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Abstract—Recent studies have proposed various parallel run-
time monitoring techniques to improve the reliability, security,
and debugging capabilities of computer systems. However, these
run-time monitors can introduce large performance and energy
overheads, especially for flexible systems that support a range
of monitors. In this paper, we introduce a hardware dataflow
tracking engine that enables adjustable overhead through par-
tial monitoring. This allows a trade-off to be made between
monitoring coverage and overhead. This dataflow engine can
also be extended to filter out monitoring operations associated
with null metadata in order to reduce overhead. Given this
architecture, we investigate how the dropping decisions should be
made for partial monitoring and show that there exist interesting
policy decisions depending on the target application of partial
monitoring. Our experimental results show that overhead can
be reduced significantly by trading off coverage. For example,
for monitoring techniques with average overheads of 2-6x, the
proposed architecture is able to reduce overhead to 1.5x while
still achieving 14-85% average coverage.

I. INTRODUCTION

Run-time monitoring techniques have been shown to be
useful for improving the reliability, security, and debugging
capabilities of computer systems. For example, Hardbound is
a hardware-assisted technique to detect out-of-bound memory
accesses [1]. Intel has recently announced plans to support
buffer overflow protection similar to Hardbound in future
architectures [2]. Similarly, run-time monitoring can enable
many other new security, reliability, and debugging capabili-
ties such as fine-grained memory protection [3], information
flow tracking [4], [5], hardware error detection [6], data-race
detection [7], [8], etc.

Previous studies have explored various design points in
terms of efficiency, flexibility, and hardware costs for im-
plementing run-time monitors. Custom hardware designs that
target a single or narrow-range of monitors have been shown to
have low performance overhead. On the other hand, flexible
systems that support a range of monitors have shown much
higher overhead. In this paper, we explore a new trade-off
dimension for run-time monitor designs. We propose to enable
low overhead monitors without sacrificing flexibility by using
partial monitoring. In essence, this enables a trade-off between
overhead and monitoring coverage or accuracy.

Although partial monitoring comes at the cost of reduced
monitoring coverage (i.e., effectiveness), this can still be useful
in many scenarios. For example, partial monitoring can enable
a level of protection even for systems where the full monitoring
overhead is too high. This is especially true for energy- or
power-constrained systems or soft real-time systems where the
monitoring overhead should not exceed energy/power limits
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or real-time deadlines. Additionally, partial monitoring can be
used for sampling-based or cooperative debugging techniques
which expect low coverage per run but use a large number of
runs and users to collect debugging information [9], [10], [11].

Partial monitoring with adjustable overhead is achieved
by dynamically dropping monitoring operations when the
overhead exceeds a specified overhead budget. Although this
results in reduced monitoring coverage (i.e., false negatives),
false positives can also occur due to out-of-date metadata in-
formation. In order to prevent these false positives, we need to
track the dropped metadata flows. We present a hardware-based
dataflow tracking engine that keeps track of these dropped
flows. With this architecture, we investigate different policies
for deciding which events to drop for partial monitoring. These
different policies show a trade-off between closely matching
the overhead budget and increasing the monitoring coverage. In
addition to enabling partial monitoring, we show how a simple
extension to our dataflow engine can enable null metadata
filtering. For example, for an array bounds check, checking
non-pointer accesses is unnecessary and can be filtered out
using the dataflow engine.

The main contributions of this paper are summarized as
follows:

e  We present a hardware architecture using a dataflow
tracking engine to efficiently enable partial monitor-
ing while preventing false positives. This hardware
architecture is designed to be generally applicable to
a wide-range of run-time monitoring techniques and
monitor implementations.

e  We investigate multiple policies on when and which
operations to drop for partial monitoring, and show
the trade-offs in the design space.

e  We extend the dataflow engine to enable filtering null
metadata to reduce overhead.

In order to evaluate our approach, we applied it to five
different monitoring techniques. These monitoring techniques
vary in what events they monitor, the size and semantics of
their metadata, and the operations performed on metadata.
These monitors show average slowdowns of 1.1-5.8x with
the null metadata filtering when implemented on a multi-
core platform. Our results show that partial monitoring can
still achieve significant coverage with reduced overhead. For
example, for the monitors which showed over 2x average
overhead, slowdown could be cut down to 1.5x while still
achieving a coverage of 14-85% on average.



This paper is organized as follows. Section II introduces
the notion of adjustable overhead through partial monitoring.
Section III discusses the hardware architecture that enables
partial monitoring using our dataflow tracking engine. Sec-
tion IV investigates the design space for dropping policies
that determine when and which monitoring operations to drop.
Section V presents our evaluation methodology and results.
Finally, we discuss related work in Section VI and conclude
in Section VII.

II. PARTIAL RUN-TIME MONITORING
A. Overhead of Run-Time Monitoring

There have been a number of proposals for run-time mon-
itoring systems exploring various design points. Table I sum-
marizes some of the representative designs and their reported
performance overheads. The previous studies clearly show
that there exist trade-offs between efficiency, flexibility, and
hardware costs. For example, a run-time monitoring scheme
can often be realized with fairly low performance overhead
(less than 20%) if implemented with custom hardware that
is designed only for one monitor or a narrow set of monitors.
However, the custom hardware monitors cannot be modified or
updated, and require dedicated silicon area. On the other hand,
flexible systems that support a wide range of monitors lead
to noticeable performance overhead, often too high for wide
deployment in practice. Software-only implementations [18],
[19], [20], [21] or multi-core monitors with minimal hardware
changes [17] are reported to have severalfold slowdowns. On-
chip FPGA monitors [14] and cores with monitoring accelera-
tors [16], [15] can reduce overhead significantly, but still show
slowdowns of several tens of percents in some cases. In today’s
monitoring systems, the overhead is also unpredictable because
it depends heavily on the characteristics of applications and
monitoring operations. In summary, users currently need to
either pay noticeable overhead or the cost of custom hardware
in order to use fine-grained run-time monitoring in deployed
systems.

