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Abstract—Recent work has shown that hardware-based run-
time monitoring techniques can significantly enhance security and
reliability of computing systems with minimal performance and
energy overheads. However, the cost and time for implementing
such a hardware-based mechanism presents a major challenge
in deploying the run-time monitoring techniques in real systems.
This paper addresses this design complexity problem through
a common architecture framework and high-level synthesis.
Similar to customizable processors such as Tensilica Xtensa where
designers only need to write a small piece of code that describes
a custom instruction, our framework enables designers to only
specify monitoring operations. The framework provides common
functions such as collecting a trace of execution, maintaining
meta-data, and interfacing with software. To further reduce the
design complexity, we also explore using a high-level synthesis
tool (Cadence C-to-Silicon) so that hardware monitors can be de-
scribed in a high-level language (SystemC) instead of in RTL such
as Verilog and VHDL. To evaluate our approach, we implemented
a set of monitors including soft-error checking, uninitialized
memory checking, dynamic information flow tracking, and array
boundary checking in our framework. Our results suggest that
our monitor framework can greatly reduce the amount of code
that needs to be specified for each extension and the high-level
synthesis can achieve comparable area, performance, and power
consumption to handwritten RTL.

I. INTRODUCTION

As computing devices permeate more industries and as
their use becomes more widespread, security and reliability
of those devices become increasingly important. Run-time
monitoring of program execution serves as an effective way
to ensure a wide range of security and reliability properties.
For example, Dynamic Information Flow Tracking (DIFT)
protects the integrity of a system by limiting where inputs from
untrusted sources can be used. More specifically, DIFT records
and tracks values from untrusted inputs and ensures that these
values can never used in security-critical operations such as
a control transfer. It has been shown to be quite effective in
detecting a large class of common software attacks [1], [2],
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[3]. Other run-time monitors such as memory protection [4],
array bounds checking [5], [6], and soft error detection [7] can
also protect a system against a wide range of vulnerabilities.

Unfortunately, many run-time monitoring applications per-
form poorly on existing processors. Software monitoring
approaches often incur significant slowdowns even with an
additional processing core for parallel execution. In addition,
the 32-bit (or 64-bit) data-path is wasteful for operations that
require single bits for checks and bookkeeping. A software
implementation for DIFT on a single core is reported to
have an average slowdown of 3.6 times even with aggressive
optimizations [8]. On the other hand, hardware modules [9],
[10] are efficient and result in much lower overheads. In order
to implement such extensions, however, the designer needs
to make significant modifications to the processor pipeline to
forward the proper values and handle any exception that results
from the monitor. Such modifications are time-consuming and
requires additional validation efforts to ensure correct and
efficient functioning of the monitor itself.

This paper proposes an architectural framework that allows
designers to quickly prototype and develop run-time monitors
and other bookkeeping hardware. Instead of writing thousands
of lines of code, the proposed framework provides common
interfaces and infrastructures for typical run-time monitors so
that a designer only needs to define monitor-specific operations
in a much smaller piece of code, often only a few hundred
lines of code. The code will be simpler and less error-prone,
allowing companies to save in design and verification costs.
Therefore, the framework enables companies to secure their
computing devices through hardware monitors with minimal
time-to-market delays. The overall approach of this framework
is similar to that of customizable (ASIP) processors such as
Tensilica Xtensa, where custom instructions can be quickly
added to a processor through the use of a common architecture
framework and tools.

The experimental results suggest that our monitoring frame-
work can save much of the redundancy in incorporating
run-time monitors in hardware. We find that the designer
only needs to make modifications to 0.62% to 2.75% of the
code in contrast to 31.44% to 36.39% if the extensions are



Main 
Execution

���

INST 1
INST 2
INST 3
���

Program 
State

Meta-Data

Check 3

Check 2

Check 1

PC, Inst, behavior

Fig. 1. Computation model for parallel monitoring and bookkeeping.

implemented without the common framework. We additionally
test the possibility of using high-level synthesis to generate
these monitoring modules. For our test cases, we find that
SystemC requires more lines of code to express the function-
ality of a module when compared to a single-stage handwritten
RTL version. However, we find that high-level synthesis can
generate modules with less area and power overheads, and
provide an additional opportunity of easy design exploration
with little or no changes to the code.

