
Low-Overhead and High Coverage Run-Time Race Detection Through Selective

Meta-Data Management

Ruirui Huang

Intel Corporation

Hillsboro, OR 97124, USA

ruirui.huang@intel.com

Erik Halberg, Andrew Ferraiuolo, G. Edward Suh

Cornell University

Abstract

This paper presents an efficient hardware architecture

that enables run-time data race detection with high coverage

and minimal performance overhead. Run-time race detec­

tors often rely on the happens-before vector clock algorithm

for accuracy, yet suffer from either non-negligible perfor­

mance overhead or low detection coverage due to a large

amount of meta-data. Based on the observation that most

of data races happen between close-by accesses, we intro­

duce an optimization to selectively store meta-data only for

recently shared memory locations and decouple meta-data

storage from regular data storage such as caches. Experi­

ments show that the proposed scheme enables run-time race

detection with a minimal impact on performance (4.8% over­

head on average) with very high detection coverage (over

99%). Furthermore, this architecture only adds a small

amount of on-chip resources for race detection: a 13-KB

buffer per core and a l-bit tag per data cache block.

1. Introduction

Data race detection is widely used as a way to identify

potential concurrency bugs in parallel programs due to unsyn­

chronized memory accesses. Even though data races cannot

detect all concurrency bugs, they provide a general condition

to identify a broad range of bugs without application-specific

knowledge. This paper presents an efficient algorithm and

architecture that enable run-time data race detection with

both high coverage and near-zero performance overhead.

The proposed technique enables parallel programs to be con­

tinuously monitored for races even in production systems,

which are extremely sensitive to run-time overhead.

Because checking data races purely in software can in­

troduce substantial run-time overhead, several hardware­

assisted techniques have been proposed [5, 18, 19,22, 23,

30]. However, existing hardware techniques either show

noticeable performance overhead or trade off detection cov­

erage or scalability for lower overhead. For example, precise

data race detection algorithms often depend on vector clocks

[8, 27] to capture the happens-before relations [12] between

memory accesses. While effective in accurately detecting

data races, efficient and scalable hardware support for vector

978-1-4799-3097-5/14/$31.00 ©2014 IEEE

Ithaca, NY 14850, USA

{esh64,af433,gs272} @cornell.edu

clocks is challenging because the size of vector clocks grows

with the number of threads. For example, an early hard­

ware vector clock scheme [23] could only support a small

number of threads. The state-of-the-art vector clock scheme

[5] provides good scalability with comprehensive detection

coverage, but reports significant performance overhead at

run-time (80% on average). Alternatively, a scheme based

on scalar clocks was shown to have low overhead, but also a

noticeably lower detection coverage of 77% [22].

This paper proposes a set of optimizations to selectively

manage meta-data, which enable accurate race detection

based on the happens-before relations in hardware with mini­

mal performance overhead and without noticeably sacrificing

the detection capability and scalability. The main optimiza­

tion comes from the observation that only a small fraction of

memory locations are accessed by multiple threads within a

relatively short period where most data races happen. As a

result, we found that storing meta-data only for those shared

locations can greatly reduce the overhead with minimal im­

pacts on coverage. While selectively maintaining vector

clocks for statically shared memory locations has been pro­

posed recently [5], we found that limiting the bookkeeping to

locations that are dynamically shared within a small window

is critical to achieve low overhead.

The proposed race detector only requires minor hardware

changes with a small amount of state - a 13-KB buffer per

core and a I-bit tag per data cache block. Experimental

results show that the selective bookkeeping does not sig­

nificantly impact the race detection capability. In our ex­

periments, the optimized detection scheme detected all 13

real-world data race bugs that we tested, and detected more

than 99% of hundreds of data races that we injected to multi­

threaded programs. Moreover, the experiments show that the

proposed scheme has a minimal performance impact, with a

4.8% slowdown on average. In essence, the proposed scheme

represents a new trade-off point between performance and

coverage that was not possible before, making a deployment

of continuous race detection in production systems feasible.

The rest of the paper is organized as follows. Section 2

presents a traditional (baseline) data race detection scheme

based on vector clocks. Then, Section 3 describes how an ac­

curate race detection can be efficiently realized in hardware

with selective meta-data management along with architec­

tural optimizations. Section 4 evaluates the effectiveness and

overhead of the proposed race detector. Section 5 discusses

related work, and Section 6 concludes the paper.

2. Data Race Detection Overview

While there are multiple approaches to detect data races,

checking happens-before relations [12] is generally consid­

ered the most accurate technique in identifying data races. In

this section, we provide an overview of data race detection

based on happens-before relations, including the assump­

tions and intuitions behind the approach. We also describe

a state-of-the-art race detection algorithm that uses vector

clocks [8, 27] to capture the happens-before relations. This

algorithm will be used as a baseline in this paper.

2.1. Assumptions

In this paper, we make a couple of assumptions that are

common across many data race detection schemes, namely

the shared memory programming model and identification

of synchronization operations.

This work considers programs that are written under the

shared memory programming model. Except for creating a

thread and waiting for a termination, threads communicate

through accesses to shared memory locations.

To distinguish data race bugs from legitimate synchro­

nization operations, which often use races, we assume that

synchronization operations can be explicitly identified. Pro­

grammers often rely on a library such as Pthreads to imple­

ment synchronization operations. In such cases, synchroniza­

tion operations can be easily identified from the library calls.

If a programmer uses custom synchronization primitives,

our approach assumes that such primitives can be either ex­

plicitly marked or automatically identified. For example,

previous studies showed that primitives such as spinlocks

could be automatically detected [26, 28].

To be general, we describe synchronization operations us­

ing release and acquire instead of individual synchronization

operations in the rest of the paper. W hile there exist many

types of synchronization primitives, they can fundamentally

be considered as acquiring and releasing tokens. For exam­

ple, mutual exclusion requires for each thread to acquire a

token (lock) before entering a critical section and releases

a token after the critical section. Similarly, barrier synchro­

nization can be realized by having each thread release its

token after reaching a barrier and wait for acquiring tokens

from all other threads before proceeding. In this paper, we

refer to synchronization tokens as synchronization objects.

2.2. Data Races

A data race is defined as two conflicting memory ac­

cesses execute without any synchronization operation be­

tween them. Here, we define conflicting accesses as accesses

from different threads to the same memory location, which

include at least one write.

Thread 1 Thread 2
1.1 if (thd-> proc_info) ". . ..

(
.. 2.1 thd->proc_info = NULL;

.-
1.2 fputs(thd->proc_infof ...

J

MySQL ha innadb.cc

Figure 1. A data race bug in MySQL due to a
missing critical section. The example is ob­
tained from a previous study [13].

At run-time, data races can be accurately detected by

checking if a pair of conflicting accesses is ordered by

happens-before relations, which refer to an ordering between

two events, in particular synchronization operations [12]. In

other words, if a program is data race free, then every pair

of conflicting accesses should be ordered by happens-before

relations between synchronization operations [19].

As an example, Figure 1 shows a data race in MySQL.