B. Partial Monitoring for Adjustable Overhead

In this paper, we aim to develop a general framework
that enables monitoring overhead to be dynamically adjusted
by dropping a portion of monitoring operations if necessary.
In essence, this framework adds a new dimension to the
monitor design space by allowing coverage or accuracy to be
traded off for lower overhead. For example, the capability to
adjust overhead allows users to use monitoring with partial
coverage in order to reduce performance or energy overhead.
Alternatively, partial monitoring allows designers to use less
expensive hardware for a given performance overhead budget.

In this framework, a user specifies how much monitoring
should be done in the form of a target overhead budget,
a target coverage, a percentage of monitoring operations to
be performed, etc. Then, the framework dynamically drops
a portion of monitoring operations to match the target. In
particular, this paper focuses on matching a performance
overhead target while maximizing the coverage. Given that the
overhead of custom hardware monitors can already be quite
low, the focus is on enabling the trade-off in general-purpose
monitoring systems that support a wide range of monitors. We
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also consider the target overhead as a soft constraint and do
not aim to provide a strict worst-case guarantee.

C. Applications and Metrics

While it is ideal if run-time monitoring can be performed
in full, we believe that the capability to trade-off cover-
age/accuracy for lower performance/hardware overhead will
be useful in many application scenarios where full monitoring
is not a viable option. Here, we briefly discuss example
applications of partial monitoring and the metrics that are
important in each case.

Cooperative testing, debugging, and protection: Recent
studies have shown that software testing, debugging, or attack
detection may be done in a cooperative fashion across a large
number of systems [9], [10], [11], [5]. In this case, each system
is only willing to pay very low overhead (e.g., a few percent)
and only performs a small subset of checks. High coverage
is achieved by having different systems check different parts
of a program. The partial monitoring framework allows high-
overhead monitoring to be used in a cooperative fashion. The
main metric that represents the effectiveness of monitoring in
this case is the coverage (the percentage of checks that were
performed) over multiple runs.

Monitoring of soft real-time systems: Soft real-time
systems or interactive systems need to meet deadlines or
response-time requirements. Unfortunately, the overhead of
run-time monitoring is often unpredictable and varies signifi-
cantly depending on the application and monitor characteris-
tics. The partial monitoring framework allows monitoring to be
performed while providing a level of guarantee on its impact
on the execution time. In this case, it is important that the
system can closely match the desired overhead target while
maximizing the effectiveness of monitoring.

Partial protection for low overhead: Even without real-
time constraints, systems may have tight budgets for the per-
formance, energy, or hardware overhead that they can tolerate
for run-time monitoring. In such cases, full monitoring cannot
be enabled unless its overhead is low enough. Adjustable mon-
itoring allows partial protection on such systems. For example,
array bounds may be checked for a subset of memory accesses.
For dynamic information flow tracking (DIFT), a subset of
information flows may be tracked for partial attack detection.
In this scenario, the effectiveness of partial monitoring can
be measured as the percentage of run-time checks that are
performed on each program run, which reflects how likely it
is for a bug or an attack to be detected for a system.

Profiling: The run-time monitoring system can be used
to implement various profiling tools to collect statistics on
program behavior for performance optimizations as well as
security protection. For example, a recent study showed that
an instruction mix can be used to identify malware from
normal programs [22], [23]. In such profiling tools, the partial
monitoring framework can be used to obtain statistical samples
rather than complete counts of all program events, essentially
trading off accuracy for lower overhead.

D. Design Challenges

While conceptually simple, designing a general framework
to dynamically adjust monitoring overhead introduces new



[ Name [ Type [ Monitoring scheme and flexibility [ Slowdown (avg./worst) |
DIFT [4] Custom HW DIFT only 1.01x / 1.23x
FlexiTaint [12] Custom HW DIFT w/ programmable policies 1.01x-1.04x / 1.09x
Hardbound [1] Custom HW Array bounds checks only 1.05x-1.09x / 1.22x
Harmoni [13] Custom HW Tag-based monitors 1.01x-1.10x / 1.20x

FlexCore [14] Dedicated FPGA

Instruction-trace monitoring

1.05x-1.44x / 1.84x

FADE [15] Core+Custom HW Instruction-trace monitoring (effective when HW filters work) 1.2x-1.8x / 3.3x
LBA-accelerated [16] | Multi-core+Custom HW | Instruction-trace monitoring (effective when accelerators work) 1.02x-3.27x / 5x
LBA [17] Multi-core+Custom HW | Instruction trace monitoring 3.23x-7.80x / 11x
Multi-core DIFT [18] | SW (multithreaded) DIFT (compiled for each application) 1.48x / 2.2x
LIFT [19] SW (DBI) DIFT (fully flexible) 3.6x / 7.9x
Purfiy [20] SW (DBI) Memory leak checks (fully flexible) 2.3x / 5.5x
TaintCheck [21] SW (DBI) DIFT (fully flexible) 10x / 27x

TABLE I: Trade-off between performance overhead and flexibility/complexity of run-time monitoring systems.

monitoring
Main Core event Monitor
> FIFO >
Register RF
File Metadata
Program Memory
State Metadata

Fig. 1: Overview of run-time monitoring architecture.

challenges that need to be addressed. The following summa-
rizes the main design goals and associated design challenges.

1)  General: Since we mainly target flexible run-time
monitoring systems, which often have high overhead,
the framework also needs to be general enough to be
applicable to a wide range of monitoring schemes.

2) No false positive: The framework needs to ensure
that dropping a portion of monitoring operations does
not lead to a false positive. We found that a dataflow
engine that tracks invalid metadata can serve as a
general solution to this problem (Section III).

3) Intelligent dropping: The framework needs to match
the overhead budget while maximizing the effective-
ness of monitoring. To this end, partial monitoring
needs to carefully choose which operations to drop
and when. We address this problem by studying
different dropping policies (Section IV) and their
trade-offs.

III. ARCHITECTURE FOR PARTIAL MONITORING

In this section, we present our hardware architecture
that enables partial monitoring for adjustable overhead. Sec-
tion III-A first describes our baseline model for run-time
monitoring while the rest of the section describes our design.