The rest of the paper is organized as follows. Section II
describes a co-processor model for parallel monitoring and
bookkeeping and shows how example extensions map to the
model. Section III presents an architecture framework for
fast development of run-time monitors. Section IV studies
the hardware complexity and the overheads of the framework
and compares high-level synthesis with handwritten RTL.
Section V discusses related work, and Section VI concludes
the paper.

II. INSTRUCTION-GRAINED RUN-TIME MONITORING

This section presents the computation model for the fine-
grained run-time monitoring and bookkeeping that our frame-
work is designed to support and describes common charac-
teristics of such co-processing operations. In the following
discussion, we use the term “co-processor” to refer to a
monitoring and bookkeeping extension.

A. Co-Processing Model
Figure 1 shows the high-level model of how fine-grained

monitoring and bookkeeping techniques typically work. In
the figure, dark (blue) blocks represent co-processing and
light (yellow) blocks represent the main computation. A co-
processor maintains its own meta-data, which are often disjoint
from the program state, to keep track of the history of
computation by the main core. At run-time, the co-processor
monitors the execution of the main core at an instruction
granularity, updates its meta-data for bookkeeping, and checks
certain properties of the main computation. If a check fails,
the co-processor may raise an exception. Conceptually, the co-
processor observes a trace of all or a subset of instructions
and performs its operations on each forwarded instruction.
The main core can also communicate with the co-processor
with explicit instructions to either configure the co-processor
or read information from it.

In general, the run-time monitoring and bookkeeping ex-
tensions can be characterized by its meta-data, transparent
operations, and software visible operations. Here, we briefly

summarize the common characteristics and their implications
for the architecture design.

• Meta-data: The extensions often need meta-data for both
registers and memory. Therefore, the co-processor need
to support a memory subsystem for meta-data.

• Operations: The monitoring or bookkeeping is often fine-
grained. For many applications, run-time checks and
meta-data updates happen quite frequently, possibly for
every instruction on the main core. Therefore, pure soft-
ware implementations often incur a significant slowdown.
At the same time, the operations are largely decoupled
from the main computation and can be performed in par-
allel to the main core. The main computation is typically
independent from the monitoring extension unless there is
an exception. Finally, the extension usually performs bit
operations rather than 32-bit word operations. Therefore,
the operations are a poor match for a regular computing
core.

• Software interfaces: The co-processor needs to be able
to raise an exception and communicate with the main
core with explicit instructions from the core. The in-
structions may read/write configuration registers on the
co-processor and/or perform custom operations for each
extension. The exception and the explicit instructions are
usually infrequent and do not have to be fast.

B. Example Monitoring Extensions

This subsection presents a set of monitoring and bookkeep-
ing extensions as examples and shows how those extensions
map to our co-processing model. Table I summarizes the
operations of four example extensions: UMC, DIFT, BC, and
SEC.

a) Uninitialized Memory Check (UMC): Uninitialized
Memory Check (UMC) is a simple mechanism that is widely
used for software debugging to ensure that a memory loca-
tion is initialized (written) before a read. For each memory
location, the UMC mechanism maintains a one-bit tag that
represents whether the location is initialized or not. The tag
is set after a write to the corresponding memory location
and cleared with an instruction from the main core when the
corresponding memory is de-allocated. On a load operation,
the mechanism checks the tag and raises an exception if the
memory location is not initialized.

b) Dynamic Information Flow Tracking (DIFT): Dy-
namic Information Flow Tracking (DIFT) detects software
attacks by tracking potentially malicious values from I/O and
checks their uses. DIFT can detect low-level exploits such
as buffer overflows and format string attacks [1], [13], [2],
without any modifications to executables, and detect high-
level attacks such as SQL injections and cross-site scripting
with simple application-level checks [3]. For DIFT, a co-
processor needs meta-data (called taint tags) to indicate the
source of each value in registers and memory, and explicit
instructions so that the OS on the main core can set or clear



Extension Meta-Data Transparent Operations SW Visible Operations

UMC [11] 1. 1-bit tag per word in memory. 1. Set the tag on a store. 1. Clear tags on a de-allocation.
2. Check the tag on a load. 2. Exception when a tag check fails.