In this example, none of the accesses to the shared pointer

thd->proc_info is protected by synchronization. As a re­

sult, these accesses can execute in an arbitrary order, and

potentially result in a fault if the pointer is set to be NULL

by 2.1 between 1.1 and 1.2. Here, there are two pairs of con­

flicting accesses, namely 1.1-2.1 and 1.2-2.1. Data races can

be detected as both conflicting access pairs are not ordered

by happens-before relations. To fix the bug, both 1.1 and 1.2

need to be protected by a mutex lock, and 2.1 needs to be

protected by the same lock to ensure an atomic execution.

2.3. Baseline Race Detection Algorithm

Here, we discuss a race detection algorithm based on

vector clocks [8,27]. We call this algorithm RaceVC, and

use it as a baseline in the rest of this paper. Overall, RaceVC

first identifies conflicting memory accesses, and checks if the

conflicting accesses are ordered by happens before relations

using vector clocks.

As shown in Figure 2, there are multiple vector clocks

needed for the traditional RaceVC scheme. In the scheme,

each thread is uniquely identified by a thread ID (TID) . Vec­

tor clocks are used to encode the access history and happens­

before relations among conflicting memory accesses and

synchronization operations.

For a parallel program with N threads, each thread main­

tains a vector clock with N elements, as shown in Figure 2(a).

Conceptually, elements in ThreadVClk encode the order­

ing constraint (i.e. happens-before relations) between two

threads. For example, ThreadVClk [i] [j] shows the ear­

liest that a memory access from Thread i can be executed

in terms of Thread j'S local time without violating the

happens-before relations among synchronization operations.

ThreadVClk [i] [i] represents Thread i's local clock that

is incremented on each synchronization operation within the

thread.

ThreadVClk[TID11[TID21:
A vector clock per thread.
N x N time stamps for
a program with N threads

I Thr;�d 1 I Thr;�d 2 1"'1 Thr;�d N J) z

I Thread 1 I Thread 21"'1 Thread NJ TS TS I TS

iii Timestamps

(a) Thread Vector Clock

SyncObjVClkrSyncObj][TID):
A vector cloc� per sync. obJ.
MxN time stamps for a
program with M sync. objs
and N threads

N
Timestamps

(b) Sync. Obj. Vector Clock

PrevReadVClk[Addrl[TIDI
PrevWriteVClk[AddiHTIDI :
Two vector clocks per
memory location, for
read/write accesses.
Kx2N time stamps for a
program with K accessed
memory locations and N
threads

I
2N

Timestamps

(c) Memory Location Vector Clock

Figure 2. The meta-data required for baseline
race detection algorithm (RaceVC). Each ele­
ment in a vector clock records a time stamp

(TS) for the associated thread.

The algorithm also maintains a vector clock for each syn­

chronization object as shown in Figure 2(b). SyncObjVClk

is used to encode the ordering constraints from each

synchronization operation. On a release operation, the

SyncObjVClk is updated with the ThreadVClk of the thread

that performs the release (take the later timestamp for each

element). The SyncOb jVClk represents the earliest that the

following acquire operation can happen in each thread's lo­

cal time. On an acquire operation, a ThreadVClk is updated

with the corresponding SyncObjVClk.

As shown in Figure 2(c), the algorithm uses

PrevReadVClk and PrevWriteVClk to record timestamps

for the most recent read and write from each thread to each

memory location. The access timestamps are recorded based

on each thread's local clock (i.e. ThreadVClk [i 1 [i 1 for

Thread i). If the vector clocks are properly maintained, one

can check if the current memory access from Thread i and

a previous access from Thread j are ordered by happens­

before relations by comparing Thread i's vector clock value

ThreadVClk [i 1 [j 1 with the timestamp of the previous ac­

cess from Thread j. If the timestamp is greater or equal to

ThreadVClk [i 1 [j 1 , a data race is detected.

Figure 3 shows the detailed RaceVC algorithm. On a

memory access, the algorithm first detects conflicting mem­

ory accesses, i.e. read-after-write, write-after-read, and

write-after-write from multiple threads to the same mem­

ory location (detect_conflict_access (» . Then, the

algorithm determines if the conflicting access pair indicates

RaceVC Algorithm
Functions:
detect_conflict_access(TID, Addr, Type, ThreadVClk[TID] [TID])

I. Check the most recent write in each thread:
(a) For all valid threadID i # TID, call

check_order (TID, if PrevWriteVClk[Addr] [ill.

2. Check the most recent read in each thread:
(a) If (Type == Read), skip Step 2.
(b) For all valid threadID i # TID, call

check_order (TID, if PrevReadVClk[Addr] [ill.

3. Update the history for the memory location
(a) If (Type == Read),

PrevReadVClk [Addrl [TIDI = ThreadVClk [TIDI [TIDI.

(b) Otherwise,
PrevWriteVClk [Addrl [TIDI = ThreadVClk [TIDI [TIDI.

check_order (TID, PrevTID, PrevTimeStamp)

I. Check if the memory accesses can be re-orderd:
lfThreadVClk [TID] [PrevTID] S PrevTimeStamp,

report a data race.

update_release (TID, SyncObj)

I. ThreadVClk[TIDI [TIDI++;

2. For each element in the vector clock, SyncObjVClk [SyncObj I [il =

MAX (ThreadVClk [TIDI [ii, SyncObjVClk [SyncObjl [il).

update_acquire (TID, SyncObj)

I. ThreadVClk[TIDI [TIDI++;

2. For each element in the vector clock, ThreadVClk [TIDI [i I =

MAX (ThreadVClk [TIDI [ii, SyncObjVClk[SyncObjl [il).

Figure 3. RaceVC: Baseline algorithm.

a data race by checking whether the accesses are ordered

by happens-before relations (check_order ()). Lastly, the

algorithm updates the associated memory location's vector

clock based on each thread's local clock. On a synchro­

nization release or acquire operation, update_release ()

or update_acquire () is called respectively to update vec­

tor clocks to encode the happens-before relations, and to

increment the calling thread's local clock.

2.4. Challenges for Efficient HW Support

The main challenge in hardware support for data race de­

tection lies in managing meta-data efficiently without signif­

icantly sacrificing scalability or detection coverage. A large

amount of meta-data could result in large hardware structures

or noticeable interference with regular program execution.

On the other hand, reducing the amount of meta-data may

limit the maximum number of threads that hardware can sup­

port or result in undetected races. In this context, traditional

detection schemes based on vector clocks, such as RaceVC,

are particularly challenging to support in hardware because

they require vector clocks, whose size increases linearly with

the number of threads, and for each memory location.

Specifically, as shown in Figure 2, RaceVC requires vector

clocks for each thread, each synchronization object, and

each memory location. The dominating portion of meta­

data overhead comes from vector clocks for each memory

location. This is because the number of accessed memory

locations is typically significantly larger than the number

of threads or the number of synchronization objects in a

multithreaded program. Quite often, the size of vector clocks

for threads and synchronization objects is negligible when

compared to the size of per-location vector clocks. Therefore,

the main challenge is to efficiently manage meta-data for

memory locations.