A. Baseline Architecture

Figure 1 shows an overview of the run-time monitoring
model that is assumed in this paper. The main program is a
computation task that performs the original function of the
system and is run on the main core. On certain events during
the main program, such as the execution of certain types
of instructions, the monitor performs a series of monitoring
operations. The monitor operates in parallel to the main core.
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Events that trigger monitoring are referred to as monitoring
events. Depending on the type of monitoring event, different
monitoring operations are executed. Information about moni-
toring events is sent to the monitor and buffered in a FIFO
structure to decouple the running of the main core and the
monitor. If the FIFO is full, then the main core is forced to stall
on a monitoring event until a FIFO entry becomes available.
These stalls are a major source of overhead because the mon-
itor may take several cycles to process a single event from the
main core. Monitors typically maintain metadata correspond-
ing to each memory location (mem_metadata[addr]) and
register (rf_metadata[reg_id]) of the main core. If the
monitor detects an inconsistent or undesired behavior in the
monitoring events, then an error is detected.

There are many possible monitoring schemes that can be
implemented on this type of fine-grained parallel monitoring
architecture such as memory protection [3], information flow
tracking [4], [5], soft error detection [6], data-race detection
[8], [24], [25], [26], etc. For example, an array bounds check
(BO) [1] can be implemented in order to detect when software
attempts to read or write to a memory location outside of an
array’s bounds. This can be done by associating metadata with
array pointers that indicates the array’s base (start) and bound
(end) addresses. On loads or stores with the array pointer, the
monitor checks that the memory address accessed is within the
base and bound addresses. In addition, this base and bound
metadata is propagated on ALU and memory instructions to
track the corresponding array pointers.

Figure 2 shows an example pseudo-code segment, its
assembly level instructions, and the corresponding monitoring
operations for an array bounds check monitor. First, an array
x is allocated using malloc (line 1). As malloc returns
the array’s address in a register, the monitor associates base
and bounds metadata with the corresponding register. Next,
pointer y is set to point to the middle of array x (line 2). At
the assembly level, a register r2 is set to array x’s address plus
an offset. The monitor propagates the metadata of the original
pointer in r1l to the metadata of r2. This is to ensure that
pointer y is not used to exceed the array’s bounds. Line 3a
shows setting register r3 to a constant value of 1. When this
happens, r3’s metadata is reset to NULL in case it previously
stored a pointer. Finally, the value of r3 is written to memory
using both pointers x and y. In both cases, the monitor checks
whether the store address is within the bounds of the register
metadata. In the first case (line 3b), x+12 is within the original
array’s bounds. No error is raised and the metadata of r3 is



Main Core (High-level)

Main Core (Assembly)

Monitor

( )
1: int *x = malloc(4*sizeof(int)); 1: call malloc ;return pointer 0x12340000 in ril 1: rf_metadata[1] = {rl, rl + oxf}
// {base, bounds} of array
2: int *y = x + 2; 2: add r2, ri, #8 2: rf_metadata[2] = rf_metadata[1]
3: x[3] = 1; 3a: mov r3, #1 3a: rf_metadata[3] = NULL
3b: str r3, [rl, #12] ; store to ©x1234000c 3b: if (rl + 12 < base(rf_metadata[1]) ||
rl + 12 > bound(rf_metadata[1])) {
// raise error
mem_metadata[rl + 12] = rf_metadata[3];
4: y[3] = 1; 4: str r3, [r2, #12] ; store to ©x12340014 4: if (r2 + 12 < base(rf_metadata[2]) ||
r2 + 12 > bound(rf_metadata[2])) {
// raise error
}
mem_metadata[r2 + 12] = rf_metadata[3];
\\

Fig. 2: Example of array bounds check monitor.

propagated to the metadata of the store address. If r3 were
a pointer, then this would allow a future instruction to load
the pointer and use it to access its corresponding array or data
structure. In the second case, y+12 (line 4) corresponds to
x+20 which is not within the array’s bounds and the monitor
will raise an error.

Note that this monitoring is performed automatically and
transparently with almost no modification needed to the main
program. The only modification to the main program that is
needed is to initially set metadata, such as setting the base
and bounds addresses on a malloc call for array bounds
checking. The propagation and checks of the metadata occur
automatically as instructions are forwarded to the monitor.
Here, we have shown the dynamic sequence of operations
executed by the monitor, but the actual static code consists
of a set of instructions to be run for each possible instruction
type (load, store, etc.). Only instruction types relevant for the
particular monitoring scheme are forwarded.

B. Effects of Dropping Monitoring

Our goal is to drop some monitoring operations in order to
reduce the overhead of run-time monitoring. This dropping can
affect the functionality of the monitoring scheme. There are
three possible outcomes for dropping a monitoring operation.
The first is that there is no difference in operation from the
original execution. For example, if we drop line 3b from our
array bounds check example (Figure 2), then the check on
accessing x+12 is skipped. However, this is a valid access
and so skipping the check does not change anything.

On the other hand, if the monitoring for accessing memory
location y+12 on line 4 is skipped, then a false negative
occurs. Originally, the monitor would catch this access as
an out-of-bounds access and raise an error. However, if the
monitoring operation for this is dropped, then the error is not
detected. This reflects the trade-off that we make in order to
reduce overhead. Instead of either 100% coverage with all
the associated overhead or no coverage and no overhead, we
enable middle points of partial coverage with some fraction of
the full overhead.

The final possible outcome of dropping a monitoring oper-
ation is a false positive. For example, suppose the monitoring
for line 1 is dropped, causing the bound information for pointer
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x to never be set. The result is that when the access using x
is checked on line 3b, an error will be raised. This creates a
false positive where an error is incorrectly raised. Although
false negatives are part of the trade-off we make to reduce
overhead, we need to prevent false positives.

C. Invalidation for Preventing False Positives

The key cause of false positives is dropping monitoring
operations that update metadata. Dropping monitoring oper-
ations that check for an error (such as the check for line 4
in Figure 2) can only cause false negatives and will never
cause false positives. On the other hand, skipping monitoring
operations that update metadata can lead to false positives
and false negatives. Essentially, when an update operation is
skipped, we can no longer trust the corresponding metadata.
Thus, our general approach for preventing false positives is
to associate a 1-bit invalidation flag with each metadata in
order to mark these metadata as valid or invalid. Furthermore,
this invalidation information is propagated in the same way
that metadata is. Figure 3 shows an example of associating
invalidation flags with metadata. Suppose that the monitoring
for line 1 is dropped in order to meet the overhead target.
When a monitoring event is dropped, metadata that would have
been updated is marked as invalid. In this case, instead of the
normal operation of marking rf_invalid([1l] as false,
it is instead marked as true. Thus, when line 3 is reached,
the monitoring event is dropped since rf_invalid[1] is
marked as true. Note that in this case, line 2 also propagates
this invalidation flag to rf_invalid[2] and causes the
check performed on line 4 to also be dropped. This is necessary
because an error would have been raised even if the access on
line 4 was within bounds.