DIFT [1]

1. 1-bit tag per register. 1. Propagate tags on ALU/load/store. 1. Set tags for values from I/O.
2. 1-bit tag per word in memory. 2. Check tags on a control transfer. 2. Clear tags on a declassification.

3. Set a security policy register.
4. Exception when a tag check fails.

BC [6]
1. 4-bit tag per register. 1. Propagate tags on ALU/load/store. 1. Set reg/mem tags on array allocation.
2. 8-bit tag per word in memory. 2. Check a pointer tag (register) with 2. Clear tags on a de-allocation.

a memory tag on a load/store. 3. Exception when a tag check fails.
SEC [12], [7] 1. Check an ALU operation. 1. Exception when a check fails.

TABLE I
EXAMPLE CO-PROCESSING EXTENSIONS. UMC: UNINITIALIZED MEMORY CHECK, DIFT: DYNAMIC INFORMATION FLOW TRACKING, BC: ARRAY

BOUND CHECKING, SEC: SOFT ERROR CHECKING.

those taint tags. For ALU, load, and store operations, the co-
processor propagates taint tags from the source operand(s)
to the destination; an OR operation of the source tag bits
determine the destination tag. On security critical operations
such as indirect jumps, the co-processor checks the tag and
raises an exception if tainted values are used.

c) Array Bound Check (BC): An array bound check (BC)
is a popular way to detect spatial memory errors such as buffer
overflows, which account for a large portion of software errors
and vulnerabilities in unsafe languages such as C. For BC, a
co-processor keeps meta-data that encode the array bounds
for a pointer and checks if each memory access is within
the bounds. The array bounds can be expressed in various
ways including an object table [14], [15], base and bound
addresses [16], [5], or color tags [6], [17]. In our prototype,
we encode bounds by assigning a color tag to each pointer
and memory location. On a memory allocation, a program
marks the resulting pointer and the corresponding memory
locations with an identical tag using special instructions. For
each memory access, the co-processor checks whether the
pointer tag matches the memory location tag, and raises an
exception if they do not match.

d) Soft Error Check (SEC): Recently there have been
significant efforts to develop architectural techniques to detect
hardware errors such as a transient bit-flip. In a high-level,
these techniques either re-execute each instruction in parallel
[12] or check simpler checksums on each operation [7]. These
soft-error checks can be easily mapped to a monitor extension.
As an example, consider a simple checker that verifies the
result of each ALU operation by computing checksums as
proposed by Argus [7]. A co-processor performs the checksum
operation on each ALU instruction using the source and result
values from the main core, and raises an exception if the check
fails.

e) Other Extensions: We believe that the co-processing
model will be applicable to a large class of hardware exten-
sions that perform monitoring and/or bookkeeping operations
in parallel to the main computation. As an example, the co-
processing model can support simple profiling applications
such as custom performance monitors and detailed analysis
of software characteristics. The co-processing model also
supports various techniques to enhance software security and
reliability, including fine-grained memory protection [4], de-
bugging support [18], checkpointing [19], and others. Parallel
bookkeeping can also provide an efficient support for high-

level language features such as garbage collection [20].

III. COMMON INTERFACE ARCHITECTURE DESIGN

This section describes an architecture framework for run-
time monitors and bookkeeping extensions. The description
focuses on how the architecture is designed to enable fast
development of the extensions in an efficient manner by ex-
ploiting the common characteristics discussed in the previous
section.

A. Scope and Design Goals

This paper illustrates the overall architecture in the context
of a single-issue processor without multi-threading. While the
general architecture is also applicable to super-scalar pro-
cessors, further performance optimizations may be necessary
for high-performance processors. Multi-threading introduces
a coherence issue between program data and meta-data. This
paper does not discuss this issue in detail because it is common
for many run-time monitoring techniques with meta-data and
has been studied already [10], [21].

To be useful in practice, the proposed architecture frame-
work needs to be flexible, simple, and have minimal overheads.
The following list summarizes our main design goals:

• Flexible: The framework should support a broad range
of run-time monitoring and bookkeeping extensions so
that the designer does not need to make changes to the
interface in order to support a new extension.

• Simple: The framework should enable the designer to
write extensions with a small amount of code. The
designer should save time by focusing only on the func-
tionality and correctness of the extension and not the
interface.