A recent algorithm, named FastTrack [9], showed that

storing the last write per location, instead of a vector of

writes (one from each thread), is enough for comprehensive

data race detection. However, we note that even with a single

clock for each write, the size of meta-data still increases

linearly with the number of memory locations as we still

need vector clocks for read operations. For the simplicity of

presentation, we use vector clocks for both reads and writes

in the RaceVC algorithm. RaceVC can be made to include the

optimization by a simple change to only check the globally

most recent write in Step 1 of Figure 3.

To reduce the overhead, previous proposals for happens­

before data race detection in hardware store meta-data at a

coarse granularity, often one or two vector clocks for each

cache block [22, 23]. Also, these designs integrate the meta­

data into data caches, adding storage for each cache block.

Unfortunately, such integrated designs trade off flexibility

and coverage for lower overheads. Ideally, the hardware sup­

port should have low overhead while allowing fine-grained

bookkeeping to maintain high detection coverage.

3. HW-Assisted Race Detection

In this section, we describe an optimized race detection

scheme, named RaceSMM, along with a hardware architec­

ture support. The proposed optimizations are based on the

insight that it is sufficient to maintain meta-data for a small

number of recently shared memory locations. The design

also decouples meta-data storage from caches and uses scalar

meta-data to make the hardware scalable to a large number

of threads.

3.1. Selective Bookkeeping

The main optimizations in our architecture design comes

from the insight that the bookkeeping for race detection is

only necessary for "shared" memory locations. Previous

studies [10, 13, 15, 30] also observed that real-world race

bugs typically manifest within a short window. Therefore,

most real-world data races can be detected by maintaining

meta-data for "shared" memory locations, which have con­

flicting accesses within a certain time period. Such shared

memory locations are a fraction of the entire memory space,

especially for a small window where most data races happen.

Table 1 shows the ratio of shared locations for various

window sizes. Here, we define the window size by counting

the total number of memory accesses (reads+writes) from

all threads. The ratio is calculated by using the number of

unique locations with conflicting accesses divided by the

total number of unique locations accessed within a window.

For PARSEC and SPLASH2 benchmarks, less than 0.6%
of memory locations have conflicting accesses that happen

within a window of 100,000 memory accesses. In general,

Table 1. Percentage of shared locations in

memory within various access window sizes.

(P) - PARSEC, (5) - SPLASH2.
1,000 10,000 100,000

Accesses Accesses Accesses

Blackscholes(P) 0.000023% 0.00014% 0.00028%

Bodytrack(P) 0.0030% 0.0059% 0.02%

Fluidanimate(P) 0.0016% 0.014% 0.12%

LU(S) 0.00021% 0.0030% 0.12%

Ocean(S) 0.0020% 0.015% 0.11%

Radix(S) 0.0023% 0.29% 0.60%

Swaptions(P) 0.0012% 0.017% 0.22%

Water-nsquare(S) 0.00013% 0.0040% 0.08%

Water-spacial(S) 0.000087% 0.00079% 0.023%

Geomean 0.00049% 0.0058% 0.05%

For every memory access:

Update Scalar
Clocks for Most

Recent RIW

Entire
Execution

40.27%

69.79%

26.70%

99.28%

1.52%

72.38%

33.11%

42.53%

57.43%

34.24%

Figure 4. Flow chart for operations on mem­

ory accesses with the change (dark block) for

selectively bookkeeping.

a 100,000 access window is big enough for the purpose of

race detection as almost all data races happen within a much

smaller window (1,000-10,000 window). This is true for all

real-world experiments done in our evaluation and also con­

curs with previous studies [13, 15]. Recent studies [4, 11]
have also confirmed that a significant percentage of the mem­

ory blocks are only accessed locally by one thread, even in

parallel applications. Therefore, keeping meta-data such as

timestamps and thread IDs (TIDs) for all memory locations

is extremely wasteful. Instead, in our design, we decouple

the detection of shared locations and the rest of bookkeeping

so that most meta-data are stored only for memory locations

with conflicting accesses.

The proposed design dynamically detects shared memory

locations by augmenting each data cache block with a I-bit

tag, which indicates whether the block is shared between

multiple threads or not, leveraging cache coherence events.

The rest of the bookkeeping and detection are only performed

PrevReadTS [Addrl.
PrevWrite TS+ TID[Addrl:
Two scalar clocks per memory
location. for most recent
read/write in each core.
2K timestamps+ K TID for a
program with K accessed
memory locations

�
�

2
Timestamps+TID

Figure 5. Per-location per-core meta-data for
RaceSMM; only use scalar variables.

for those locations that are marked as shared (see Figure 4).
While RADISH [5] also discusses reducing meta-data by

using a static analysis to identify memory locations that are

never shared for the entire program execution, we found that

limiting bookkeeping only to dynamically shared locations

within a time period is critical to achieve low overhead. As

shown in Table i, the ratio of shared locations over the entire

program execution is significant, several orders of magnitude

higher than the one for a short period.

Based on the intuition that most data races happen within

a relatively small window, we propose to selectively maintain

meta-data only for memory locations that are dynamically
detected to be shared while in on-chip caches As we will

demonstrate in the evaluation section, the dynamic detection

of shared locations and selective bookkeeping allow a much

more efficient architecture while maintaining high detection

coverage.

3.2. Distributed Scalar Clocks

Even with the selective bookkeeping, the vector clocks

to track recent reads and writes, pose a significant chal­

lenge in building a scalable hardware-based race detector

because their size increases linearly with the number of

threads. While a previous work has shown that keeping in­

formation on only one write per location is sufficient [9],

maintaining a vector clock per location for reads still poses

a scalability challenge.

To address the challenge, RaceSMM stores scalar times­

tamps for writes and distributed scalar timestamps for reads

for each memory location while using vector clocks for syn­

chronization objects. The insight is that the read vector

clocks can be maintained distributed across multiple cores

so that only one scalar timestamp is stored in each core's

meta-data buffer. Effectively, each core can keep a scalar

timestamp for the most recent read access from the local

thread and a scalar timestamp for the global most recent

write access for each memory location.

As shown in Figure 5, in each core, RaceSMM only keeps

track of timestamps (PrevReadTS/PrevWriteTS) and the

write TID (PrevWri teTID) of the most recent read and write

for each memory location. As each core keeps timestamps

for reads for a local thread, we do not need to keep the read

TID. Compared to RaceVC, the meta-data for each memory
location no longer grows linearly with the number of threads.

On the other hand, in order to accurately capture the

L3$

Off-Chip Memory

Shared Location Detection: I-bit shared tag for Ll/2/3

cache block, set on LI/2 cache coherence downgrade

event, propagate to L3.

Access History Buffer (AHB): Meta-data for most recent

read/write to a shared location. Including PrevTIDs and

PrevTSs.

Checker Module: Keeps active TID and ThreadVClk. On

shared access from LI, records access to AHB, checks for

data races. Bookkeeping ThreadVClk and SyncObjVClk on

sync. operations.

Sync. Object Vector Clocks (not shown here):

SyncObjVClks are stored and accessed through existing

memory hierarchy.

Figure 6. A block diagram for the overall ar­
chitecture. Blue (dark) blocks are additional
hardware support needed for RaceSMM.

happens-before relations of synchronization objects and de­

tect data races effectively, RaceSMM uses the same meta­

data structures and bookkeeping operations as RaceVC for

ThreadVClk and SyncObjVClk.