D. Dataflow Engine for Preventing False Positives

Although the functionality of dropping and invalidation
could be implemented on the monitor, this is unlikely to be
much faster than performing the full monitoring operations.
Instead, in order to efficiently support dropping monitoring
events and to prevent false positives, we propose to insert a
hardware module between the main core and monitor (see
Figure 4). This module handles the invalidation operations
shown in the middle column of Figure 3. There are two
operations that are done for handling invalidation information:



Main Core (Assembly) Invalidation Monitor
(1: call malloc ;return pointer 1: rf_invalid[1] = false // true if dropped 1: rf_metadata[1] = {rl, rl1 + oxf} )
0x12340000 in ri // {base, bounds} of array
2: add r2, ri, #8 2: if (rf_invalid[1]) { 2: rf_metadata[2] = rf_metadata[1]

// drop monitoring

@

3a: mov r3, #1 3a: rf_invalid[3] = false

; store to ©x1234000c

// drop monitoring

; store to ©x12340014 // drop monitoring

}
rf_invalid[2] = rf_invalid[1]

3b: str r3, [rl, #12] 3b: if (rf_invalid[1] || rf_invalid[3]) { 3b: if (rl + 12 < base(rf_metadata[1]) ||
mem_invalid[rl + 12] = rf_invalid[3] }

4: str r3, [r2, #12] 4: if (rf_invalid[2] || rf_invalid[3]) { 4: if (r2 + 12 < base(rf_metadata[2]) ||

3a: rf_metadata[3] = NULL
rl + 12 > bound(rf_metadata[1])) {
// raise error

mem_metadata[rl + 12] = rf_metadata[3];

r2 + 12 > bound(rf_metadata[2])) {

} // raise error
mem_invalid[r2 + 12] = rf_invalid[3] }
L mem_metadata[r2 + 12] = rf_metadata[3];
Fig. 3: Example of using invalidation information to prevent false positives.
Main Core (Assembly) Null Filtering
e N\
Mai Datafl 1: call malloc ;return 1: rf_null[1] = false
Bl Lyl FIFO > atariow 1 o1 nMonitor pointer @x1234000@ in ri
Core Engine
2: mov r2, #8 2: rf_null[2] = true
; r2 is not a pointer
i i t 3a: mov r3, #1 3: rf_null[3] = true
Program Dataflow Metadat 3b: str r3, [rl, #12] 3b: if (r‘anull[l] {?& r‘f_null[3]) {
State Flags €tadata ; store to ©x1234000C // filter monitoring

Fig. 4: Hardware support for dropping.

1)  Propagate invalidation flags, following the dataflow
of metadata.

2)  Filter out monitoring operations based on invalidation
flags.

Thus, the hardware acts effectively as a dataflow tracking
engine in order to track a 1-bit invalidation flag per metadata.
Figure 5 shows a detailed block diagram of this hardware
module. The dataflow engine uses two address generation
units to read in up to two invalidation flags. These source
invalidation flags are used to decide whether a monitoring
event should filtered. A third address generation unit is used to
optionally specify a target to propagate the invalidation infor-
mation. The module includes a register file to store invalidation
flags corresponding to register file metadata. In addition, it
uses a small memory-backed cache to handle invalidation flags
corresponding to memory metadata.

Since different monitoring operations are performed based
on instruction type, the dataflow engine is also configured
based on instruction type. The source and operation of the
address generation units are set based on instruction type. Note
that the address generation units also take information from
the monitored event as inputs. Thus, in the same way that the
monitor selects metadata based on register indices or memory
address of the specific monitoring event, the dataflow engine
also reads the appropriate flags. In addition, the filter decision
table is configured based on instruction type to decide what
combination of input flags will lead to a filtered event and
whether propagation is required.
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mem_null[r3 + 12] = rf_null[r3]

4: add r2, r2, r3 4: if (rf_null[2] && rf_null[3]) {
// filter monitoring

}
rf_null[r3] = rf_null[3] & rf_null[2]
. J/

Fig. 6: Example of using information about null metadata to
filter monitoring events.

E. Filtering Null Metadata

One way to reduce the number of monitoring events that
must be handled by the monitor is to filter out monitoring
events that correspond to operating on null metadata. Null
metadata correspond to events that are not relevant to the
monitor. For example, Hardbound [1] filters out operations on
non-pointer (i.e., no base and bounds metadata) instructions
since it is not relevant to array bounds checking. More recently,
FADE [15] has been proposed as a general hardware module to
perform this null metadata filtering for a variety of monitoring
schemes. Our architecture is able to support this null metadata
filtering with a small modification.

Figure 6 shows an example of how this null filtering
operates. Here, the main core’s code has been slightly modified
from Figure 2 and on line 2, r2 is no longer set as an array
pointer. Without null metadata filtering, the instruction for line
4 would be forwarded to the monitor since the system does not
know whether r2 contains a pointer address or not. However,
if we use a 1-bit flag to mark r2 as null when it is loaded
with a constant, then we can propagate this null information
and filter out monitoring for line 4.

The operations performed by null filtering are almost
identical to the operations needed for invalidation shown in
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Fig. 5: Hardware architecture of the dataflow engine.
slack monitoring decide whether dropping is needed. The overhead budget is
overheads specified as a percentage of the main program’s execution

initial /
slack 'M /
\/ time

perform drop perform
monitoring monitoring monitoring

Fig. 7: Slack and its effect on monitoring over time.

Figure 3 except for a small change in the propagation policy.
Instead of taking a logical OR of the source invalidation flags
to determine whether monitoring can be skipped, null metadata
filtering takes a logical AND of the source null flags. Thus, we
can easily enable this null metadata filtering on our architecture
by extending the dataflow flags to be two bits wide. One bit is
used to keep track of invalidation information while the second
bit is used to keep track of null information. All flags are
initialized to null and the filter decision table is extended with
the propagation and filtering decision rules for null metadata
filtering. The result is a single hardware design that enables
both partial monitoring and null metadata filtering.