• Efficient: The added extension and interface should not
degrade the performance of the processor when not in use.
The architecture should also enable run-time monitoring
with minimal overheads.

B. Architecture Overview

Figure 2(a) shows the high-level block diagram of the co-
processor architecture with an extension. The yellow (light)
rectangles represent components in traditional microprocessors
and the blue (dark) rectangles represent the new components
necessary to support the interface. In a high-level, the archi-
tecture closely represents the co-processing model described
in the previous section. The main processing core forwards
its execution trace for run-time monitoring or bookkeeping
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Fig. 2. Co-processor architecture block diagrams.

through a core-extension interface. The extension retrieves the
data through the interface and performs some monitoring or
bookkeeping. The extension also has access to its own TLB (if
virtual memory is supported) and cache for meta-data storage.
The L2 cache and main memory is shared with the processing
core. The core-extension interface can also be used to send
data back to the processor.

The architecture is carefully designed to exploit the com-
mon characteristics of run-time monitoring operations without
restricting the specifics of the monitoring operations. A large
subset of signals which may be used by monitoring extensions
are forwarded through the interface allowing the designer to
pick and choose which signals to use. To eliminate repeating
logic, the interface forwards decoded signals along with the
original instructions. The synthesis tool can synthesize out any
unused signals, thereby reducing the overhead of forwarding
unnecessary signals. In many cases, the extension does not
need data for every instruction executed by the processor. The
core-extension interface can be easily modified to filter out
unnecessary instructions, enabling the extension to work on a
single instruction for multiple cycles.

In addition to the core-extension interface, there are other
commonly used modules which the designer does not need to
redesign. Most extensions use and store meta-data, so memory
structures including the TLB and cache are already provided
as input and output ports to the extension. The designer can
just use the I/O pins in order to store and retrieve data from
memory. In order to match possible data-size mismatches
between the extension and the memory, the extension can be
efficiently optimized for any bit-width with parametrized data
widths for reading and writing to the cache.

C. Co-Processor Interface

The extension communicates with the main processor
through a set of FIFO interfaces as shown in Figure 2(b). The
FIFOs are connected to/from the commit stage of the main
core. The core-to-extension interface works to enable fine-
grained instruction communication between the core and the
extension. The processing core sends its execution trace to the
co-processor using the FIFO interface, so that the extension
can perform monitoring or bookkeeping operations on each
forwarded instruction.

A forward FIFO sends a trace of instructions, which are
completed and ready to commit, in the program order. A FIFO
packet contains fairly comprehensive information, including a
program counter, source and destination register values, ALU
results, condition codes, and branch outcome. The FIFO packet
also includes decoded instruction fields such as an op-code,
source register numbers, and a destination register number, in
order to reduce duplicate logic in the extension.

A forwarding configuration register (CFGR) specifies how
a forward FIFO handles each instruction type1. For example,
the CFGR can be configured to forward load/store instructions
but ignore ALU or control instructions when implementing
uninitialized memory checking. The architecture provides
three choices regarding whether an instruction should be
forwarded or not. A FIFO can be configured to (i) ignore an
instruction, (ii) forward an instruction only if a FIFO entry is
available (ignore if the FIFO is full), or (iii) always forward an
instruction. The third choice implies that an instruction commit
is stalled if the FIFO is full. The FIFO may also be configured
to either allow an instruction to commit as soon as it is en-
queued or stall the commit until there is an acknowledgment
from the co-processor.

In many co-processor extensions, the main core does not
need to wait for the extension result because an exception from
the co-processor does not need to be precise. For example,
all four extensions in our prototype (UMC, DIFT, BC, and
SEC) terminate a program if a check fails. There is no need
to support a restart on these extensions. If an instruction
requires a value from the monitor as in the “read from co-
processor” instruction or if an exception from the monitor must
be precise, the main core needs to delay a commit operation.
For modern out-of-order processors, such delays simply mean
that instructions stay in an ROB (Re-Order Buffer) longer
without necessarily stalling the following instructions. In-order
cores can either stall an instruction at the commit stage or add
a simple roll-back mechanism to provide a precise exception
and allow instructions to speculatively commit.