3.3. Architecture Support

Figure 6 shows the high-level block diagram for our archi­

tecture with support for data race detection. In the figure, the

blue (dark) blocks indicate the new hardware components

needed to support RaceSMM. The overall detection operations

of our architecture closely follows the RaceVC algorithm,

with the addition of using scalar timestamps in each core and

selective bookkeeping for shared locations.

3.3.1. Extension for Shared Location Detection. In our

architecture, each block in data caches has a i-bit tag, which

indicates whether the block is shared. The shared bit is set

when a cache coherence event indicates that multiple cores

access the same cache block with at least one write. More

specifically, the shared bit is set when there is a downgrade

request that changes the cache block to either shared or

invalid coherence state. For example, in a MESI protocol, the

shared bit is set with the following requests: M-> S, M-> I,

E->S, E->I, S->I, etc. Greathouse et al. [10] have

also found that the cache coherence events are indicative of

data sharing between threads, and can be leveraged to drive

Checker Module

G
Thread 1

TS

Detection/Bookkeeping Logic

Figure 7. Checker: keeps current thread ID
(TID), a thread vector clock (ThreadVClk), and
detection/bookkeeping logic.

data race detection. This shared bit follows the data on-chip;

a shared bit is written back to the lower cache levels, and the

bit is read with data on a cache miss. However, the shared bit

is cleared when a cache block is evicted to or read from off­

chip memory. Effectively, this mechanism detects memory

blocks that are shared within a time window, while the block

exists in multiple private (LlIL2) caches, and keeps this

history while the block is on-chip. While this design implies

that we cannot detect shared locations with a large window

between accesses from multiple threads, our experimental

results suggest that this design, for cache sizes in modern

processors, is sufficient to detect virtually all races tested.

The I-bit tag may not detect locations that are shared by

multiple threads on the same core or incorrectly identify a

block as shared when a single thread moves from one core to

another. However, we believe that the I-bit tag is sufficient

if each core runs one thread at a time with infrequent context

switches or thread migrations. Our experiments show that

even rather frequent context switches (every lms or even

less) have negligible impact on detection coverage, and no

false positives were encountered in our experiments.

3.3.2. Checker Module. In the proposed architecture, a

checker module maintains per-thread state and performs

most of the bookkeeping and checking operations at each

core. As shown in Figure 7, for the active thread on the core,

the checker keeps a thread ID (TID), and a thread vector

clock (ThreadVClk). On a memory access from the core,

the checker module uses the shared bit in an LI data cache

to determine if the access is to a "shared" block. If so, the

checker records the access into the access history buffer

(AHB), and examines whether there is a data race between

the most recent read/write accesses and the current access.

On a local read/write access, the checker module checks

if the access and the most recent write to the same location

are ordered by comparing ThreadVClk with PrevWriteTS

from the local AHB. To allow checking a race between

remote read accesses and a local write, on a write to a

shared location, the checker broadcasts the local thread's

ThreadVClk to other checkers. Each remote checker then

checks if the broadcasted write and the most recent read from

its own thread are ordered by happens-before relations by

comparing the broadcasted ThreadVClk with PrevReadTS

from its own AHB (i.e. check_order ()).

Access History Buffer (AHB)

Addr Prevo Prevo Prevo
Read Write Write

Tag TS TS TID
...

...

Figure 8. AHB stores meta-data for the most
recent read/write to shared locations.

The access to local AHB can be done in parallel to local

LI accesses, and the ThreadVClk is kept locally within

the checker module. Hence, the overhead of our detection

mechanism is kept minimal on a read. On a write, however,

broadcasting the write access and ThreadVClk can incur

overheads. Fortunately, the broadcasting is needed only

on writes to shared locations. For all benchmarks that we

tested, writes to shared locations only account for 0.5% (3%

worst case) of all memory accesses. Hence, the broadcasting

overhead on writes is minimal in practice.

The checker module also coordinates with software layers

through new instructions. The architecture provides two ad­

ditional instructions to indicate a synchronization operation,

one for acquire and the other for release. These instruc­

tions also convey the address of the vector clock for the

corresponding synchronization object (SyncObjVClk). The

vector clock for synchronization object is accessed and/or

updated by the checker module on acquire and release oper­

ations through normal memory hierarchy.

3.3.3. Access History Buffer (AHB). The access history

buffer (AHB) records information on the most recent read

and write to a shared location that can be used to detect

conflicting accesses and to check for data races. As shown

in Figure 8, the AHB serves as a history table that saves

PrevReadTS, PrevWriteTS, and PrevWriteTID for re­

cently accessed shared locations. On a memory access to

a shared location, the checker module records a thread ID

(only for write accesses), a timestamp (TS), along with the

memory address tag into the AHB.

As the AHB has a limited capacity, it works like a cache

and only keeps the history of recently accessed shared mem­

ory locations. However, there is no backup hierarchy for the

AHB. If an entry is evicted from an AHB, the information is

simply thrown away. A miss to the AHB creates a new entry.

While this design implies that we cannot detect conflicting

accesses that are far apart, our experimental results suggest

that an AHB with 1024 entries are sufficient for detecting

virtually all races tested. Moreover, a miss to the AHB can

only lead to potential false negatives, not false positives.

We note that the AHB can store an access history per

byte because only accesses to shared memory locations are

recorded. On the other hand, traditional designs that combine

meta-data into the main cache often had to store information

on a cache block granularity to keep overheads acceptable.

The AHB is kept coherent by a cache coherence protocol

similar to other on-chip caches. We note that only the access

history of a most recent write needs to be kept coherent. The

access history of a most recent read is updated and accessed

locally. We implemented the AHB coherence protocol sepa­

rately from the main data cache for evaluation. As a future

extension, the AHB coherence operations can be optimized

by piggybacking on existing data cache coherence protocol,

as we discuss later in the section.

3.3.4. Vector Clocks. Our proposed architecture uses two

types of vector clocks: ThreadVClk and SyncObjVClk. For

ThreadVClk, our architecture uses dedicated storage in each

checker module for an active thread on the core. We found

that ThreadVClk needs to be close to the checker because

it is used in each check_order () operation. ThreadVClk
needs to be treated as a part of thread state and managed by

an operating system. For context switch or thread migration,

the dormant thread's clock is saved in memory through OS

support, and restored later. The size of ThreadVClk in each

checker match the number of cores in a system.

On the other hand, SyncObjVClk is stored and accessed

through the existing memory hierarchy. For each syn­

chronization object, software allocates space for a vec­

tor clock in its memory space and passes the location us­

ing the instructions that indicate synchronization opera­

tions. On update_release () and update_acquire () ,

the SyncOb jVClk is accessed and/or updated through the ex­

isting memory hierarchy. We note that SyncObjVClk needs

to be accessed only on synchronization operations, which

happen infrequently. As a result, SyncObjVClk accesses

have a minimal impact on performance.

