

and the use of vector clocks for cache lines, ReEnact suffers 

from noticeable performance overhead, and poor scalabil­

ity for more than a few threads. While ReEnact provides 

high detection coverage (note that no quantitative detection 

coverage is available from [23]), it also suffers from false 

positives due to false sharing of vector clocks within a cache 

line. The hardware overhead for ReEnact is also high as it 

requires specialized registers for vector clock storage in each 

cache, and the register size increases linearly as the number 

of threads grows. 

CORD [22] avoids the overheads and poor scalability 

issue of vector clocks by keeping four scalar timestamps 

per cache line, at the expense of lower detection coverage 

(77%). CORD has high hardware overhead as it requires 

on-chip state equal to 19% of cache capacity. In comparison, 

RaceSMM only requires 13-KB on-chip buffer space with 

I-bit tag per cache line. Overall, CORD provides a scal­

able data race detection scheme with very low performance 

overhead and no false positive at the cost of lower detection 

coverage and high hardware overhead. 

RADISH [5] proposes a hardware and software hybrid 

race detection scheme that uses a vector clock based race de­

tection approach similar to FastTrack [9]. While it provides 

good scalability and comprehensive detection coverage, it 

still incurs significant performance overhead at run-time 

compared with our proposed scheme. RaceSMM shows a 

4.8% average slowdown and RADISH reports an 80% aver­

age slowdown in execution. Comparing with RADISH, the 

performance improvement in RaceSMM comes from that it 

only maintains meta-data for dynamically shared locations 

within a small window compared to statically shared loca­

tions in RADISH. Also, RaceSMM only stores meta-data 

while in AHBs whereas RADISH keeps them as data in 

caches and memory, requiring extra transfers in the memory 

hierarchy. 

Overall, RaceSMM provides a scalable race detection 

scheme with high detection coverage and no false positives, 

and requires low hardware overhead through separate on­

chip only buffers (AHBs). In that sense, RaceSMM represents 

a new trade-off point between performance and detection 

coverage compared to existing race detection schemes. 

5. Related Work 

Data Race Detection: At a high-level, data race detec­

tion techniques can be categorized into static and dynamic 

approaches. Static race detection schemes such as RacerX 

[7] use static analysis to detect possible data races. How­

ever, static approaches are generally conservative without 

run-time information, resulting in false positives, and usually 

require source code. 

Dynamic data race detection techniques fall into two main 

classes, namely lockset based and happens-before based. 

The lockset approach, such as Eraser [25], checks whether 

each shared variable is protected by at least one lock. The 

happens-before approach checks whether two memory ac­

cesses are explicitly synchronized [12]. There are many pre­

vious proposals that fall into the happens-before category, in­

cluding RecPlay [24], ReEnact [23], CORD [22], FastTrack 

[9], Light64 [19], PACER [2], RADISH [5], and others. In 

general, the happens-before approaches are more accurate 

than the lockset approaches but often have higher overhead. 

Researchers have also investigated hybrid approaches in or­

der to reduce the overhead of happens-before algorithms 

while maintaining a low false positive rate [6, 20, 21]. 

The proposed architecture can be considered as an ex­

tension of the happens-before approach to detect races at 

run-time. However, our hardware architecture shows that 

the happens-before race detection approach can be realized 

in hardware with minimal performance overhead and with 

minimal impact on detection coverage. 

Hardware-Based Race Detection: While many race de­

tection techniques can be enhanced with architecture support, 

this work is most closely related to happens-before race de­

tection. In this context, ReEnact [23], CORD [22], and 

RADISH [5] are the most related detection schemes to our 

work, which are discussed in detail in Section 4.4. 

As an alternative to the happens-before approach, re­

searchers have also presented simple hardware support for 

race detection relying on other heuristics. For example, 

HARD [30] uses lock set and SigRace [18] uses hash signa­

tures from Bloom filters to detect possible data races. These 

approaches enable reasonable race detection coverage with 

minimal hardware additions. However, generally, they trade 

off accuracy and coverage for the simplicity. In this work, 

we showed that accurate happens-before race detection can 

also be realized with relatively simple hardware support. 



6. Conclusion 

This paper proposes an efficient hardware architecture 

that enables run-time data race detection with high coverage 

and minimal performance overhead. In particular, The paper 

proposes an architectural optimization that decouples meta­

data storage from regular caches so that expensive meta-data 

is only selectively stored for dynamically shared memory 

locations within a small window. Experimental results show 

that this hardware-assisted race detection scheme provides 

high detection coverage (over 99%) with no false positives, 

while keeping its overhead minimal. Overall, our paper 

provides an attractive way to detect data races at run-time. 
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