The extension uses additional FIFOs to communicate back
to the main core. A back FIFO (BFIFO) sends a return value
for the “read from co-processor” instruction. In addition to
data, the control module (CTRL) allows a set of synchro-
nization operations between main core and the co-processor.
The co-processor sends an acknowledgment back (CACK)
for an instruction when the commit stage in the main core

1There are 32 types in our prototype based on the SPARC architecture.



waits for a completion of the extension processing. On an
exception or a trap on the main core, the core needs to
wait for the co-processor to finish all pending instructions
before starting the handler. For this purpose, the interface
provides a signal (EMPTY) to indicate whether there are any
pending instructions in the co-processor. The extension can
also raise an exception using the trap signal (TRAP). If the
interrupt level of the processor is sufficiently low, the main
core acknowledges such an exception (PACK) and invokes a
proper handler.

Note that the proposed FIFO interface with the extension
can easily support custom instructions on the main core.
For example, in order to implement an instruction to set a
configuration register, an extension can be created to update
the register on a particular instruction encoding.

D. Meta-Data Memory Hierarchy

For meta-data used by the extension for bookkeeping, the
extension uses its own cache subsystem that is separate from
the main core’s L1 caches. This design minimizes changes to
the main core’s cache structures. Both the processing core and
the extension share the lower-level memory hierarchy such as
an L2 cache and main memory. Currently, the architecture
does not maintain coherency between the main core’s L1
caches and the meta-data L1 cache. For the extensions that
we studied, the co-processor only needs to access meta-data
in memory regions disjoint from program instructions and
data. The architecture can be extended with a cache coherence
mechanism if necessary.

The meta-data cache is almost identical to regular data
caches except for the capability to write at a bit granularity.
The meta-data cache holds 32-bit words as in regular caches.
For reads and writes, the meta-data cache is given a 32-bit
mask in addition to an address and a data word, and only
updates or returns bits within the cache word where the bit
mask is set. We found that the bit-level write capability is
essential for efficient co-processing since many co-processing
techniques work on meta-data much smaller than a word.
Without this feature, a co-processor needs to perform an
explicit cache read and then an explicit cache write in order to
update meta-data. The data-width ports can be parametrized so
the designer does not need to make any changes to the cache.

E. Extension

The designer only needs to create an extension that fits into
this interface. The extension retrieves data from the core-to-
extension FIFO using input pins and writes to the extension-to-
core FIFO using output pins. Similarly, the module has input
pins from the cache and output pins to the cache. Since the
decoded signals as well as the execution trace are forwarded
to the core-to-extension FIFO, the designer has many choices
in how to process the given information. The designer can
additionally use the CFGR to filter out instructions that are
unnecessary for the execution of the extension. By reducing
the number of forwarded instructions, the designer can perform
complex calculations for a single instruction over multiple

Type Extension Lines of Code % WrittenProvided Written Total
Baseline - 4590 - 4590 -

Without Interface

UMC 4590 2105 6695 31.44%
DIFT 4590 2530 7120 35.53%
BC 4590 2626 7216 36.39%

SEC 4590 2348 6938 33.84%

With Interface

UMC 7397 46 7443 0.62%
DIFT 7397 97 7494 1.29%
BC 7397 104 7501 1.39%

SEC 7397 209 7606 2.75%

TABLE II
COMPLEXITY OVERHEAD OF WRITING AN SINGLE-STAGE RTL

EXTENSION WITH AND WITHOUT THE INTERFACE.

cycles. The FIFO will act as a buffer between the processor
and monitoring extension. Alternatively, the designer can
choose to pipeline the extension to increase the extension’s
throughput.

The interface does not explicitly support multiple exten-
sions. However, with an additional wrapper logic, designers
can use the interface to support multiple extensions in parallel.
The FIFO signals can be forwarded to each extension so
that each extension can perform monitoring operations with
relevant signals. The extension-to-processor signals such as
an exception can be either combined with an OR operation
or communicated back in a time-shared fashion. Similarly, the
meta-data cache can be either duplicated for each extension
or shared. If shared, the meta-data accesses from multiple
accesses will be serialized, incurring additional performance
overheads.

The design can be implemented in standard RTL, or high
level synthesis can be used to generate the RTL. By using
high level synthesis, the designer can explore the architectural
design space with little modification of the code. In our
designs, we use Cadence C-to-Silicon and find that it can
generate RTL that is comparable to the handwritten RTL in
terms of area, power, and performance. In addition, with C-
to-Silicon we can explore the possibilities of pipelining with
little or no change to the original code.