Hardware counters have a limited number of bits. As a

result, the clock that each thread uses to represent its local

time may overflow after many synchronization events. Fortu­

nately, our experiments show that synchronization operations

are rather infrequent and the thread clocks only increment

slowly. In fact, we did not see any overflow for PARSEC

and SPLASH2 benchmarks with 16-bit counters. Given that

overflows are infrequent, our architecture handles them in a

relatively slow but straightforward fashion instead of adding

complex hardware. Upon detecting an overflow in its local

clock, a checker raises an exception to an operating system,

which in turn interrupts other cores that run other threads

from the same program. Then, the operating system clears all

clocks, and marks all AHB entries to be invalid in each core.

In order to allow an operating system to clear vector clocks

for synchronization objects, an application allocates them in

separate pages that are known to the operating system.

3.4. ARB Optimizations

Our architecture includes a couple of optimizations for

AHB, which are designed to improve detection coverage and

reduce overhead. We also discuss how the AHB coherence

operations can be optimized by piggybacking on existing

data cache coherence protocol here.

3.4.1. Flexible Granularity. The AHB needs to store an

access history per byte to avoid false positives from false

sharing. However, for real-world applications, we noticed

that only a very small fraction of memory accesses are at a

byte granularity. Therefore, we implemented our AHB to

support flexible granularity that defaults to word-granularity.

For each AHB entry, there is a single-bit flag named word­

granularity flag, which indicates if granularity is per byte

(flag is false) or per word (flag is true). An additional 4-

bits are appended to each entry to mark which bytes in a

word are associate with the AHB entry. Accesses to all

four bytes within a word are mapped to the same AHB

entry; if the history is different for those bytes, only the

most recent byte access history stays in the AHB. In this

way, the architecture avoids using multiple AHB entries for

a single word-granularity access while maintaining per-byte

information to avoid false positive.

3.4.2. Prefetching and Selective Checking. Because

shared memory locations are detected at a cache block granu­

larity, one AHB access is likely to be followed by more AHB

accesses to other bytes/words within the same cache block.

We can exploit this locality and prefetch all corresponding

AHB entries (write histories) when a cache line is loaded to

a private data cache.

We can also reduce the number of write broadcasts ex­

ploiting the coherence state of a cache line. If a cache line

stays in M state and the write TID for the local AHB entry

matches the local thread ID, it implies that a write has been

already broadcasted and there was no remote write to the

cache line after that. In that case, broadcasts for additional

writes to the same location can be avoided until there is a

downgrade request for the cache line.

Similarly, checks on reads to a cache line that remains in

SIE state can be avoided with a minimal impact on coverage

if there is no valid AHB entry. The SIE state indicates that

there was no remote write to the cache line after the corre­

sponding AHB entries were fetched and checked on a cache

miss. In that case, additional data races are unlikely until

the cache line state is downgraded by a write from a remote

thread. We note that there is a corner case for this optimiza­

tion. For example, when there is write X from Thread 1

followed by read Y and read X from Thread 2, the race in X

can be missed if X and Y both belong to the same cache line.

However, our experiments suggest that this optimization has

virtually no impact on the static race coverage in practice

because multiple dynamic race occurrences will happen for

each static race during a program execution, and our scheme

always detect at least one dynamic instance of each static

race in all tests.

Overall, the above optimizations are effective in reduc­

ing the number and the latency of AHB checks, which may

Table 2. Baseline architecture parameters.
I Component I Parameters I

Core 4 2-GHz in-order single-issue cores

Caches Ll I/O (private, inclusive): 32KB/32KB 4-ways
3 cycles Latency
L2 (private): 256KB, 4-ways 15 cycles latency
L3 (shared): 8MB, 8-ways 40 cycles latency

Coho protocol MESI

DRAM SOns Latency

Meta-data 8-bit thread IDs, 16-bit clocks

AHB 1024-entries,8-way, 13KB, 3 cycles latency

On-chip IGHz 32-bit bus, 2 bus cycles routing time

Network 2 bus cycles per hop, 2 hops communication delay,

require sending write histories between AHBs. The optimiza­

tions are particularly useful if a memory read is delayed until

the race check is done, which is the case for our evaluation,

3.4.3. Piggybacking AHB Coherence Messages. As a fu­

ture extension, most of the AHB coherence operations can

piggyback on existing data cache coherence protocol. Specif­

ically, when a cache line is loaded into a private data cache on

a write, the broadcasting of the local thread's ThreadVClk

and ThreadID can piggyback on cache invalidation mes­

sages, Similarly on a read, the prefetching of remote AHB

entries can piggyback on a bus upgrade request to and ac­

knowledgments from remote caches, AHBs need to send

additional messages for keeping the write histories coherent.

However, we estimate that such AHB-only messages will

be needed only for less than 1 % of memory accesses after

applying the optimizations in this subsection,

4. Evaluation

4.1. Evaluation Setup

Our infrastructure is built on the Pin binary instrumenta­

tion framework [16]. To evaluate the detection capability,

our tool implements both the baseline RaceVC and RaceSMM

algorithms by intercepting memory accesses and Pthread

calls. To evaluate the performance overhead of RaceSMM, we

implemented a typical memory hierarchy with bookkeeping

structures in a Pin tool, and also added a timing model with

an in-order core that runs 1 instruction per cycle, LIIL2IL3

caches, and a memory interface.

Table 2 summarizes the baseline architecture parameters.

We model a processor with 4 cores, 64KB Ll and 256KB

L2 private caches per core, and an 8MB shared L3 cache.

We also model the MESI cache coherence protocol. For the

additional bookkeeping, we model the AHB with an 8-bit

thread ID and a 16-bit timestamp per read/write access. For

cache and AHB coherence, we model an on-chip communi­

cation network with IGHz 32-bit wide buses, 2 bus cycles

routing time, 2 bus cycles per hop, and 2 hops for on-chip

communication delay,

To evaluate the detection capability, we use two types of

benchmarks, namely kernel bugs (KB) and real programs.

The kernel bugs are created based on real-world applica­

tion race bugs (MySQL, Apache, and Mozilla) from previ­

ous studies [13, 14, 29], We also use three data race bugs

Table 3. Detection capabilities.

Apache Yes Yes Yes

MySQL-I Yes Yes Yes

MySQL-2 Yes Yes Yes

KBI(MySQL) Yes Yes Yes

KB2(MySQL) Yes Yes Yes

KB3(MySQL) Yes Yes Yes

KB4(Apache) Yes Yes Yes

KB5(Mozilla) Yes Yes Yes

KB6(Mozilla) Yes Yes Yes

KB7(Mozilla) Yes Yes Yes

KB8(Mozilla) Yes Yes Yes

KB9(Mozilla) Yes Yes Yes

KB I O(Mozilla) Yes Yes Yes

from two large real-world server applications (Apache and

MySQL). We use 30 threads for Apache and 10 threads for

MySQL. For a further study on coverage, we also perform

random race injections to benchmarks from SPLASH2 [3]

and PARSEC [1]. The race injection is performed by ran­

domly selecting a critical section and ignoring the critical

section for the entire program execution. The SPLASH2 and

PARSEC benchmarks were run using 4 threads with the de­

fault input size for SPLASH2 benchmarks and simmedium

input size for PARSEC,

4.2. Race Detection Capability

We compare the race detection capabilities of two

schemes: RaceVC and RaceSMM, RaceVC is implemented

only in software, as we only need to use its detection capabil­

ity as a baseline, RaceSMM is implemented in both software

(RaceSMM-SW) and hardware (RaceSMM-HW). RaceSMM-SW

keeps a vector clock for the most recent reads and only a

scalar timestamp for the most recent write for each byte in

memory, whereas RaceSMM-HW relies on caches and AHBs,

both with limited capacities, for bookkeeping, We note that

as suggested in previous study [9], RaceSMM-SW has the

same coverage for static races as RaceVC. Hence, for the

rest of this section, we only discuss results for RaceVC and

RaceSMM-HW. We also use RaceSMM to denote RaceSMM-HW

implementation in the rest of the paper,

4.2.1. Detection Coverage. Here, we present the static race

detection coverage results after a single run of each program.