IV. DROPPING POLICIES

In order to use partial monitoring to enable adjustable
overhead, we must also specify a policy for when and which
monitoring events are dropped. In this section, we discuss some
of the options and trade-offs for dropping policies. We split this
decision into two components:

1)  When do we need to drop events in order to enable
reduced overhead? (Section IV-A)
2)  Which events should be dropped? (Section IV-B)

A. Deciding When to Drop

In this section, we discuss two possible ways to determine
when events should be dropped. The first possibility is to
probabilistically drop events. By setting the probability of
dropping events appropriately, overhead can be reduced. This
works well for enabling partial monitoring for cooperative
testing and debugging since the randomness allows different
users and runs to monitor different portions of the program.
However, using a probabilistic dropping policy can make it
difficult to meet a target overhead without prior profiling.

Alternatively, we can specify a target overhead and es-
timate, at run-time, the overhead of monitoring in order to
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cycles without monitoring. In order to estimate the overhead
at run-time, we define slack as the number of cycles of
monitoring overhead that can be incurred while staying within
the budget target. Slack is essentially the difference between
the actual overhead seen and the budget specified. Slack
is generated as the main program runs and consumed as
monitoring overheads occur. For example, if no monitoring
overheads occur during 1000 cycles of the main program’s
execution and the designer sets a 20% overhead target, then
the slack that is built up during this period is 200 cycles. If
the main core is then stalled for 50 cycles due to monitoring,
then the remaining slack is 150 cycles. In addition to this
accumulated slack, a small amount of initial slack can be
given in order for monitoring to be performed at the start of a
program. Figure 7 shows an example of how slack can change
over time. In this slack-based policy, if the slack falls below
zero (i.e., the overhead budget is exceeded), then monitoring
events are dropped.

Slack can be easily measured in hardware by using a
counter that increments on every k-th cycle of the main core
(e.g., every 5th cycle for a 20% target budget). The value
of this counter is the accumulated slack. Whenever the main
core is stalled due to the monitor, the measured slack is
decremented. It is difficult to precisely determine the entire
impact of monitoring on the main core due to the difficulty
in measuring certain overheads such as contention for shared
memory. However, we have found that using only the stalls
due to FIFO back pressure works well in practice.

B. Deciding Which Events to Drop

In addition to deciding when dropping is required, trade-
offs also exist in deciding which events should be dropped. The
simplest policy is to drop monitoring events when slack is less
than or equal to zero. However, this can result in wasted work.
For example, consider the metadata dependence graph shown
in Figure 8a. Here, an edge from node A to node B represents
that if event A is dropped, then due to its invalidated metadata,
it will cause event B to be dropped. Square nodes indicate
events where monitoring checks are performed. In the example,
suppose that event E is meant to perform a check operation
but is dropped. In this situation, the monitoring operations that
were done for events C and D were wasted since their results
were not used for any monitoring checks. That is, by the time
we decide to drop event E, we have already updated metadata
for events C and D even though they are no longer needed.

An alternative dropping policy which eliminates this
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Fig. 8: Comparison of dropping policies using metadata de-
pendence graphs. Square nodes represent events where check
are performed. Blue (dark) nodes indicate which nodes can be
dropped.

wasted work is to only make dropping decisions at the root
or source of these metadata flows (see Figure 8b). That is, we
will decide to either monitor or not monitor an entire metadata
flow. An example of these source nodes is the monitoring done
to initialize base and bounds information on malloc for an
array bounds check. These source nodes are easily identifiable
by the dropping hardware because they typically correspond
to the special instructions that are used to set up metadata
information. Thus, it is not necessary to generate and analyze
the monitoring dependence graph to identify source nodes. We
refer to this dropping decision policy as source-only dropping
and we refer to the previous policy of dropping any event as
unrestricted dropping.

More complex dropping policies can be implemented given
more detailed information about the monitoring dependence
graph. This information can be found through static analysis or
profiling, though we do not explore how to find it in detail here.
Given this information, we describe one possible policy to use
it, which we call sub-flow dropping. Sub-flow dropping makes
dropping decisions at a granularity in between unrestricted
dropping and source-only dropping (see Figure 8c). The basic
idea of sub-flow dropping is to drop portions of the monitoring
dependence graph at the smallest granularity such that no
work is wasted. Sub-flow dropping allows source nodes to
be dropped and nodes after branch points in the monitoring
dependence graph to be dropped. From Figure 8c, this cor-
responds to nodes A, C, and F. For example, dropping node
C causes nodes D and E to be skipped. However, performing
monitoring on the remaining nodes allows the check at node
G to be performed with no wasted work. Similarly, dropping
F allows node E to be checked with no wasted work. Note
that sub-flow dropping can still result in wasted work if there
are merge points in the monitoring dependence graph and only
part of the incoming flows are dropped, but it should result in
less wasted work than compared to an unrestricted dropping
policy.
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Source-only dropping will result in no wasted work and
thus better coverage at a given overhead than unrestricted
dropping. However, because of the coarser-grained decision, it
may be more difficult to closely match overhead targets. Sub-
flow dropping enables a design point in between unrestricted
dropping and source-only dropping in terms of matching
overhead and coverage achieved. If the monitoring dependence
graph is highly connected, then source-only dropping will
perform poorly. On the other hand, we expect source-only
dropping to work well when there are a large number of
independent metadata flows. Monitoring dependence graphs
with a large number of branches will favor a sub-flow dropping
policy.

The choice of dropping policy can also depend on whether
probabilistic dropping is performed instead of slack-based
dropping. Probabilistic dropping works poorly with an un-
restricted dropping policy. Since every event in a dependent
chain (e.g., events A through E) needs to be monitored in order
for the monitoring check to be useful, randomly dropping any
event is likely to cause the final check to be invalid by dropping
at least one event in the chain. Instead, source-only dropping
works well when performing probabilistic dropping.