IV. EVALUATION

In this section, we evaluate the relative complexity of our
architecture against the complexity of a custom extension
using lines of code as a metric. To study overall overheads
of the extensions, we also compare the silicon area, power,
frequency, and performance against a baseline processor. Fi-
nally, we evaluate the relative complexity and area, power,
and frequency of an extension generated using high level
synthesis against one that is handwritten. We do not evaluate
the functional effectiveness of each extension because we use
extensions that have been previously proposed and studied.

A. Methodology

We can approximate the relative complexity of our design
using lines of code as a metric. The more lines of code required
to implement an extension, the more complex it may be. This
metric also reflects the design time for the extension. An
extension with more lines of code takes longer to design.



Extension Description Max Freq (MHz) Area Power Performance
µm2 overhead mW overhead Overhead

- Unmodified Leon3 w/ 32KB L1 465 835,525 - 365 - -
UMC Leon3 w/ UMC 463 932,118 11.6% 388 6.3% 1.02
DIFT Leon3 w/ DIFT 456 960,558 15% 388 6.3% 1.06
BC Leon3 w/ BC 456 996,894 19.3% 393 7.7% 1.07

SEC Leon3 w/ SEC 463 836,786 0.15% 364 - 1.00

TABLE III
THE AREA, POWER, FREQUENCY, AND PERFORMANCE OVERHEAD OF MONITORING EXTENSIONS. THE OVERHEADS IN SILICON AREA, POWER

CONSUMPTION, AND PERFORMANCE ARE SHOWN RELATIVE TO THE BASELINE LEON3.

CLOC, a program that counts lines of code was used to
count the lines in a standardized way. While the estimate is
approximate, it serves as a good relative comparison.

For the evaluation, we built a prototype system based on
the Leon3 microprocessor [22]. Leon3 is a synthesizable
VHDL model of a 32-bit processor compliant with the SPARC
V8 architecture. The Leon3 architecture provides a single-
issue in-order pipeline with seven stages. The complexity
was evaluated for a baseline Leon3 processor with 32-KB L1
caches. It was then evaluated for a Leon3 with a handwritten
extension and a Leon3 with an extension written using our
given framework.

In order to estimate the area, power, and frequency of
the design, we used the Synopsys Design Compiler (DC)
with a 65nm IBM technology library. The synthesis tool
allowed us to evaluate the relative overhead of the extension in
comparison to a baseline processor and allowed us to evaluate
the effectiveness of a high level synthesis tool to generate an
RTL with comparable overhead.

We implemented the extensions in RTL and in SystemC.
For the SystemC implementations, the Cadence C-to-Silicon
compiler was used to generate RTL that can be compared with
the handwritten RTL. While we implemented extensions in
both single-cycle and pipelined fashions for handwritten RTL,
the SystemC implementations were not explicitly pipelined
and the high-level synthesis tool generated a single-cycle RTL
implementation.

B. Complexity

Table II shows the relative complexity, in terms of lines
of code, of implementing the various extensions with the
common architecture framework (interface) and without it. The
baseline Leon3 core is written in approximately 4590 lines of
code. Adding a single extension requires between 2105 and
2626 lines of code or between 31.44% and 36.39% of the
total. In constrast, our interface and Leon3 core are written in
approximately 7397 lines of code. Adding a single extension
requires between 46 and 209 lines of code or between 0.62%
and 2.75% of the total. The data clearly demonstrates that most
of the components are the same between the extensions and
can be reused without modification. Only a few hundred lines
of code actually implement the functionality of the monitor.
The remaining lines of code are used to create an interface
between the extension and the processor. While it seems
like the total number lines of code is actually more for the
extensions with the proposed interface, the synthesis tool will
optimize away most of the unused portions of the interface. For

example, the interface includes a cache module, but SEC does
not use the cache module, so the synthesis tool will remove
the module from the netlist resulting in less actual overhead
than the lines of code suggest.