We believe that the usefulness of a race detection scheme is

mostly dependent on its static detection rate, as suggested

in previous studies [22, 23]. This is because as long as one

dynamic instance of a data race is detected, the data race is

effectively exposed and can then be subsequently fixed if

necessary. While not shown here due to space constraints, on

average RaceSMM detects 60% of dynamic race occurrences.

Table 3 shows detection results for real-world data race

bugs. The results show that both RaceVC and RaceSMM

detect all races, indicating our hardware approach do not

significantly affect detection coverage.

In theory, RaceVC may be able to detect data races that

RaceSMM cannot. This is because the hardware implementa­

tion of RaceSMM relies on caches to detect shared locations

Table 4. Race injection study results. 50
races were randomly injected into the bench­
marks.(P} - PARSEC, (S) - SPLASH2.

RaceVC RaceSMM

Blackscholes (P) 50 50

Body track (P) 50 50

F1uidanimale (P) 50 49

LU(S) 50 50

Ocean (S) 50 49

Radix (S) 50 50

Swaptions (P) 50 50

Waler-Nsquared (S) 50 49

Waler-sSpacial (S) 50 50

Total 450/450 447/450

and AHBs to keep information on recent accesses. Because

the caches and AHBs have limited capacities, relevant infor­

mation may be evicted, causing potential false negatives. As

shown in Table 4, RaceSMM did not detect 3 data races in our

race injection study whereas RaceVC detected all.

Overall, results for both real-world race bugs in Table 3

and injected races in Table 4 suggest that RaceSMM's detec­

tion coverage is comparable to that of RaceVC. RaceSMM de­

tected more than 99% of the injected races. Previous studies

[13, 15] observed that real-world race bugs typically mani­

fest within a short window. This explains why the hardware

implementation with limited bookkeeping shows comparable

detection coverage to the software implementation.

RaceSMM signals a race when two conflicting (same loca­

tion, at least one write) memory accesses are not ordered by

happens-before relations, which is precisely the definition

of a data race. W hile it is possible to have false negatives

due to limited bookkeeping, in theory, RaceSMM would never

flag a pair of conflicting accesses when a data race does

not exist. However, a false positive may happen in practice

when aggressive thread switching happens. In such case, a

memory location accessed by a single thread can be mistak­

enly identified as shared because a thread moves from one

core to another. To eliminate the false positives, a thread

ID can be added to the cache line in order to identify which

thread each access comes from. The overhead would still be

quite low as only one thread ID needs to be maintained per

cache block. In our study, both the software and hardware

implementations of RaceSMM report no false positives for

Apache, MySQL, SPLASH2, and PARSEC applications.

We have also studied the impact of context switches on

the detection coverage of our proposed scheme. Each core's

AHB was periodically cleared to mimic the effect of a con­

text switch on a core. Overall, the impact of context switches

on detection coverage is negligible. For example, if a context

switch occurs every 1ms on each core, our proposed architec­

ture would still detect virtually all data races tested (coverage

remains at 99%). In our experiments, the 1024-entry AHBs

are filled within O.Olms on average and 0.04ms in the worst

case, which is a fraction of typical time quanta. Also, a

data race is often detected many times over an execution; so

.32KB/256KB/8MB D16KB/128KB/4MB D8KB/64KB/2MB

(a) Caches size study.

• 1024 Entries 0512 Entries 0 256 Entries

(b) AHB size study.

Figure 9. T he impact of cache and AHB sizes
on the detection capability of RaceSMM. We
injected 50 races to each configuration. We

reduced L 1, L2, L3 and AHB sizes to 112
and 1/4 of the baseline configurations (32KB,

256KB, 8MB, 1024-entries).

missing one dynamic instance does not necessarily lead to a

lower static coverage.

4.2.2. Cache and AHB Size Analysis. The hardware-based

RaceSMM scheme relies on caches and the AHB for book­

keeping. Therefore, the cache and AHB sizes directly affect

the detection capability. The race injection study in Fig­

ure 9(a) shows the impact of reducing cache sizes on the

detection coverage. Here, the L1, L2, and L3 caches are re­

duced to 112 and 114 of the baseline while keeping the AHB

at the baseline size. As expected, the detection rate decreases

as the cache sizes decrease. Similarly, Figure 9(b) shows the

impact of reducing the AHB size. The coverage decreases

as the AHB size decreases because smaller AHBs can only

keep history for less memory locations. The exact impact

of reduced cache and AHB sizes, however, depends on ap­

plication characteristics. For example, memory intensive

benchmarks such as Fluidanimate are more sensitive than

others. Overall, the experiments indicate that our scheme

needs a private (L2) cache of 128-KB, a last level cache (L3)

of 4-MB, and an AHB with 512 entries in order to provide

good coverage (around 90%).

We have also varied individual cache sizes and evaluated

their effects on detection capability, as shown in Figure 10.

.256KB 0 128KB D64KB

(a) L2 cache size study.

.8MB D4MB D2MB

(b) L3 cache size study.

Figure 10. The impact of L2/L3 cache sizes
on the detection capability of RaceSMM. We
injected 50 races to each configuration. We

reduced L2 and L3 cache sizes separately to
1/2 and 1/4 of their baseline configurations
(256KB L2, 8MB L3).

We note that Ll cache is implemented to be inclusive, and

hence its size does not impact race detection capability. Over­

all, we found that both L2 and L3 cache sizes have compa­

rable impacts on detection capability, though for different

underlying reasons. As we set the shared bits in the L2 cache

on cache coherence downgrade requests, the L2 cache size

impacts the probability of a shared location being detected.

On the other hand, the L3 cache stores the shared bits while

the shared cache blocks remain on-chip, and its size has

a direct impact on how long a shared location's shared bit

remains set.

We note that for all configurations shown in Figure 9 and

10, RaceSMM detected all real-world bugs in Table 3.

4.3. Performance and Power Overheads

The software implementation of RaceSMM incurs a 10-

20X performance slowdown compared to the plain Pin exe­

cution of the programs. The overhead excludes the standard

overhead of Pin, which has 12X overhead on average. The

current software implementations are not optimized, and we

expect the overheads to be lower with further optimization.