Depending on the target application of partial monitoring,
different policies are more applicable. For applications where
closely matching an overhead target is important, a slack-
based, unrestricted dropping policy is appropriate. However,
if matching the overhead target is not as important, then a
slack-based, sub-flow or source-only dropping policy could
provide better coverage. Finally, if the goal is to use partial
monitoring to enable cooperative debugging and testing with
very low overhead, then a probabilistic, source-only or sub-
flow dropping policy can be used to provide good total
coverage over multiple runs.

V. EVALUATION
A. Experimental Setup

We implemented our dataflow-guided monitoring architec-
ture by modifying the ARM version of the gem5 simulator
[27] to support parallel run-time monitoring. We implement
the monitor as a software-based monitor running on a parallel
processor core, similar to LBA [17]. We model the main
and monitoring cores as running at 2.5 GHz with 4-way set-
associative 32 kB private L1 I/D caches and a shared 8-way
2 MB L2 cache. This setup is similar to the Snapdragon 801
processor commonly found in mobile systems. The dataflow
engine uses a 1 kB cache for invalidation and null flags.

In order to explore the generality of the architecture for
different monitors, we implemented five different monitors:
uninitialized memory check (UMC), array bounds check (BC),
dynamic information flow tracking (DIFT), instruction-mix
profiling (IMP), and LockSet-based race detection (LS). Since
we implement the monitor using a processor core and our
dataflow engine was designed to be generally applicable, the
same hardware platform supports all of these monitoring tech-
niques. Uninitialized memory check seeks to detect loading
from memory locations that are not initialized first. Array
bounds check, as described in Section III, is a monitoring
scheme that aims to detect buffer overflows where memory
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Fig. 9: Monitoring overhead with null metadata filtering.

accesses go beyond the boundaries of an array. We mod-
ify the implementation of malloc to set base and bound
metadata information. Dynamic information flow tracking is
a security monitoring scheme which detects when information
from untrusted sources is used to affect the program control
flow (i.e., indirect control instructions). For the benchmarks
we consider, we mark data read from files as untrusted. We
implemented a multi-bit DIFT scheme which marks untrusted
data with a 32-bit metadata identifier so that if an error
is detected, it is possible to have information about where
the data originated from. Instruction-mix profiling counts the
number of ALU, load, store, and control instructions that
are executed. This profiling information can be useful for
performing optimizations or to detect malicious software [23].
LockSet [24] attempts to detect possible race conditions in
multi-threaded programs by tracking metadata about which
locks are protecting shared memory locations. If a shared
memory location is accessed while unprotected then a race
condition may exist.

We tested our system using benchmarks from SPECint
CPU2006 [28]. Since our implementation of BC depends on
the modification of malloc to set array bounds information,
we focus on the C SPECint benchmarks. Although we do
not show results for the C++ benchmarks, we note that the
results for UMC, DIFT, and IMP for these benchmarks are
similar to the other results shown. We fast-forwarded each
benchmark for 1 billion instructions and then simulated for
2 billion instructions.

Since LockSet race detection requires multi-threaded pro-
grams, we tested it using the applications from the SPLASH-2
benchmark set [29]. Each benchmark was run using 2 main
cores to run the benchmark application. fmm and raytrace
were run without fast-forwarding because they ran to com-
pletion in under 2 billion instructions. Each main core was
connected to a dataflow engine and a monitoring core.

B. Baseline Monitoring Overhead

Figure 9 shows the execution times of performing mon-
itoring with null filtering enabled normalized to the execu-
tion time of the benchmarks without monitoring. UMC sees
normalized execution times of 2.6-9.8x with an average of
5.7x. For BC, normalized execution times are 2.7x on average
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Fig. 11: Coverage vs. varying overhead budget for UMC.

and range from 1.02x to 13.6x. DIFT sees an average of
1.1x slowdown with a maximum slowdown of 1.3x with null
metadata filtering. This low overhead is due to the fact that for
our implementation of DIFT on SPEC benchmarks, we only
mark data read from files as tainted. Instead, if we targeted
network or streaming applications, which have larger amounts
of untrusted input data, we would observe higher overhead.
IMP shows normalized execution times of 1.6-9.5x with an
average of 5.8x. Overheads for LS (not pictured) applied to
the SPLASH-2 benchmarks are 1.04-1.29x after null metadata
filtering and the average overhead observed is 1.13x. Our
baseline system and overheads are similar to previous multi-
core monitoring systems such as LBA-accelerated [16] and
FADE [15] (see Table I). In Section V-D, we also evaluate a
higher performance, FPGA-based monitor that shows low tens
of percent of overhead.

C. Coverage with Adjustable Partial Monitoring

In this section, we evaluate the effectiveness of using
partial monitoring to trade-off coverage for reduced overhead.
For these results, we use a slack-based, unrestricted dropping
policy. Figure 10 shows the monitoring coverage achieved
by array bounds checking as we vary the overhead budget.
We define monitoring coverage as the percentage of dynamic
checks that are performed (indirect jumps in DIFT, loads
in UMC, and memory accesses in BC and LS). The metric
is chosen to understand how likely an error/attack instance
is to be detected on an individual system, assuming that
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Fig. 12: Coverage vs. varying overhead budget for LS.

errors/attacks are uniformly distributed across checks. This
may not necessarily be true for actual errors/attacks and so the
reported coverage may not be the same as the probability of
detecting actual errors/attacks. However, we believe this metric
provides a good initial estimate of the detection capabilities of
the system. In the figure, the bottom portion of each bar shows
the coverage for a 1.1x overhead target and the additional
coverage for increased overhead targets are stacked above this.

We see that by varying the overhead budget, the coverage
achieved also varies. With only a 1.1x overhead target, array
bounds check still achieves over 80% monitoring coverage on
average. The high coverage achieved with such low overhead
is due to two main effects. The first is that monitoring can
be done in parallel, providing a certain level of monitoring
coverage without introducing overhead. The second effect is
that there may still exist a large number of monitoring events
that do not lead to bounds checks. As a result, dropping
these events can reduce overhead without a large impact on
monitoring coverage.