C. Extension Overhead

Table III summarizes the estimated area, power consump-
tion, operating frequency, and performance overhead for the
Leon3 pipelined processor with and without various exten-
sions. We found that the unmodified Leon3 with 32-KB L1
caches can run up to 465MHz and consume about 0.836mm2

and 364.2mW. The full ASIC results, where the Leon3 pro-
cessor with each extension is synthesized using the ASIC
flow, show that UMC, DIFT, and BC consume 12 to 20%
additional silicon area and 6 to 8% additional power. These
overheads are dominated by the meta-data cache and FIFOs
for the core interface. For SEC, the overheads are negligible
because SEC does not require a meta-data cache or a complex
interface. The Leon3 processor with an extension results in a
slightly lower operating frequency because the extensions tap
into internal pipeline signals. The performance overhead is
calculated by taking the geometric mean of the performance
in a set of benchmarks from MiBench such as stringsearch, fft,
basicmath, and bitcount, and cryptographic kernels including
SHA-1 and GMAC. The suite of benchmarks executes 7%
worse on average for the BC extension. These overheads
come from two sources, stalls from a full forward FIFO and
contention for the shared memory.

While the relative area overheads are noticeable for the
Leon3 processor, which is a tiny embedded processor, The re-
sults demonstrate that the proposed architecture framework has
little affect on the frequency. The overheads in performance
and power consumption are also minimal, less than 10% of
the baseline processor. These results suggest that the proposed
design framework, even while relying on common interfaces
and infrastructures (meta-data caches), can still enable efficient
run-time monitoring. The overheads are comparable to the
ones that are reported in previous studies for custom imple-
mentations.

The area results again demonstrates that the standard syn-
thesis tool is effective in removing unnecessary parts of the
common interface. For example, SEC only has negligible area
overheads because the meta-data cache and unused processor-
to-extension signals are optimized out.



Extension Max. Frequency (GHz) Area (µm2) Power (mW)
RTL SystemC % Diff. RTL SystemC % Diff. RTL SystemC % Diff.

UMC >2 >2 - 419 482 15.04% 0.436 0.428 -1.83%
DIFT 1.75 1.81 3.43% 3743 3328 -11.09% 2.33 2.30 -1.29%
BC 1.28 1.19 -7.03% 14417 13374 -7.23% 8.14 8.28 1.72%
SEC 1.37 1.39 1.46% 7051 6920 -1.86% 3.54 3.50 -1.13%

TABLE V
POWER, AREA, AND FREQUENCY COMPARISON BETWEEN SINGLE-STAGE RTL AND SYSTEMC CODE.

Extension Lines
Single-Stage RTL Pipelined RTL SystemC

UMC 46 73 61
DIFT 97 180 135
BC 104 248 183
SEC 209 453 267

TABLE IV
COMPLEXITY COMPARISON BETWEEN RTL AND SYSTEMC CODE.

D. High Level Synthesis

Table IV summarizes the complexity difference in terms
of lines of code between an extension that is handwritten
in RTL and an extension that is written in SystemC and
synthesized to RTL. For the four extensions that we tried, the
SystemC code actually takes more lines to express the same
functionality as in the single-stage RTL case. On the other
hand, the SystemC code only takes between 59% to 84% as
many lines to express the functionality compared to pipelined
RTL code. One possible reason that the single-stage RTL code
uses less lines is that the extensions that we implemented are
relatively simple and do not require a high level language to
implement. In more complex extensions, it is possible that the
SystemC code could more efficiently describe the extension.
In terms of absolute lines of code, any of the extensions can be
implemented in less than three hundred lines of code. Because
the designer does not need to implement the interface, the
designer can implement a full extension with a relatively small
amount of code. Although the SystemC code takes more lines
to implement in the single-stage case, it allows the designer
the benefit of more easily exploring the design space (such
as the number of pipeline stages). Design space exploration
becomes more critical for more complex extensions or if a
reconfigurable fabric such as an FPGA is used instead of
ASIC.