Figure 11 shows the normalized execution time for

RaceSMM. The performance overhead is low at 4.8% on

average. In the worst case, the overhead is 12.5% for

., 1.15 .,-----------------­

� 1.10 +------1 __ --------11---

c
.g 1.05 +---111---1 __

___ __ ,-:l ...
� 1.00 h._-.I--.-I __ -I ____ I-·.-I __ -II--.I-

i 0.95 +--.1----1--111-.. -1-------1-... -1-­
� 0.90 +--.'-r---.... --,�...,...-..... --.,.....__,.--'--r-.-....,....__,
l5 z

Figure 11. Performance overhead normalized

to native execution.

Water-Spacial. Because the architecture mostly uses ded­

icated on-chip structures such as I-bit cache tags and the

AHB for bookkeeping, the only major source of performance

overhead comes from communications between AHBs for

keeping write history coherent, which is responsible for al­

most all of the performance overhead. We note that the

current communication overhead is conservative as we mod­

eled the communication network bus only with 32-bit width

and at 1 GHz instead of the more aggressive configurations.

The communication and check latencies can also be hidden

if checks are performed in a background while the program

execution continues instead of having each memory access

wait for a check.

Another possible source of overhead comes from access­

ing vector clocks for synchronization objects through the

normal memory hierarchy. However, the number of vector

clock accesses are negligible when compared to the number

of regular data accesses. The vector clocks only introduce

0.08% additional accesses for Fluidanimate in the worst

case, and only 0.003% on average. Hence, the overall per­

formance impact due to additional vector clock accesses is

negligible. The average Ll cache miss rate only increases

0.03% compared to the baseline.

Counter overflows may also introduce performance over­

head by requiring timestamps and vector clocks to reset.

However, we have never encountered any overflow dur­

ing experiments. In the worst case, in Fluidanimate, we

observed the maximum timestamp value of 47,832 after

287,748,471 memory accesses when the benchmark finishes.

In all other benchmarks, the timestamp values never ex­

ceeded 10,000 after the entire execution. Hence, we believe

that the possible performance overhead introduced by times­

tamp overflows is negligible.

In terms of the area and power consumption, the AHBs

are likely to be the main source of overhead. The dynamic

power consumption of AHBs based on CACTI [17] is esti­

mated to be 56m W on average.

Table 5. Comparison of HW-assisted data
race detection schemes.

ReEnact CORD RADISH RaceSMM

[23] [22] [5]
Scalable No Yes Yes Yes

Detection High 77% 100% over 99%

Coverage

False Yes No No No

Positive

Hardware High High Low Low

Overhead

Average 5.8% 0.4% 80% 4.8%

Performance
Overhead

Worst Case 14.7% 3% 200% 12.5%

Performance
Overhead

4.4. Comparison to Related Schemes

The proposed RaceSMM scheme is most closely related

to other hardware supported data race detection techniques

based on happens-before relations. As shown in Table 5, we

compare the characteristics of three other hardware assisted

data race detection schemes with ours.

ReEnact [23] provides hardware support for logical vector

clocks for cache lines. Due to its high hardware complexity

and the use of vector clocks for cache lines, ReEnact suffers

from noticeable performance overhead, and poor scalabil­

ity for more than a few threads. While ReEnact provides

high detection coverage (note that no quantitative detection

coverage is available from [23]), it also suffers from false

positives due to false sharing of vector clocks within a cache

line. The hardware overhead for ReEnact is also high as it

requires specialized registers for vector clock storage in each

cache, and the register size increases linearly as the number

of threads grows.

CORD [22] avoids the overheads and poor scalability

issue of vector clocks by keeping four scalar timestamps

per cache line, at the expense of lower detection coverage

(77%). CORD has high hardware overhead as it requires

on-chip state equal to 19% of cache capacity. In comparison,

RaceSMM only requires 13-KB on-chip buffer space with

I-bit tag per cache line. Overall, CORD provides a scal­

able data race detection scheme with very low performance

overhead and no false positive at the cost of lower detection

coverage and high hardware overhead.

RADISH [5] proposes a hardware and software hybrid

race detection scheme that uses a vector clock based race de­

tection approach similar to FastTrack [9]. While it provides

good scalability and comprehensive detection coverage, it

still incurs significant performance overhead at run-time

compared with our proposed scheme. RaceSMM shows a

4.8% average slowdown and RADISH reports an 80% aver­

age slowdown in execution. Comparing with RADISH, the

performance improvement in RaceSMM comes from that it

only maintains meta-data for dynamically shared locations

within a small window compared to statically shared loca­

tions in RADISH. Also, RaceSMM only stores meta-data

while in AHBs whereas RADISH keeps them as data in

caches and memory, requiring extra transfers in the memory

hierarchy.

Overall, RaceSMM provides a scalable race detection

scheme with high detection coverage and no false positives,

and requires low hardware overhead through separate on­

chip only buffers (AHBs). In that sense, RaceSMM represents

a new trade-off point between performance and detection

coverage compared to existing race detection schemes.

5. Related Work

Data Race Detection: At a high-level, data race detec­

tion techniques can be categorized into static and dynamic

approaches. Static race detection schemes such as RacerX

[7] use static analysis to detect possible data races. How­

ever, static approaches are generally conservative without

run-time information, resulting in false positives, and usually

require source code.

Dynamic data race detection techniques fall into two main

classes, namely lockset based and happens-before based.

The lockset approach, such as Eraser [25], checks whether

each shared variable is protected by at least one lock. The

happens-before approach checks whether two memory ac­

cesses are explicitly synchronized [12]. There are many pre­

vious proposals that fall into the happens-before category, in­

cluding RecPlay [24], ReEnact [23], CORD [22], FastTrack

[9], Light64 [19], PACER [2], RADISH [5], and others. In

general, the happens-before approaches are more accurate

than the lockset approaches but often have higher overhead.

Researchers have also investigated hybrid approaches in or­

der to reduce the overhead of happens-before algorithms

while maintaining a low false positive rate [6, 20, 21].

The proposed architecture can be considered as an ex­

tension of the happens-before approach to detect races at

run-time. However, our hardware architecture shows that

the happens-before race detection approach can be realized

in hardware with minimal performance overhead and with

minimal impact on detection coverage.

Hardware-Based Race Detection: While many race de­

tection techniques can be enhanced with architecture support,

this work is most closely related to happens-before race de­

tection. In this context, ReEnact [23], CORD [22], and

RADISH [5] are the most related detection schemes to our

work, which are discussed in detail in Section 4.4.

As an alternative to the happens-before approach, re­

searchers have also presented simple hardware support for

race detection relying on other heuristics. For example,

HARD [30] uses lock set and SigRace [18] uses hash signa­

tures from Bloom filters to detect possible data races. These

approaches enable reasonable race detection coverage with

minimal hardware additions. However, generally, they trade

off accuracy and coverage for the simplicity. In this work,

we showed that accurate happens-before race detection can

also be realized with relatively simple hardware support.

6. Conclusion

This paper proposes an efficient hardware architecture

that enables run-time data race detection with high coverage

and minimal performance overhead. In particular, The paper

proposes an architectural optimization that decouples meta­

data storage from regular caches so that expensive meta-data

is only selectively stored for dynamically shared memory

locations within a small window. Experimental results show

that this hardware-assisted race detection scheme provides

high detection coverage (over 99%) with no false positives,

while keeping its overhead minimal. Overall, our paper

provides an attractive way to detect data races at run-time.