Figure 11 shows the analogous graph for UMC. Again we
see that varying overhead budgets enables partial monitoring.
With a 2x overhead target, UMC achieves 22% monitoring
coverage on average and with a 4x overhead target, this
increases to 49%. Even higher coverage can be achieved by
allowing higher overhead budgets. Similarly, Figure 12 shows
the coverage achieved by LS. With only a 1.01x overhead,
LS achieves 30% coverage on average. This increases to 71%
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Fig. 14: Coverage versus varying overhead budget for UMC
running on an FPGA-based monitor.

coverage with a 1.1x overhead budget. For DIFT (not pictured),
an overhead target of 1.05x is enough for all benchmarks tested
to reach 100% coverage. Note that the overheads shown are
the target overhead. In some cases, a high overhead target is
needed in order to achieve 100% coverage. For example, for
mcf with UMC monitoring, a 12x overhead target is needed
to achieve 100% coverage while the overheads of performing
monitoring in full were 2.6x (see Figure 9). This is due to
the fact that we accumulate slack gradually and so bursty
monitoring events may require a higher overhead target in
order for all monitoring to be performed. However, the actual
overheads seen are in-line with the overhead of performing
monitoring without dropping (e.g., mcf with UMC monitoring
at a 12x overhead target shows a 2.6x overhead).

The instruction-mix profiling monitor does not perform
check operations. Thus, the concept of coverage is not ap-
plicable here. Instead, for each instruction type profiled, we
calculate its count as a percentage of the total instructions mon-
itored. We take the difference of these percentages compared
to the case when full monitoring is performed to calculate
the error. Figure 13 shows the min, max, and average error
across instruction types for each benchmark and for varying
overhead. We see that with a 1.1x overhead, a max error of
9% 1is observed across the benchmarks and the average error
across instruction types and benchmarks is 3%.
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Fig. 15: Comparing dropping policies for UMC.

D. FPGA-based Monitor

In addition to evaluating our system for a core-based
monitor, we also evaluated partial monitoring on a higher
performance FPGA-based monitor. This setup is based on
the FlexCore [14] setup and uses a fully-pipelined monitor
running on an FPGA fabric at half the frequency of the main
core. We only show results for UMC due to space constraints,
though other monitors show similar trends. In this case, the full
overheads of monitoring range from 1.1-1.9x with an average
overhead of 1.4x. Figure 14 shows the coverage achieved as
we sweep the overhead target from 1.01-2.0x. We see that
partial monitoring can allow the overhead of such a system to
be pushed to 1.1x while still providing 45% coverage.

E. Comparing Dropping Policies

In this section, we evaluate the trade-offs between different
dropping policies. Figure 15a shows the difference between
the overhead budget and the run-time monitoring overhead
for UMC when the overhead target is set to 2.0x. A positive
value means that the overhead target was overshot while a
negative value indicates that the overhead budget was met.
For most benchmarks, we see similar results for unrestricted
dropping and source-only dropping due to the fact that UMC
consists of a large number of short, independent monitoring
dependence chains. Source-only dropping causes overshoot of
the overhead target for hmmer and h264ref. Figure 15b
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shows the coverage of UMC for unrestricted dropping and
source-only dropping. We see that, in several cases, source-
only dropping achieves higher coverage than unrestricted drop-
ping while still closely matching the overhead target. For
example, perlbench shows a 10% increase in coverage and
libguantum shows an 18% increase in coverage by using
source-only dropping. This is due to the fact that some of
the overhead of monitoring for unrestricted dropping is being
spent on wasted work as discussed in Section IV-B.

Next, we evaluate these trade-offs between source-only
dropping and unrestricted dropping for BC. Figure 16a shows
the overhead differences for BC and Figure 16b shows the
coverage for BC. Here, the overhead target is 1.5x. From
Figure 16a, we see that for several benchmarks, source-only
dropping fails to meet the specified overhead target. The
overshoot of the overhead target is quite high with overhead
differences over 100% for bzip2, hmmer, and h264ref.
Since only infrequently occurring array allocations are con-
sidered as source events for BC, it can be difficult for source-
only dropping to match overhead targets. Although Figure 16b
shows higher coverage for source-only dropping, this is largely
due to the fact that it is running with higher overhead.

From these results, we see that depending on the monitor
and the program behavior, source-only dropping can provide
better coverage than unrestricted dropping with the same
overhead. However, unrestricted dropping is better at meeting
an overhead target. Thus, for applications where staying within
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an overhead target is especially important, such as soft real-
time systems, a slack-based, unrestricted dropping policy is
more appropriate. On the other hand, if maximum coverage is
desired and occasional slowdowns are acceptable, then source-
only dropping can provide better coverage on average.

The results for the sub-flow dropping policy are not in-
cluded in these graphs because our profiling infrastructure
to identify sub-flow nodes currently does not support fast-
forwarding. Instead, we compared the sub-flow dropping with
other policies by running simulations for 1 billion instructions
without fast-forwarding. The results (not shown) showed that
sub-flow dropping produced similar coverage and overhead
target matching to unrestricted dropping for the benchmarks
and monitors that we tested.

F. Multiple-Run Coverage

One application of partial monitoring with low overhead
is to enable cooperative debugging. The idea with cooperative
debugging is to use partial monitoring with very low overhead
across a large number of users or runs. By varying the pattern
of partial monitoring done on each run, the goal is to achieve
high coverage across multiple runs. Varying the monitoring
that is done for different runs can be achieved by using a
probabilistic dropping policy. Figure 17 shows the total cover-
age achieved over multiple runs for array bounds check using
unrestricted, sub-flow, and source-only dropping policies with
probabilistic dropping. These numbers are averaged across
all benchmarks. Here, we use a 10% probability that events
are not dropped. Each run was simulated for 500 million
instructions. Since the effectiveness of cooperative debugging
is often measured by code coverage, coverage here is measured
as the percentage of static instructions which are monitored
in at least one of the runs. We see that for the unrestricted
dropping policy there is almost no increase in coverage. This
is due to the fact that it is likely that at least one monitoring
event in a metadata dependence chain will be dropped with
the unrestricted dropping policy. Instead, sub-flow dropping
and source-only dropping are much better suited for achieving
high coverage over multiple runs. Source-only dropping shows
a 6% increase in coverage with only eight runs while sub-flow
dropping shows a 1% increase in coverage over eight runs.
While sub-flow dropping shows a slower increase in coverage
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[ Monitor | Peak Power [nW] [ Runtime Power [mW] |

UMC 18 (4.9%) 29 (7.7%)
BC 69 (7.1%) 41 (10.7%)
DIFT 72 (7.4%) 41 (10.6%)
IMP 11 (4.3%) 20 (5.1%)
LS 31 (3.2%) 13 (3.9%)

TABLE II: Average power overhead for dropping hardware.
Percentages are normalized to the main core power.