The synthesis results between the handwritten RTL and the
SystemC generated RTL is shown in Table V. In the table, the
area and power are compared at a common frequency of 1GHz,
a frequency at which any extension can meet timing. In order
to make a fair comparison, the extensions were coded in Sys-
temC to match as much as possible with the original RTL code.
In most cases, the generated SystemC code synthesizes into
more efficient RTL than its handwritten counterpart. In BC,
SEC, and DIFT, the SystemC code synthesizes to RTL which
consumes less area. In the case of UMC, the SystemC code
consumes more area, but the absolute area that is consumed
is negligible (482µm2). In most cases, the SystemC code
consumes less power. In the BC case, however, the SystemC
code does consume an additional 1.72% more power. Finally,
the SystemC code can run at a faster maximum frequency, at

1.46% faster for the SEC case and 3.43% faster for the DIFT
case. In the BC case, the SystemC code does perform worse by
7%. One possible reason that the BC extension performs worse
in the SystemC code is due to the nature of the BC extension.
The BC extension needs to read and write to the cache, so it
is implemented like a state machine. In a normal state, it reads
from the cache. For a store operation, it stalls for a cycle to
perform the store to avoid the structural hazard on the cache.
Implementing a timing sequence is more difficult in SystemC
and may result in less efficient code. In simpler extensions,
the SystemC code results in less overhead and better clock
frequencies.

We attempted to use the CtoS compiler to generate pipelined
RTL from the same SystemC code in order to compare it to
handwritten pipelined RTL. However, the high-level synthesis
tool could not automatically and successfully resolve and han-
dle dependencies among pipeline stages through a register file.
At the end, we were unsuccessful in automatically generating
pipelined extensions for BC, DIFT, and UMC. For SEC, the
CtoS compiler was able to generated pipelined RTL with a
maximum frequency of 3.57GHz, compared to 3.23GHz for
the handwritten RTL. The area and power of the generated
RTL at a frequency of 1GHz were 17.28µm2 and 23.68mW
for the generated pipelined RTL compared to 7.97µm2 and
8.46mW. The compiler was able to generate RTL using the
same SystemC code with 10.5% performance improvement,
but at the cost of 116.8% more area and 179.9% more power.
The compiler allows the designer to set the target frequency,
so the area and power numbers might be more comparable if
the frequency target were not set so high.

V. RELATED WORK

This section summarizes the existing work on hardware-
based run-time monitors. To the best of our knowledge, this
work is the first that proposes the use of a framework with
high level synthesis for fast development of run-time monitors.
Previous work has focused on efficiently implementing run-
time monitors and increasing the programmability of the run-
time monitors.

Recently, researchers have proposed to utilize idle cores on
a many-core processor for run-time monitoring of security and
reliability properties. For example, INDRA [23] uses a checker
core to monitor coarse-grained events on a computation core
such as function call/return, code origin inspection, and control
flow inspection. Nagarajan et al. studied implementing DIFT
on multi-cores [24]. Unfortunately, because the checker core
needs to run multiple instructions to process each event from
the computation core, these early designs are either limited to



coarse-grained monitoring or incur significant slowdowns (3
to 10x).

Other researchers have focused on hardware run-time mon-
itors that are programmable. MemTracker [9] uses a pro-
grammable finite state machine and tags in memory to support
extensions that monitor memory accesses. FlexiTaint [10]
supports DIFT operations with a fully programmable tag
propagation and check policies. FlexCore [25] provides a
framework very similar to our framework to program run-
time monitors in a reconfigurable fabric. While these monitors
allow for more flexibility after chip fabrication, they have more
significant overheads associated with them. For example, SEC
in FlexCore is reported to have a 46.7% area overhead, while
the ASIC implementation in our approach has 0.15% area
overhead.

VI. CONCLUSION

In this paper, we proposed an architectural framework
that allows for fast development of run-time monitoring and
bookkeeping extensions. By using a common interface, the
designer can focus on developing the extensions with less lines
of code and less modifications. Our case studies and prototypes
of four extensions show that our architectural framework can
support a wide array of monitors. We additionally explore the
use of high level synthesis in the framework to enable the
designer to develop the extension using C code. For the four
extensions that we tried, we find that while the extension takes
more lines of code to write in SystemC, the synthesized RTL
performs slightly better than the handwritten RTL.

For future work, we can extend our study to multi-thread
programs on multi-core processors and make modifications
to solve coherence issues between the caches and the inter-
face. We could also examine more complex extensions or
multiple parallel extensions that require more logic and can
be implemented using multiple cycles or through pipelining.
Finally, we can consider pipelining in high level synthesis and
supporting an arbitrary number of pipeline stages.
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