7. Acknowledgment

This work was partially supported by the National Science

Foundation under grants CNS-0746913 and CCF-0905208,

the Air Force Office of Scientific Research under Grant

FA9550-09-1-0131, the Office of Naval Research under grant

N00014-1 1-1-01 10, and an equipment donation from Intel

Corporation. Any opinions, findings, and conclusions or

recommendations expressed in this material are those of the

author(s) and do not necessarily reflect the views of NSF,

ONR, AFOSR, or Intel.

References
[I] C. Bienia, S. Kumar, J. P. Singh, and K. Li. The PARSEC benchmark

suite: Characterization and architectural implications. Technical
Report TR -811-08, Princeton University, January 2008.

[2] M. D. Bond, K. E. Coons, and K. S. McKinley. PACER: proportional
detection of data races. In Proceedings of the 2007 ACM SIGPLAN
Conference on Programming Language Design and Implementation,
2010.

[3] CAPSL. The modified SPLASH-2.
hup://www.capsl.udel.edu/splash/, July 2007.

[4] B. A. Cuesta, A. Ros, M. E. Gomez, A. Robles, and J. F. Duato.
Increasing the effectiveness of directory caches by deactivating co-
herence for private memory blocks. In Proceedings of the 38th
Annual International Symposium on Computer Architecture, 2011.

[5] J. Deviett, B. P. Wood, K. Strauss, L. Ceze, D. Grossman, and
S. Qadeer. RADISH: always-on sound and complete race detec-
tion in software and hardware. In Proceedings of the 39th Annual
International Symposium on Computer Architecture, 2012.

[6] T. Elmas, S. Qadeer, and S. Tasiran. Goldilocks: a race and
transaction-aware Java runtime. In Proceedings of the 2007 ACM
SIGPLAN Coriference on Programming Language Design and Im­
plementation,2007.

[7] D. Engler and K. Ashcraft. RacerX: effective, static detection of
race conditions and deadlocks. In Proceedings of the 19th ACM
Symposium on Operating Systems Principles, 2003.

[8] C. Fidge. Logical time in distributed computing systems. IEEE
Computer, 24:28-33, August 1991.

[9] C. Flanagan and S. N. Freund. FastTrack: efficient and precise
dynamic race detection. In Proceedings of the 2009 ACM SIGPLAN
Coriference on Programming Language Design and Implementation,
2009.

[10] J. L. Greathouse, Z. Ma, M. I. Frank, R. Peri, and T. Austin. Demand­
driven software race detection using hardware performance counters.
In Proceedings of the 38th Annual International Symposium on Com­
puter Architecture, 2011.

[11] N. Hardavellas, M. Ferdman, B. Falsafi, and A. Ailamaki. Reactive
NUCA: near-optimal block placement and replication in distributed
caches. In Proceedings of the 36th Annual International Symposium
on Computer Architecture, 2009.

[12] L. Lamport. Time, clocks, and the ordering of events in a distributed
system. Communications of the ACM, 21:558-565, July 1978.

[13] S. Lu, S. Park, E. Seo, and Y. Zhou. Learning from mistakes: a
comprehensive study on real world concurrency bug characteristics.
In Proceedings of the 13th International Conference on Architectural
Support for Programming Languages and Operating Systems, 2008.

[14] S. Lu, J. Tucek, F. Qin, and Y. Zhou. AVIO: detecting atomicity vio­
lations via access interleaving invariants. In Proceedings of the 12th
International Conference on Architectural Support for Programming
Languages and Operating Systems, 2006.

[15] B. Lucia, 1. Devietti, K. Strauss, and L. Ceze. Atom-Aid: detecting
and surviving atomicity violations. In Proceedings of the 35th Annual
International Symposium on Computer Architecture, 2008.

[16] C.-K. Luk, R. Cohn, R. Muth, H. Patil, A. Klauser, G. Lowney,
S. Wallace, V. J. Reddi, and K. Hazelwood. Pin: building customized
program analysis tools with dynamic instrumentation. In Proceed­
ings of the 2005 Conference on Programming Language Design and
Implementation International, 2005.

[17] N. Muralimanohar and R. Balasubramonian. CACTI 5.3: A tool to
understand large caches.

[18] A. Muzahid, D. Suarez, S. Qi, and J. Torrell as. SigRace: signature­
based data race detection. In Proceedings of the 36th Annual Inter­
national Symposium on Computer Architecture, 2009.

[19] A. Nistor, D. Marinov, and J. Torrellas. Light64: lightweight hard­
ware support for data race detection during systematic testing of
parallel programs. In Proceedings of the 42n

d Annual IEEEIACM
International Symposium on Microarchitecture, 2009.

[20] R. O'Callahan and J.-D. Choi. Hybrid dynamic data race detection.
In Proceedings of the 9th ACM SIGPLAN Symposium on Principles
and Practice of Parallel Programming, 2003.

[21] E. Pozniansky and A. Schuster. Efficient on-the-f1y data race de­
tection in multithreaded C++ programs. In Proceedings of the 9th
ACM SIGPLAN Symposium on Principles and Practice of Parallel
Programming, 2003.

[22] M. Prvulovic. CORD: cost-effective (and nearly overhead-free)
order-recording and data race detection. In Proceedings of the 12th
Annual International Symposium on High-Performance Computer
Architecture, 2006.

[23] M. Prvulovic and J. Torrellas. ReEnact: using thread-level specu­
lation mechanisms to debug data races in multithreaded codes. In
Proceedings of the 30th Annual International Symposium on Com­
puter Architecture, 2003.

[24] M. Ronsse and K. De Bosschere. RecPlay: a fully integrated practical
record/replay system. ACM Transactions on Computer Systems,
17:133-152, May 1999.

[25] S. Savage, M. Burrows, G. Nelson, P. Sobalvarro, and T. Anderson.
Eraser: a dynamic data race detector for multithreaded programs.
ACM Transactions on Computer Systems, 15:391-411, November
1997.

[26] C. Tian, V. Nagarajan, R. Gupta, and S. Tallam. Dynamic recogni­
tion of synchronization operations for improved data race detection.
In Proceedings of the 2008 International Symposium on Software
Testing and Analysis, 2008.

[27] C. Valot. Characterizing the accuracy of distributed timestamps.
In Proceedings of the 1993 ACMIONR Workshop on Parallel and
Distributed Debugging, 1993.

[28] W. Xiong, S. Park, J. Zhang, Y. Zhou, and Z. Ma. Ad hoc syn­
chronization considered harmful. In Proceedings of the 9th USENIX
Conference on Operating Systems Design and Implementation, 2010.

[29] J. Yu and S. Narayanasamy. A case for an interleaving constrained
shared-memory multi-processor. In Proceedings of the 36th Annual
International Symposium on Computer Architecture, 2009.

[30] P. Zhou, R. Teodorescu, and Y. Zhou. HARD: hardware-assisted
lockset-based race detection. In Proceedings of the 2007 IEEE 13th
International Symposium on High Peiformance Computer Architec­
ture,2007.