[ Monitor | 1.5x Overhead [ Full Monitoring |

UMC 338 mW 363 mW
BC 320 mW 343 mW
DIFT 304 mW 304 mW
IMP 345 mW 367 mW
LS 327 mW 327 mW

TABLE III: Average runtime power of the monitoring core.

than source-only dropping, sub-flow dropping is better able
to meet overhead targets. With enough runs, both sub-flow
dropping and source-only dropping should be able to reach
100% code coverage.

G. Area and Power Overheads

Adding the dataflow engine in order to enable filtering and
partial monitoring adds overheads in terms of area and power
consumption. We use McPat [30] to get a first-order estimate
of these area and power overheads in a 40 nm technology node.
McPat estimates the main core area as 2.71 mm? and the peak
power usage as 965 mW averaged across all benchmarks. The
average runtime power usage was 385 mW. These area and
power numbers consist of the core and L1 cache, but do not
include L2 cache, memory controller, and other peripherals.
The power numbers include dynamic as well as static (leakage)
power. For the dataflow engine, we modeled the ALUs used for
address calculation, the dataflow flag register file and cache, the
configuration tables, and the filter decision table. These were
modeled using the corresponding memory and ALU objects
in McPat. We note that this is only a rough area and power
estimate since components such as the wires connecting these
modules have not been modeled. However, this gives a sense of
the order-of-magnitude overheads involved with implementing
our approach.

Our results show that an additional 0.197 mm? of silicon
area is needed, an increase of 7% of the main core area.
Table II shows the peak and runtime power overheads aver-
aged across all benchmarks running with a 1.5x monitoring
overhead target. The peak power is 31-72 mW, which is less
than 8% of the main core’s peak power usage. Similarly, the
average runtime power is 13-43 mW, corresponding to 4-11%
of the main core’s runtime power.

Table III shows the runtime power usage of the monitoring
core averaged across all benchmarks. These results are shown
for an overhead target of 1.5x as well as when full monitoring
is performed.

VI. RELATED WORK

There exists a number of previous projects that have looked
into performing partial monitoring in order to reduce the



Name ‘ General ‘ Adjustable Prevent ‘
Overhead | False Pos.
Scalable Bug Isolation [9] - - -
Mem Leak Detection [10] - - -
LiteRace [25] v
PACER [26] - - v
Testudo [5] - - v
Scalable Dataflow [11] - v v
Arnold & Ryder [31] v - -
Huang et al. [32] v v -
Lo et al. [33] v - v
QVM [34] vE v v

*Limited generalizability

TABLE IV: Previous work on partial run-time monitoring.

performance overhead. These platforms differ from ours in a
number of ways including how monitoring is implemented and
the monitoring techniques targeted. However, we note three
main properties that differentiates our work:

1)  Generality: Our architecture applies to a variety of
monitoring techniques.

2)  Adjustable Overhead: Our architecture allows an
overhead to be targeted. Other work performs sam-
pling to reduce overhead but does not try to bound
overhead, which we have shown can vary greatly.

3) Prevent False Positives: We present a mechanism
to prevent false positives. Previous work either has
false positives or targets monitoring techniques which
degrade gracefully with sampling rather than exhibit
false positives.

Our work is the first that we know of to present a hardware
platform for partial monitoring that is general, allows an
overhead target to be specified, and explicitly prevents false
positives. In contrast, previous work on partial monitoring
achieves only some, but not all, of these properties. Table IV
summarizes these differences.

For example, there exists previous work for using statistical
sampling to reduce the performance overhead of various de-
bugging techniques. These include sampling for bug isolation
[9], memory leak detection [10], race detection [25], [26], and
information flow tracking [5], [11]. These techniques modify
the monitoring to support statistical sampling and so are not
generalizable. For those that prevent false positives, this is
also done with monitor-specific modifications. Finally, with
the exception of the work by Greathouse et al. [11], they do
not allow an overhead target to be specified.

There also exists several projects that have looked into
more general partial monitoring platforms. Arnold and Ryder
[31] presented a general platform for sampling of instrumented
code, but do not allow an overhead target to be specified and
do not prevent false positives. Huang et al. [32] proposed a
general framework for controlling the overhead of software-
based monitoring. However, they also do not explicitly ad-
dress false positives and only target monitors which degrade
gracefully when performed partially. Lo et al. [33] designed
a hardware architecture for performing monitoring on hard
real-time systems that also prevents false positives. Their
architecture is designed to meet real-time deadlines rather
than enable adjustable overheads. In addition, in order to
give strong guarantees, the coverage achieved is lower than
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our system. Finally, QVM [34] proposes a modification to
the Java Virtual Machine (JVM) to support monitoring with
adjustable overhead. QVM is limited to monitoring for code
run on a JVM which limits its generalizability while our
framework works for any binary. QVM prevents false positives
by enabling or disabling monitoring on a per-object basis. This
limits the monitoring schemes that can be implemented. Also,
this method of preventing false positives is similar to the idea
of performing source-only dropping which our results show
can lead to overshooting the overhead target depending on the
monitoring technique.

VII. CONCLUSION

Parallel run-time monitoring techniques are attractive so-
lutions for improving the reliability, security, and debugging
capabilities of systems. In this paper, we have presented an
architecture that enables adjustable overhead through partial
monitoring. The architecture uses a dataflow tracking engine to
prevent false positives through tracking invalidation informa-
tion. In addition, we show how the architecture can be extended
to enable null metadata filtering. Given this architecture, we
explore the design choices related to the dropping policy. With
partial monitoring, we see that with a 1.5x overhead target,
BC can still achieve 85% average coverage and UMC can still
achieve 14% average coverage. At this overhead target, IMP
shows less than 2% error on average. LS can be pushed down
to 1.1x overhead and still achieve 61% average coverage.
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